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Preface

The modern theory of analysis and differential equations in general certainly in-
cludes the Fourier transform, Fourier series, integral operators, spectral theory of
differential operators, harmonic analysis and much more. This book combines all
these subjects based on a unified approach that uses modern view on all these
themes. The book consists of four parts: Fourier series and the discrete Fourier
transform, Fourier transform and distributions, Operator theory and integral equa-
tions and Introduction to partial differential equations and it outgrew from the half-
semester courses of the same name given by the author at University of Oulu, Fin-
land during 2005-2015.

Each part forms a self-contained text (although they are linked by a common
approach) and can be read independently. The book is designed to be a modern
introduction to qualitative methods used in harmonic analysis and partial differential
equations (PDESs). It can be noted that a survey of the state of the art for all parts of
this book can be found in a very recent and fundamental work of B. Simon [35].

This book contains about 250 exercises that are an integral part of the text. Each
part contains its own collection of exercises with own numeration. They are not only
an integral part of the book, but also indispensable for the understanding of all parts
whose collection is the content of this book. It can be expected that a careful reader
will complete all these exercises.

This book is intended for graduate level students majoring in pure and applied
mathematics but even an advanced researcher can find here very useful information
which previously could only be detected in scientific articles or monographs.

Each part of the book begins with its own introduction which contains the facts
(mostly) from functional analysis used thereinafter. Some of them are proved while
the others are not.

The first part, Fourier series and the discrete Fourier transform, is devoted to
the classical one-dimensional trigonometric Fourier series with some applications
to PDEs and signal processing. This part provides a self-contained treatment of all
well known results (but not only) at the beginning graduate level. Compared with
some known texts (see [12, 18, 29, 35, 38, 44, 45]) this part uses many function
spaces such as Sobolev, Besov, Nikol’skii and Holder spaces. All these spaces are



introduced by special manner via the Fourier coefficients and they are used in the
proofs of main results. Same definition of Sobolev spaces can be found in [35]. The
advantage of such approach is that we are able to prove quite easily the precise em-
beddings for these spaces that are the same as in classical function theory (see [1, 3,
26, 42]). In the frame of this part some very delicate properties of the trigonometric
Fourier series (Chapter 10) are considered using quite elementary proofs (see also
[46]). The unified approach allows us also to consider naturally the discrete Fourier
transform and establish its deep connections with the continuous Fourier transform.
As a consequence we prove the famous Whittaker-Shannon-Boas theorem about the
reconstruction of band-limited signal via the trigonometric Fourier series (see Chap-
ter 13). Many applications of the trigonometric Fourier series to the one-dimensional
heat, wave and Laplace equation are presented in Chapter 14. It is accompanied by a
large number of very useful exercises and examples with applications in PDEs (see
also [10, 17]).

The second part, Fourier transform and distributions, probably takes a central role
in this book and it is concerned with distribution theory of L. Schwartz and its ap-
plications to the Schrodinger and magnetic Schrodinger operators (see Chapter 32).
The estimates for Laplacian and Hamiltonian that generalize well known Agmon’s
estimates on the continuous spectrum are presented in this part (see Chapter 23).
This part can be considered as one of the most important because of numerous ap-
plications in the scattering theory and inverse problems. Here we have considered
for the first time some classical direct scattering problems for the Schrodinger op-
erator and for the magnetic Schrodinger operator with singular (locally unbounded)
coefficients including the mathematical foundations of the classical approximation
of M. Born. Also, the properties of Riesz transform and Riesz potentials (see Chap-
ter 21) are investigated very carefully in this part. Before this material could only be
found in scientific journals or monographs but not in textbooks. There is a good con-
nection of this part with Operator theory and integral equations. The main technique
applied here is the Fourier transform.

The third part, Operator theory and integral equations, is devoted mostly to the
self-adjoint but unbounded operators in Hilbert spaces and their applications to in-
tegral equations in such spaces. The advantage of this part is that many important
results of J. von Neumann’s theory of symmetric operators are collected together.
J. von Neumann’s spectral theorem allows us, for example, to introduce the heat
kernel without solving the heat equation. Moreover, we show applications of the
spectral theorem of J. von Neumann (for these operators) to the spectral theory of
elliptic differential operators. In particular, the existence of Friedrichs extension for
these operators with discrete spectrum is provided. Special attention is devoted to
the Schrodinger and the magnetic Schrodinger operators. The famous diamagnetic
inequality is proved here. We follow in this consideration B. Simon [35] (slightly
different approach can be found in [28]). We recommend (in addition to this part)
the reader get acquainted with the books [4, 13, 15, 24, 41]. As a consequence of
the spectral theory of elliptic differential operators the integral equations with weak
singularities are considered in quite simple manner not only in Hilbert spaces but
also in some Banach spaces, e.g. in the space of continuous functions on closed



manifolds. The central point of this consideration is the Riesz theory of compact
(not necessarily self-adjoint) operators in Hilbert and Banach spaces. In order to
keep this part short, some proofs will not be given, nor will all theorems be proved
in complete generality. For many details of these integral equations we recommend
[22]. We are able to investigate in quite simple manner one-dimensional Volterra in-
tegral equations with weak singularities in L™(a,b) and singular integral equations
in the periodic Holder spaces C*[—a,a]. Concerning approximation methods our
considerations use the general theory of bounded or compact operators in Hilbert
spaces and we follow mostly the monograph of Kress [22].

The fourth part, Introduction to partial differential equations, serves as an in-
troduction to modern methods for classical theory of partial differential equations.
Fourier series and Fourier transform play crucial role here too. An important (and
quite independent) segment of this part is the self-contained theory of quasi-linear
partial differential equations of order one. The main attention in this part is devoted
to elliptic boundary value problems in Sobolev and Holder spaces. In particular, the
unique solvability of direct scattering problem for Helmholtz equation is provided.
We investigate very carefully the mapping and discontinuity properties of double
and single layer potentials with continuous densities. We also refer to similar prop-
erties of double and single layer potentials with densities in Sobolev spaces H'/ 2(8)
and H—1/2 (S), respectively, but will not prove any of these results, referring for their
proofs to monographs [22] and [25]. Here (and elsewhere in the book) S denotes the
boundary of a bounded domain in R” and if the smoothness of S is not specified
explicitly then it is assumed to be such that Sobolev embedding theorem holds.
Compared with well known texts on partial differential equations some direct and
inverse scattering problems for Helmholtz, Schrodinger and magnetic Schrédinger
operators are considered in this part. As it was mentioned earlier this type of mater-
ial could not be found in textbooks. The presentation in many places of this part has
been strongly influenced by the monographs [6, 7, 11] (see also [8, 16, 24, 36, 40]).

In closing we note that this book is not as comprehensive as the fundamental
work of B. Simon [35]. But the book can be considered as a good introduction to
modern theory of analysis and differential equations and might be useful not only
to students and PhD students but also to all researchers who have applications in
mathematical physics and engineering sciences. This book could not have appeared
without the strong participation, both in content and typesetting, of my colleague
Adj. Prof. Markus Harju. Finally, a special thanks to professor David Colton from
University of Delaware (USA) who encouraged the writing of this book and who
has supported the author very much over the years.

Oulu, Finland Valery Serov
June 2017



Contents

PartI Fourier Series and the Discrete Fourier Transform
Introduction . . ....... ... ... .. . .
Formulation of Fourier Series ................ ... ... ... ........

Fourier Coefficients and Their Properties . ........................

1
2
3
4 Convolution and Parseval’s Equality .............................
5 Fejér Means of Fourier Series. Uniqueness of the Fourier Series. . ...
6 The Riemann-Lebesgue Lemma .................................
7

The Fourier Series of a Square-Integrable Function. The
Riesz-Fischer Theorem. ............ ... ... ... ... ... ..........

>

Besov and Holder Spaces. ............ ... ... i,
9 Absolute convergence. Bernstein and Peetre Theorems. .............
10 Dirichlet Kernel. Pointwise and Uniform Convergence. .............
11 Formulation of the Discrete Fourier Transform and Its Properties.. . .

12 Connection Between the Discrete Fourier Transform
and the Fourier Transform. .................. ... ... ............

13 Some Applications of the Discrete Fourier Transform...............

14 Applications to Solving Some Model Equations ....................
14.1 The One-Dimensional Heat Equation .........................
14.2 The One-Dimensional Wave Equation ........................
14.3 The Laplace Equation in a Rectangle and ina Disk .............

37

59
77

85



Part II Fourier Transform and Distributions

15 Imtroduction ........... ... . ... ... 131
16 The Fourier Transform in Schwartz Space ........................ 133
17 The Fourier Transformin L”(R"), [ <p<2....................... 143
18 Tempered Distributions . ........... ... ... . ... ... ... ... .... 153
19 ConvolutionsinSand " ........... ... ... ... .. i 167
20 Sobolev SPACES . . ... .. ... 175

20.1 Sobolev spaces on bounded domains ......................... 188
21 Homogeneous Distributions ..................................... 193
22 Fundamental Solution of the Helmholtz Operator.................. 207
23 Estimates for the Laplacian and Hamiltonian ..................... 217

Part III Operator Theory and Integral Equations

24 Introduction . ... ... ... . 247
25 Inner Product Spaces and Hilbert Spaces ......................... 249
26 Symmetric Operators in Hilbert Spaces........................... 261
27 John von Neumann’s spectral theorem............................ 279
28 Spectra of Self-Adjoint Operators................................ 295
29 Quadratic Forms. Friedrichs Extension. .......................... 313
30 Elliptic Differential Operators ............. ... ... . ... ... ...... 319
31 Spectral Functions . ............ ... ... i 331
32 The Schrodinger Operator ...................... . ..., 335
33 The Magnetic Schrodinger Operator ............................. 349
34 Integral Operators with Weak Singularities. Integral Equations

of the First and Second Kinds. . ............................... ... 359
35 Volterra and Singular Integral Equations ......................... 371
36 Approximate Methods .......... ... ... ... .. ... ... ... 379

Part IV Partial Differential Equations
37 Introduction . . ... ............uuu 393
38 Local Existence Theory ................ . ... ... ... .. c.o... 405



39 The Laplace Operator . ...................ciiiiiiiiinnnnnnnnnn.. 421
40 The Dirichlet and Neumann Problems ............................ 437
41 Layer Potentials ............ ... ... . ... . .. i, 451
42 Elliptic Boundary Value Problems ............................... 471
43 The Direct Scattering Problem for the Helmholtz Equation ......... 485
44 Some Inverse Scattering Problems for the Schrodinger Operator . ... 493
45 The Heat Operator . ................uuuuuunuiiiiiiiiiiann.. 507
46 The Wave Operator ............... ... .ottt 517
References. ...... ... 529



Part 1
Fourier Series and the Discrete Fourier
Transform



Chapter 1
Introduction

Definition 1.1. A function f(x) of one variable x is said to be periodic with period
T > 0 if the domain D(f) of f contains x+ T whenever it contains x and if for every
x € D(f), one has

FOx+T) = f(x). (1.1)

Remark 1.2. If alsox—T € D(f), then

fle—T) = f().

It follows that if T is a period of f, then mT is also a period for every integer m > 0.
The smallest value of T > 0 for which (1.1) holds is called the fundamental period

of f.

For example, the functions

are periodic with fundamental period T = % Note also that they are periodic with
common period 2L.

If some function f is defined on the interval [a,a+ T], with 7 > 0 and f(a) =
f(a+T), then f can be extended periodically with period T to the whole line as

f(x):=f(x—mT), x€la+mT,a+(m+1)T], m=0,£1,+2,....

Therefore, we may assume from now on that every periodic function is defined on
the whole line.

(© Springer International Publishing AG 2017 3
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4 PartI: Fourier Series and the Discrete Fourier Transform

We say that f is p-integrable, 1 < p < e, on the interval [a, b] if

b
JRLCICIEES

The set of all such functions is denoted by LP(a,b). When p = 1, we say that f is
integrable.

The following “continuity” in the sense of L” space, 1 < p < oo, holds: for every
f € LP(a,b) and € > 0, there is a continuous function g on [a,b] such that

(/ £(2) |de)l/p <e

(see e.g., Corollary 5.3). If f is p-integrable and g is p’-integrable on [a, b|, where

/:1

1 1 ,
-+ — , 1< p<ool <p <oo,
p D

then their product is integrable on [, b] and

[ irsstoaes ([ 1rora)” ([sera) "

This inequality is called Holder’s inequality for integrals. Fubini’s theorem states

/(/F ’ydy) /(/F x,) )dy/;/ch(x,dey,

where F (x,y) € L' ((a,b) x (c,d)).
If fi,f2,...,fn are p-integrable on [a,b] for 1 < p < oo, then so is their sum
Z’}zlfj, and

(sl S (L)

This inequality is called Minkowski’s inequality. As a consequence of Holder’s
inequality we obtain the generalized Minkowski inequality

(

1/p

P 1/p d b
dx) g/ (/ |F(x7y)|pdx) dy.  (13)

'/C.dF(x’y)dy
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Exercise 1.1. Prove Holder’s inequality for integrals for every 1 < p < oo,

Hint. Prove first Holder’s inequality for sums, i.e.,

/

" r s, 1/p
= (Z |aj|p> (Z |b./|p> ,
j=1 j=1

where 1 < p < oo, 1/p+1/p’ =1, and where for p = = (or p’ = o) we consider
maxi<j<n |a;j| (or max<j<,|b;|) instead of the corresponding sums.

n
D ajb;
j=1

Exercise 1.2. Prove (1.2) and (1.3).

Lemma 1.3. If f is periodic with period T > 0 and if it is integrable on every finite
interval, then

/u )y = /0 " F)dy (1.4)

foreverya e R.

Proof. Let first a > 0. Then

[ rwac= [ pwac- [ e
_ /OTf(x)dx+ {/TaJrTf(x)dx—/Uaf(x)dx} :

The difference in the square brackets is equal to zero due to periodicity of f. Thus,
(1.4) holds for a > 0.
If a < 0, then we proceed similarly, obtaining

[ rwa= [ e [ rwar

—/f dx+/fdx F)ax

—/f derdex/f ]

Again, the periodicity of f implies that the difference in brackets is zero. Thus the
lemma is proved. (]

Definition 1.4. Let us assume that the domain of f is symmetric with respect to
{0}, i.e., if x € D(f), then —x € D(f). A function f is called even if

f(=x)=f(x), xeD(f),
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and odd if
f(=x)=—f(x), xeD(f).

Lemma 1.5. [f f is integrable on every finite interval and if it is even, then
a a
foar=2 [ fx)ax
—a 0
for every a > 0. Similarly, if f is odd, then
a
fx)dx=0
—da

for every a > 0.

Proof. Since

a a 0
[ rwae= ["r@aes [

then on changing variables in the second integral we obtain

" fea= [ s [Cr-na

The assertion of the lemma now follows from Definition 1.4. O

Definition 1.6. The notation f(c £ 0) is used to denote the right and left limits

flc£0):= lim f(x).

x—ck

Definition 1.7. A function f is said to be piecewise continuous (piecewise con-

stant) on an interval [a,b] if there are xg,xj,...,x, such that a = xp < x; < --- <
x, = b and
(1) f is continuous (constant) on each subinterval (x;_i,x;),j=1,2,...,n,

(2) f(x0+0), f(x,—0),and f(x;£0), j=1,2,...,n—1, exist.

Definition 1.8. A function f is said to be of bounded variation on an interval [a, b]
if there is ¢ > 0 such that for every {xo,xi,...,x,} witha=x¢ <x; <--- <x, =b,
one has

il ) = £ < co.

The number

VA= sup 3 IF() — Fle)] (1.5)

X0 X150 X j=]
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is called the total variation of f on the interval [a,b]. For every x € [a,b] we can
also define VY(f) by (1.5). The class of functions of bounded variation is denoted
by BV [a,b].

Exercise 1.3. (1) Show that the bounded function

.
~ Jasing, xe€(0,1],
f(x){()? e

is continuous on the interval [0, 1] but is not of bounded variation on [0, 1].
(2) Show that every piecewise constant function on [a, b] is of bounded variation.

Remark 1.9. This exercise shows that C[a,b] and BV [a,b] are not included in each
other, i.e., they represent two different scales of functions.

Exercise 1.4. Prove that

(1) VZ(f) is monotone increasing in x,
(2) forevery ¢ € (a,b), we have VP(f) = VE(f) + V().

If f is real-valued, then Exercise 1.4 implies that V;*(f) — f(x) is monotone increas-
ing in x. Indeed, for # > 0 we have that

(Va0 = ) = (Vi) = £0) = (Vi () = ViE()) = (Flr+-h) = £ ()

=VI(F) = (fx+h) — f(x))
|

)
> V() = |f(x+h) = f(x)] > 0.

As an immediate consequence we obtain that every real-valued function f € BV [a, D]
can be represented as the difference of two monotone increasing functions as

f) =Va(f) = (Va(f) = fx)).
This fact allows us to define the Stieltjes integral
b
/ g(x)df(x), (1.6)

where f € BV([a,b] and g is an arbitrary continuous function. The integral (1.6) is
defined as

[ arco = Algli ~ 1),

wherea=xg <x; <---<x,=b, éj S [xj_l,xj], and A = maxlgjg,,(xj —xj_l).
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Let us introduce the modulus of continuity of f by

on(f) = sup [f(x+h) = f(x)l, h>0. (1.7)
{x€[a,b]:x+hela,b]}

Definition 1.10. A bounded function f is said to belong to Holder space
C%a,b],0 < ax < 1,if
a)h(f) < Ch”*

with some constant C > 0. This inequality is called the Holder condition with expo-
nent o.

Definition 1.11. A function f is said to belong to Sobolev space Wp1 (a,b),
1 < p<eo,if f €LP(a,b) and there is g € L”(a,b) such that

Flx) = / T e(t)dr+-C (1.8)

with some constant C.

Definition 1.12. A function f is said to belong to Sobolev space W\ (a,b) if there
is a bounded integrable function g such that

Flx) = / “e()dt+C (1.9)

with some constant C.

Remark 1.13. Using Holder’s inequality we may conclude that
1 1
W, (a,b) CW,, (a,b)

forevery 1 < py < p; < oo,

Lemma 1.14. Suppose that f € Wp1 (a,b), 1 < p <o, Then f is of bounded vari-
ation. Moreover, if p =1, then f is also continuous, and if 1 < p < oo, then

fec' =ra,b].

Proof. Let first p = 1. Then there is an integrable function g such that (1.8) holds
with some constant C. Hence for fixed x € [a,b] with x+ & € [a,b] we have

x+h
fltn) =@ = [ gle)ar
It follows that

x+h
/ g(r)dr| -0, h—0,
X

|f (x+h) = f(x)| =
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since g is integrable. This proves the continuity of f. At the same time, for every
{x0,X1,...,%,} such that a = xp < x; < --- < x, = b, we have

/xle g(t)de

J

n

ilﬂxj) =3

J=1

n X b
dr = dr.
<[ lewlar= [lewie

Hence, Definition 1.8 is satisfied with constant ¢y = | ab |g(7)|dt, and f is of bounded
variation.
If 1 < p < o, then using Holder’s inequality for integrals we obtain for 4 > 0 that

s -l < [l s (o) " ([ eorear)

b 1/p
<t ([eopar)

where 1/p+1/p' = 1. If p =, then |f(x+h) — f(x)| < hsup|g|. By Definition
1.10, this means that f € C'~!/P[a, b]. The lemma is proved. O

1/p

Remark 1.15. Since every f € Wp1 (a,b), 1 < p < oo, is continuous, it follows that
the constant C in (1.8)—(1.9) is equal to f(a).

Definition 1.16. Two functions u and v are said to be orthogonal on [a,b] if the
product uv is integrable and

[ utiac=o,

where overline indicates the complex conjugation. A set of functions is said to be
mutually orthogonal if each distinct pair in the set is orthogonal on [a, b].

Lemma 1.17. The functions

Sform a mutually orthogonal set on the interval [—L,L] as well as on every interval
[a,a+2L). In fact,

L 0
/cosm—mcosn—mdx: , m#En, (1.10)
-L L L L, m=n,
L
/ cosm”xsinn—mdxzo, (1.11)
L L
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L
/smﬂsi M e 10 mEn (1.12)
-L L L L, m=n,
and .
/smm—”xdx /cos—dx 0. (1.13)
L

Proof. By Lemma 1.3, it is enough to prove the equalities (1.10), (1.11), (1.12), and
(1.13) only for integrals over [—L,L]. Let us derive, for example, (1.12). Using the
equality

(cos(ae—B) —cos(o+B)),

sinosinf =

RO —

we have for m # n that

L 1 1 /L
/ gin X nin:xdx77/ xdx77 (m+n)mx
L L L 2 2/

L
1 sm 1 sin(mtﬂ 0
2 T2\ (nimz -

-L L -L

If m = n, we have
L L )
/ smm—msin@dx— / 1dx — cos mnxdx:L.
L L L

The other identities can be proved in a similar manner and are left to the reader. The
lemma is proved. (]

Remark 1.18. This lemma holds also for the functions einTm, n=0,+1,42,...,in

the form
L
/ ei%e_i%dx: 07 n#m’
L 2L, n=m.



Chapter 2
Formulation of Fourier Series

Let us consider a series of the form

+ 2 (amcos —&—bm sin me) (2.1)

This series consists of 2L-periodic functions. Thus, if the series (2.1) converges for
all x, then the function to which it converges will also be 2L-periodic. Let us denote
this limiting function by f(x), i.e

fx) = %0 +Y (am cos anx + by, sin "%’”) . 2.2)

To determine a,, and b,, we proceed as follows: assuming that the integration can be
legitimately carried out term by term (it will be, for example, if Xr_; (|am| + |bm]|) <
o0), we obtain

L nmx
[Lf( cos—dx—? cos —dx—l—Zam/ cos—cosde
+ z bm/ sin 7m7rxc nnxdx

m=1 —L L

for each fixed n = 1,2,.... It follows from the orthogonality relations (1.10), (1.11),
and (1.13) that the only nonzero term on the right-hand side is the one for which
m = n in the first summation. Hence

1 L
- Z/_Lf(x)cos%dx, n=102,.... 2.3)

(© Springer International Publishing AG 2017 11
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12 PartI. Fourier Series and the Discrete Fourier Transform

A similar expression for b, is obtained by multiplying (2.2) by sin “* and integrat-
ing termwise from —L to L. The result is

1 L
bnzf/ F@)sin 2y, n=1,2,.... 2.4)
LJ)-L L

Using (1.13) we can easily obtain that
1 /L
= / F(x)d. 2.5)
J-L

Definition 2.1. Let f be integrable (not necessarily periodic) on the interval [—L, L].
The Fourier series of f is the trigonometric series (2.1), where the coefficients
ap,a, and by, are given by (2.5), (2.3), and (2.4), respectively. In that case, we write

aop mmx . mnX
fx)~—+ sz (am cos —— + by, sin T) . (2.6)
Remark 2.2. This definition does not imply that the series (2.6) converges to f or
that f is periodic.

Definition 2.1 and Lemma 1.5 imply that if f is even on [—L,L], then the Fourier
series of f has the form

a - mmnx
flx) ~ 20 z Uy COS ——— 2.7
2~ L
and if f is odd, then
X~ Y by siannx. (2.8)
m=1

The series (2.7) and (2.8) are called the Fourier cosine series and Fourier sine series,
respectively.
If L = &, then the Fourier series (2.6) ((2.7) and (2.8)) transforms to
30 z am cOSMX + by, sinmx) (2.9)
where the coefficients ag, a,,, and b,, are given by (2.5), (2.3), and (2.4) with L = 7.

There are different approaches if the function f is defined on an asymmetric
interval [0, L] with arbitrary L > 0.
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(1) Even extension. Define a function g(x) on the interval [—L, L] as

Then g(x) is even and its Fourier (cosine) series (2.7) represents f on [0,L].
(2) Odd extension. Define a function (x) on the interval [—L,L] as

Then A(x) is odd, and its Fourier (sine) series (2.8) represents f on [0, L].
(3) Define a function f(¢) on the interval [—m, 7| as

fo=r(5s+5):

If £(0) = f(L), then we may extend f to be periodic with period L. Then

tL L 12m
dr = dx
/ 1) / f<27r+2> 7L f(x)
=2 [ rwar=a()
~ 2 (L 2mmx
an(f) = (=17 /0 £0)c0s L dx = (~1)"an (1),
and ) L )
~ mmx
b (f) = (=1)"— A f(x)sin dx = (=1)"bu(f)
Hence,
i ?0 Z (amcosmt + by sinmt),
and at the same time,
2 2
+ 2 (amcos anerbm sin ”Iinx>,
m=1
tL L
where ag, a,,, and b,, are the same and x = 2——1—5

These three alternatives allow us to consider (for simplicity) only the case of a sym-
metric interval [—7, 7] such that the Fourier series will be of the form (2.9) i.e.
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N\o

2 @y, COSMX + by, sinmx) .

Using Euler’s formula, we will rewrite this series in the complex form

X)~ Y cue™, (2.10)

N=—oc0

where the coefficients ¢, = ¢, (f) are equal to

- Tt 55 n=1,2,...,
2 2 ap =cp+c_y, n=12,...,
Cp = i;, n=0, or ay = 2cy, 2.11)
a_n_b_n ne _1.-2 bnzl(cn_cfn)7 n=12,....
2 2i ) - 5 geoee

The formulas (2.3), (2.4), (2.5), and (2.11) imply that

en(f) = ! / 7; fx)e ™ dx (2.12)

2 -

for n = 0,£1,£2,.... We call ¢,(f) the nth Fourier coefficient of f. It can be
checked that

cn(f) = con(f)- (2.13)

Exercise 2.1. Prove formulas (2.10), (2.11), (2.12), and (2.13).

Exercise 2.2. Find the Fourier series of
-1, —n<x<0,
(1) sgn(x)=4¢0, x=0,
1, O0<x<m.
2) |x,-1<x<1.
3) x,—-1<x<1.
0, —L<x<0
4 x)=<{" - =
@ fix) L, 0<x<L.
(5) f(x) =sinx, |x| <2.

Exercise 2.3. Prove, using Part (2) of Exercise 2.2, that

. P
gqu and =3,
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Exercise 2.4. Suppose that

Find the Fourier cosine and sine series of f(x).

Exercise 2.5. Find the Fourier series of f(x) = cos(x/2), |x| < m. Using this series,
show that

)k+l
(1) m= 2+Zk2—1/4
T o )k+1
7 2 ’
| =
(3)5:2

Exercise 2.6. Show that if N is odd, then sin™ x can be written as a finite sum of the
form

N
2 ay sinkx,
k=1

which means that this finite sum is the Fourier series of sin™ x and the coefficients
ay (which are real) are the Fourier coefficients of sin® x.

Exercise 2.7. Show that if N is odd, then cos" x can be written as a finite sum of
the form

N
Z ay cos kx.
k=1



Chapter 3
Fourier Coefficients and Their Properties

Definition 3.1. A trigonometric series

)
3 e

N=—o0

is said to

(1) converge pointwise if for each x € [—m, ] the limit

lim Y c,e™

N—soo <N

exists,
(2) converge uniformly in x € [—r, x| if the limit

lim Y c,e™
N—soo
[n|<N

exists uniformly,
(3) converge absolutely if the limit

Al[l_fgo 2 |al

In| <N

exists, or equivalently, if

=

Z |en| < eo.

N=—oc0

These three different types of convergence appear frequently in the sequel, and they
are presented above from the weakest to the strongest. In other words, absolute

(© Springer International Publishing AG 2017 17
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convergence implies uniform convergence, which in turn implies pointwise conver-
gence.

If f is integrable on the interval [—m, 7], then the Fourier coefficients c,(f) are
uniformly bounded with respectton =0,4+1,4+2,...,1i.e

lea(f)

= 5| [ s < o [ e 3.

where the upper bound does not depend on n. Let us assume that a sequence
{en}im-_. is such that

Y fen] < oo

n=—o0

Then the series

)
3 e

N=—oc0

converges uniformly in x € [—7, 7] and defines a continuous and periodic function

i cne™, (3.2)

n=—oc0

whose Fourier coefficients are {c,};__.. = {cn(f) }ir-_... More generally, suppose

that N
> Inlffea] <o

n=—oo

for some integer k > 0. Then the series (3.2) defines a function that is k times differ-
entiable, with

oo

f<k)(x): Z (in)kcneinx (3.3)

n=-—oco

a continuous function. This follows from the fact that the series (3.3) converges
uniformly with respect to x € [—m, 7].

Let us consider a useful example in which Fourier coefficients are applied. If
0 < r < 1, then the geometric series gives

Z Piein, (3.4)

1 —reix

and this series converges absolutely. Using the definition of the Fourier coefficients,

we obtain '
1 T e—inx
rnzi/ _dx, n=0,1,2,...,
Zn_fnl—re]'x
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and

o= L M 4 1.2
—E/_nl_reix s n=1,2,....

From the representation (3.4), we may conclude also that

1 —rcosx 1 . L = |
:R i = rn = — — ‘Yl‘ nx 3'5
1 —2rcosx+r? e<1—rew> ngb cosnx 2+2n:2_‘mr e (3.5)

and

rsinx 1 oo ) T .
mwﬂm(lmu) =n§1r”smnx=—5 3 sgn(n)e™. (3.6)

n=—co

Exercise 3.1. Verify formulas (3.5) and (3.6).

Formulas (3.5) and (3.6) can be rewritten as

2

- - 1—r
[n] inx - =P 3.7
n;mr ¢ 1—2rcosx+r? () 3-7)
and . o
I |n| Jinx _ rsimx _. 38
i Y sgn(n)re T 2rcosc 1 2 1 0r(x). (3.8)

n—=—oo

Definition 3.2. The function P.(x) is called the Poisson kernel, while Q,(x) is
called the conjugate Poisson kernel.

Since the series (3.7) and (3.8) converge absolutely, we have

I . 1 7 .
M= _— [ P(x)e™dx and —isgn(n)"=— [ 0Q,(x)e""™dx,

d 2r J-x 2r J-x

where n =0,41,+2,.... In particular,

1 [ 1 T
o[ Plodi=1 and E/%Q,(x)dxzo.

Exercise 3.2. Prove that both P,(x) and Q,(x) are solutions of the Laplace equation
uxlxl +ux2x2 = O

in the disk x7 +x3 < 1, where x| +ix, = re™ with 0 < r < l and x € [, 7].
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Given a sequence a,,n =0,4+1,£2,..., we define
Apa=a, —a,_q.

Then for any two sequences a,, and b, and integers M < N, the formula

N N
z akAkb = aNbN - aMbM - z bk_lAk(l (39)
k=M+1 k=M+1

holds. Formula (3.9) is called summation by parts.
Exercise 3.3. Prove (3.9).

Summation by parts allows us to investigate the convergence of a special type of
trigonometric series.

Theorem 3.3. Suppose that ¢, >0, n=0,1,2,..., ¢, > cps1, and lim,_,ec, = O.
Then the trigonometric series

Y cnel™ (3.10)
n=0

converges for every x € [—m, 7] \ {0}.

Proof. Letb, =%}_, ek Since

l_eix(rrH)
bn = 1 _e]'_x ) X # 07
it follows that
2 1
‘bn| S I = X
[1—e>|  |sing]

forx € [—m, ]\ {0}. Applying (3.9) shows that for M < N we have

N . N ko k=1 N
z Ckelkx _ Z Ck (Z e1l)r o z ellx) _ Z CRArb
=0 =0

N
= CNbN — CMbM — Z bk_lAkC.
k=M+1

Thus
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N
< cnlby|+emlbul+ Y, |bi-1llAce|

N .
2 ckelkx

k=M+1 k=M+1
>
<= eN+oem+ ek — 1]
|sin 3| k=M+1
1 2CM
= (entemtem—con) = 7 —
|sin 3| | sin 5|
as N > M — oo. This proves the theorem. (]

Corollary 3.4. Under the same assumptions as in Theorem 3.3, the trigonometric
series (3.10) converges uniformly for all m > |x| > 6 > 0.

Proof 1f 7 >|x| > & >0, then |sin}| > 21 > &, O

Theorem 3.3 implies that, for example, the series

cosnx sinnx

————— and —
Zg log(2+n) rg‘l log(2+n)

converge for all x € [—m, 7]\ {0}.
Modulus of continuity and tail sum

For the trigonometric series (2.10) with

2 [en| < oo

Nn—=—oo
we introduce the tail sum by
Eyi= Y ||, n=0,1,2,.... (3.11)
|k|>n

There is a good connection between the modulus of continuity (1.7) and (3.11).
Indeed, if f(x) denotes the series (2.10) and /& > 0, we have

Fatn) = OIS X lealle™ =11 =3 lealle™ —1[+ 3 |ealle™ 1]

n=—oo [n|h<1 [n|h>1
<h z |n||cal +2 Z lea| =1 + I,
In|<[1/R] |n|>[1/h]

where [x] denotes the entire part of x. If we denote [1/h] by Nj, then I, = 2Ey, and

Ny
I] =h Z |n| (EW*I 7E‘n‘) = 7th(E1 7E1_1).
=1

1 <N,
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Using (3.9) in the latter sum, we obtain

n=1 n=1

Ny Ny
I =—h (NhENh —0-Ey— z E,y(n—(n— 1))) = —hNhENh +h z E, .

Since hNj, = h[1/h] < h-} = 1, these formulas for /; and I, imply that

Ny, 1 Np—1
on(f) < 2EN, — hNyEy, +h Y, Eq_1 < 2Ey, + N Y En. (3.12)
T n=0

n=1

Since E,, — 0 as n — oo, the inequality (3.12) implies that wy,(f) — 0 as h — 0.
Moreover, if E, = O(n~%), n # 0 for some 0 < o < 1, then

_Jo(n*), O<a<l,
wh(f)—{o(hlog“ S (3.13)

Here and throughout, the notation A = O(B) on a set X means that [A| < C|B| on X
with some constant C > 0. Similarly, A = o(B) means that A/B — 0.

Exercise 3.4. Prove the second relation in (3.13).

We summarize (3.13) as follows: if the tail of the trigonometric series (2.10) behaves
as O(n~%) for some 0 < ¢ < 1, then the function f to which it converges belongs
to the Holder space C*[—m, 7).



Chapter 4
Convolution and Parseval’s Equality

Let the trigonometric series (2.10) be such that

Z |en| < eo.

N=—oc0

Then the function f to which it converges is continuous and periodic. If g(x) is any
continuous function, then the product fg is also continuous and hence integrable on
[-7, 7] and

oo

alh) [ swenai= ¥ (e, @D

n=—oco Nn=—oo

1 T 1
o/ sl = 5

where integration of the series term by term is justified by the uniform convergence
of the Fourier series. Putting g = f in (4.1) yields

=

o [ Wke= ¥ ahea(= T Ok @2

21 J—n Ne—oo He—oo

by (2.13).

Definition 4.1. Equality (4.2) is called the Parseval’s equality for the trigonometric
Fourier series.

The formula (4.1) can be generalized as follows.

Exercise 4.1. Let a periodic function f be defined by the absolutely convergent
Fourier series (2.10) and let g be integrable and periodic. Prove that

1 o .
37 | FEe—x)de= 3 cul(f)en(g)e™
TJ)-x n——oo
(© Springer International Publishing AG 2017 23
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and that this series converges absolutely.
A generalization of Exercise 4.1 is given by the following theorem.

Theorem 4.2. If fi and f> are two periodic L functions, then

cn(fl *f2) = Cn(fl)Cn(fZ)a

where f1 * f> denotes the convolution

(fi# f)(x / AO)HG—y)dy 4.3)

and where the integral converges for almost every x.

Proof. We note first that by Fubini’s theorem the convolution (4.3) is well defined
as an L! function. Indeed,

[ ([ 1m0 1me-i)a= [ o0 ([ isoe) o
= [0 ([ 1nee) @

by Lemma 1.3. The Fourier coefficients of the convolution (4.3) are equal to

enlfi f2) = 1/(f1*fz)()_i""dx

— e (A0 AG -y e

- # | nw ( I fz(x—Y)ei”de> dy
g [0 ([ peemo ) e

(27r) 7nf1 e~ iny (/ flz I'IZdz> dy = ¢, (fi)en(f2)

by Lemma 1.3. Thus, the theorem is proved. |

Exercise 4.2. Prove that if f| and f; are integrable and periodic, then their convo-
lution is symmetric and periodic.

Exercise 4.3. Let f be a periodic L! function. Prove that

FP)R) = (B = 3 Mey(f)e

Nn—=—oco
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and that P, x f satisfies the Laplace equation, i.e., (Py* f)xx; + (Pr* f)rx, = 0,
where x% —|—x% =r? < 1 with x; +ixp = re™.

Remark 4.3. We are going to prove in Chapter 10 that for every periodic continuous
function f, the limit lim,_;_ (f % P,)(x) = f(x) exists uniformly in x.



Chapter 5
Fejér Means of Fourier Series. Uniqueness
of the Fourier Series.

Let us denote the partial sum of the Fourier series of f € L'(—r, ) (not necessarily

periodic) by _
Sv(f) = 2, eal(f)e™

In| <N

foreach N =0,1,2,.... The Fejér means are defined by

So(f)+---+Sn(f)

on(f) = Nt1

Writing this out in detail, we see that

N N
N+Don(f)=Y Y alf)eF =3 3 (e

n=0|k|<n |k| <N n=|k|
= Y (N+1—lk]e(f)e™,
k<N

which gives the useful representation

K] ik
on(n)= 3 (1- 357 ) alne 5.
K=V N+1
The Fejér kernel is
KL i
Ky(x):= Y, (1— elkx. (5.2)
K= N+1

(© Springer International Publishing AG 2017 27
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The sum (5.2) can be calculated precisely as

2
1 sin Xty

Ky(x) = —— 2 ) 53
N(x) N+1< s1n2 (5-3)

Exercise 5.1. Prove the identity (5.3).

Exercise 5.2. Prove that .
— K dx=1. 54
| Kn(v) (5.4)

We can rewrite oy (f) from (5.1) also as

= 3 10 (1 o el

k=—o0

where

—_

, lk[<N,
1w (k) =
v (k) {0, k| > N.

Let us assume now that f is periodic. Then Exercise 4.1 and Theorem 4.2 lead to

1

3 f( Knlx—y)dy= 3 1 NN]()< X ) (N 55)

= N+1

Exercise 5.3. Prove (5.5).

Hence, the Fejér means can be represented as

on(f)(x) = (f *Kn)(x) = (K f)(x). (5.6)

The properties (5.3), (5.4), and (5.6) allow us to prove the following result.
Theorem 5.1. Let f € LP(—7, &) be periodic with 1 < p < oo, Then

lim ( [ loxr) —f<x>|de) " . 5.7)

N—oo

If, in addition, f has right and left limits f(xo£0) at a point xy € |[—n, 7], then

lim ov()50) = 3 (/(x0+0) + /x0—0). 53)
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Proof. Let us first prove (5.7). Indeed, (5.4) and (5.6) give

(/ ﬂ lGN(f)(x)_f(x)'pd’“)l/p B (/ |(f*KN)(X)—f(x)|pdx> "

J =T J =T
p 1/p
o)

-(f,
= (L

< % (/i /|y‘<61<zv(y)(f(x—y) — f(x))dy pdx>l/p

1 n P 1/p
4 (/ dx) =1 + 1.
2n T

Using the generalized Minkowski’s inequality, we obtain that

1
= [ keur—nar- o [ ketreos

p 1/p
o)

| Kv0) (=)= 7wy

/ Kyv()(f(x—) = £(x))dy
n>y[>6

n<- K i P dx l/pd
< 5 [ B0 ([ ey —swler) e
T 1/p 1 T
< sup ([T temn-sras) o [ ko
T 1/p
= s (" Irte=n) - forax) o0
yl<é \/—7

as 6 — 0, since f € LP(—m, ). Quite similarly,

be g oo ([ sore) e

T ]/P l
<2 ( / ﬂlf(X)”dX> o Rt

since f is periodic. The next step is to note that

for m > |y| > 6. That is why (5.3) leads to

1 1 1 72

< R
N+1 31n2% “N+1 82

Kn(y) <

29

(5.9)

(5.10)
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and

1 n? 2(n—9) n? n?
— Ky (y)dy < : < <—=—0
T ./,rz\yba YOS S NET SR S vR

as N — oo if we choose § = N~'/4. From (5.9) and (5.10) we may conclude (5.7).
In order to prove (5.8), we use (5.4) to consider the difference

on(f)(x0) ~ 3 (Fx0+0) + f(x0~0))

= 55 [ ) [ 1030 -3) = 5 (70 +0)+ 130 ~0) | &
_ 217r | /jr Ky (y)g(y)dy, G40

where

80) = F—) ~ 5 (F(x0 +0) + f(x ~0)).

Since the Fejér kernel Ky (y) is even, we can rewrite the right-hand side of (5.11) as

Kn( y)d
27r/ NO)AG)y,

where h(y) = g(y) +g(—). It is clear that A(y) is an L! function. But we have more,
namely,

lim h(y) = 0. 5.12
Jim A(y) = (5.12)

Our task now is to prove that

. 1 [T
Jim [ Ky ()hr)dy =0,

We will proceed as in the proof of (5.7), i.e., we split the integral as

1 4
— [k KvO)h()dy+— [ Ky()h()dy =: I + I.
27:/0 V) 27r/ NO)RG)dy+ 5 / vORO)y =D+ 1

The first term can be estimated as

il < 5= swp )| [ KuO)dy = 3 sup J40)| 0
T o<y<s ly|<o

as 0 — 0+ due to (5.12). For I, we have
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Bl 5 (5) 5 [ 10y —0
— (= —
21=27\8) N+1Jo M

as N — o if we choose, for example, § = N ~1/4_ Thus, the theorem is completely
proved. ]

Corollary 5.2. If f is periodic and continuous on the interval [—1, 7t), then

lim oy (f)(x) = f(x)

uniformly in x € [—m, 7).

Corollary 5.3. Every periodic L function, 1 < p < ee, can be approximated in
the sense of LP space by the trigonometric polynomials ¥ <y brel®™ (which are
infinitely differentiable, i.e., C™ functions).

Theorem 5.4 (Uniqueness of Fourier series). If f € L'(—n,r) is periodic and if
its Fourier coefficients are identically zero, then f = 0 almost everywhere.

Proof. Since

N—oo |

tim [ o (1))~ /()] dx =0

by (5.7), it follows that if all Fourier coefficients are zero, we have

J Ir@lar=o,

which means that f = 0 almost everywhere. This proves the theorem. ([



Chapter 6
The Riemann-Lebesgue Lemma

Theorem 6.1 (Riemann-Lebesgue lemma). If f is periodic with period 21t and
belongs to L' (—r, ), then

T

lim [ f(x+z)e ™dz=0 (6.1)

n—oo |_m

uniformly in x € R. In particular, ¢,(f) — 0 as n — oo
Proof. Since f is periodic with period 27, it follows that

T+x

T R . . T .
/ flx+z)e "™ dz = f(y)e_m(y_x) dy =e¢"™ F(y)e "dy (6.2)
—T —T

—T+x

by Lemma 1.3. Formula (6.2) shows that to prove (6.1) it is enough to show that the
Fourier coefficients ¢, (f) tend to zero as n — oo. Indeed,

w+7/n

2men(f) = j,f(y)eiinydy = fy)e ™dy = /j;f(t—i-n/n)e*i’"e*i”dt

—n+7/n

by Lemma 1.3. Hence

T

—den(f) = / (f(i +7/n) — f(1))e " dr. 6.3)

—T

If £ is continuous on the interval [—7, 7], then

sup |f(t+7/n) = f(O)] =0, n—eo

te[—m,m

Hence c,(f) — 0 as n — oo, If f is an arbitrary L' function, we let € > 0. Then we
can define a continuous function g (see Corollary 5.3) such that
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[ 17— gwlar<e.
Write
cn(f) = enlg) +en(f —g)-

The first term tends to zero as n — oo, since g is continuous, whereas the second
term is less than &/(27x). This implies that

. €
suplim|c, (f)| < o

n—oo

Since ¢ is arbitrary, we have

tim [ (/)] = .
This fact together with (6.2) gives (6.1). The theorem is thus proved. U

Corollary 6.2. Let f be as in Theorem 6.1. If a periodic function g is continuous

on [—m,m), then
T

lim [ f(x+2)g(z)e "dz=0

n—oo | _ o

and
T 1

lim [ f(x+2)g(z)sin(nz)dz= lim [ f(x+2z)g(z)cos(nz)dz=0

n—eo J o n—oo |_ o

uniformly in x € [—m, 7).
Exercise 6.1. Prove this corollary.

Exercise 6.2. Show that if f satisfies the Holder condition with exponent ¢ € (0, 1],
then ¢, (f) = O(|n|~%*) as n — oo.

Exercise 6.3. Suppose that f satisfies the Holder condition with exponent o > 1.
Prove that f = constant.

Exercise 6.4. Let f(x) = |x|% where -7 <x<mand 0 < & < 1. Prove that ¢, (f) <

In| 1% asn — oo,

Remark 6.3. The notation a =< b means that there exist 0 < ¢; < ¢; such that
cilal <|b] < ezlal.

Let us introduce for all 1 < p < e and periodic functions f € LP(—m,x) the LP-
modulus of continuity of f by

opstr)= sop ([ stesn - sopar)

hj<6 \/ -1
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The equality (6.3) leads to
NI < 32 [ 1+ m/m) - )]s

1-1/ T 1/p
S%’(/ f(x+7r/")f(x)"dx) %(zfr) Y@y 2n(f);

-7
where we have used Holder’s inequality in the penultimate step.

Exercise 6.5. Suppose that @, 5(f) < C8% for some C > 0 and o > 1. Prove that
f is constant almost everywhere.

Hint. First show that @, »5(f) < 2a), 5(f); then iterate this to obtain a contradiction.

Suppose that f € L'(—7,7) but f is not necessarily periodic. We can consider the
Fourier series corresponding to f, i.e.,

o
X) ~ 2 cpe™,

N=—oc0

where the ¢, are the Fourier coefficients c,(f). The series on the right-hand side
is considered formally in the sense that we know nothing about its convergence.
Howeyver, the limit

lim / U Yl f)einid = [ if(x)dx (6.4)

/ Y alf)erdi=alf) [ der Y Mﬂ[}mﬁ:hmm

Tn|<N N 0<|n|<N

:/nﬂmm.

Remark 6.4 (Important properties of the Fourier series). The existence of the limit
(6.4) shows us that we can always integrate the Fourier series of an L' function term
by term.



Chapter 7
The Fourier Series of a Square-Integrable
Function. The Riesz—-Fischer Theorem.

The set of square-integrable functions L*(—m, 1) is an inner product space (linear
Euclidean space) equipped with the inner product

(I —
(fag)Lz(—n'Jr) = ﬁ 7nf(x)g(x)d‘x

We can measure the degree of approximation by the (square of) mean square dis-

tance
1

g[ﬂ f(x) —g(@)Pdx = (f — & f — &) 12(_nm)-

In particular, if g(x) = ¥, <y bse"™ is a trigonometric polynomial, then this distance
can be written as

o [ rwPars o [ fePac- 5 2Re [ gt

or

1 T
E/vwm

+— / S bue™ Y bre Fdx— —2Re " ) S bye™dx

T n|<N |k|<N = n|<N

! [ﬂ| (x)|2dx+i S (b " dx—2Re S buca(f)

27'C 2r In|<N -7 In|<N
1
=5 [ WPt 3 P -2Re 3 B+ 3 )P T lal D
T [n|<N |n|<N |n|<N |n|<N
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So
[0 —soPar= - [ 1f0Pa— 3 @D+ S bl

[n|<N [n|<N

This equality has the following consequences:

(1) The minimum error is

min o [ 1) - P

8(X)=Xnj<n bne™ 2n
1 x
E/ WPa— S le(HP 3D

[n|<N
and it is attained when b, = ¢, (f).
(2) For N =1,2,..., it 1is true that
Dy [ 1rwpas
Cn > Slx )

In|<N =n

and in particular,
1 T
Sl < oz [ 1R (12)

n=—oo

This inequality is called Bessel’s inequality.

It turns out that (7.2) holds with equality. This is Parseval’s equality for f €
L?(—m, ), which we state as the following theorem.

Theorem 7.1. For every periodic function f € L2(—717,7'c) with period 2m, its
Fourier series converges in L*(—7, 1), i.e

2
1 (" ;
tim > [ @)= 3 el de=o,
N—oo 21 J 1 | =N
and Parseval’s equality
N / DPde= Y leulf (73)
27 nl ’

n=—oo

holds.
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Proof. By Bessel’s inequality (7.2), we have for every f € L>(—r, ) that

l T
)
as N > M — oo. Due to the completeness of the trigonometric polynomials in

L?*(—r, 1) (see Corollary 5.3), we may now conclude that there exists F € L?(—m, )
such that

2

de= 3 alHP =0

M+1<|n|<N

Y anle™ = 3 ealf)e™

|n|<N |n|<M

2

F(x)— Y ca(f)e™] dx=0.

[n|<N

l T
lim —
NIEL 2n /;n:

It remains to show that F(x) = f(x) almost everywhere. To do this, we compute the
Fourier coefficients ¢, (F) by writing

2rc,(F) = an —indy = " F(x)— c x| g =inx gy
neu(F)= [ F(xje /ﬂ(() 3 alne )
+26k(f)/_n

k| <N T

ei(k—n)xdx.

If N > |n|, then the last sum is equal to 27tc, (f). Thus, by Holder’s inequality,

T

2len(F) = a1 < [ |F)= T aale|ax
- |k|<N
5 o\ 172
<var| [M - 3 alne| ar]  —o
o [kl <N

as N — oo, i.e., ¢y(F) = ¢u(f) for all n = 0,£1,4£2,.... Theorem 5.4 (uniqueness
of Fourier series) implies now that F = f almost everywhere. Parseval’s equality
follows from (7.1) if we let N — oo, (]

Corollary 7.2 (Riesz-Fischer theorem). Suppose {b,}r__., is a sequence of
complex numbers with Y5> |by|*> < oo. Then there is a unique periodic function

f € L*(—r, &) such that b, = c,(f).
Proof The proof is identical to that of Theorem 7.1. (I

Theorem 7.3. Suppose that f € L*>(—m, ) is periodic with period 21 and that its
Fourier coefficients satisfy

S |0 len(f)F < oo (7.4)

n=-—oco
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Then f € W, (—m, &) with the Fourier series for f'(x) given by

f(x) ~ 2 inc, (f)e™.

Nn——o00
Proof. Since (7.4) holds, it follows that by the Riesz—Fischer theorem there is a
unique function g(x) € L?>(—m, ) such that

=

g~ Y, ncy(f)e™

n—=—oo

Integrating term by term, we obtain

/jrg(x)dx =0.

X

Let F(x) := / g(r)dr. Then for n # 0, we have

—T

cn(F) = % | [ ’; ( [ xﬂ g(t)dt) einrdy — % | /jr o(t) ( /, ne"”dx) dr

1 T efinﬂ: efint 1 1 T . 1
t dt = —— e Mdr = — )
[ e (S +5) g ar = ey (e)

T 2m g in in2m )z

On the other hand, ¢,(g) = inc,(f). Thus, by the uniqueness of Fourier series, we
obtain that F(x) — f(x) = constant almost everywhere, or f’(x) = g(x) almost every-
where. This means that

X

f(x)= [ g(¢)dt + constant,

—T

where g € L>(—r, ). Therefore, f € W) (—x, ) and

FE=g@)~ Y inca(f)e™

This completes the proof. O

Corollary 7.4. Under the conditions of Theorem 7.3, it is true that
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Proof. Due to (7.4) we have

Y, len(Dl=leo(H+ 2 leals)
n=-—oo n#0

1
<leo(f)l+ 5 Zlnl len(f \2+

[n[?
n;éO n;éO

41

oo
)

where we have used the basic inequality 2ab < a® + b? for real numbers a and b. [J

Using Parseval’s equality (7.3), we can obtain for every periodic function f €

L*(—m,m)and N = 1,2,... that

1 T
)

Exercise 7.1. Prove (7.5).

dx = z len(f

|n|>N

2 Cn(f) inx _

|n|<N

Using Parseval’s equality again, we have

[ 1= P a = B ol m - f)F

N=—o0

= 3 " =1 lea(f).

n=—oco
Theorem 7.5. Suppose f € L*(—n, ) is periodic with period 2x. Then

S lealf)P=0(N"%), N=1.2,...,
[n|>N

with 0 < oo < 1 if and only if

Y e =1Plen()F = O(|n**)

N=—oc0

Sor |h| sufficiently small.

Proof. From (7.6) we have for every integer M > 0 that

[ )~ fPax < S RIenP 4 S, el

In|<M [n|>M

(7.5)

(7.6)

(7.7)

(7.8)

(7.9)

if M|h| < 1. If (7.7) holds, then the second sum is O(M~2%). To estimate the first

sum we use summation by parts. Writing
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= la(AI%
[k|<n
we have
& 2
S Rlef)P =MDy —0-Ip— Y i (n* — (n—1)?)
lg\n\SM n=1
M
:MZIM— 2(21’1— 1) n— 1—10
n=2
By hypothesis,
Le—I,=0(n"%%), n=1,2,
Thus,
M
MLy =Y, (2n—1) (L. +0((n—1)72%))
n=2
M M
=M* (L.+O0M >*) —1. Y. (2n—1)= 3 (2n— 1)O((n— 1) %)
n=2 n=2

=O0OM* ) + L, <M2 - f (2n — 1)) — f(zn— 1)O((n—1)"%%)

_ 0(M2—2a) +0(1‘42—206) _ 0(M2—20t).

Exercise 7.2. Prove that

() 2Ly (20— 1) = M
Q) M 20((2n—1)( —1)72*) = 0o(M* ) for0 < o < 1.

Combining these two estimates, we may conclude from (7.9) that there exists C > 0
such that | i
oo | L) = f@)P de < C (M2 p ),
-

Since 0 < o < 1, choosing M = [1/|h|] we obtain

o [ e — @ P < € (1R (114 22)

2r J- ]
< (WD 4 (1|l = {1/ 1A} )
<c(JhPe+(1/1nl = 1))
= C (JAP* + |2/ (1= 1] ) < ClhP®
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if |h| < 1/2.Here {1/|h|} denotes the fractional part of 1/|h|, i.e., {1/|h|} =1/|h|—

[1/|A]] € ]0,1).
Conversely, if (7.8) holds, then

oo

Z (1— cos(nh))\cn(f)|2 < Ch?*“

n=—oo

with some C > 0. Integrating this inequality with respect to h over the interval [0, 1],
[ > 0, we have

> |c,1(f)|2/01(1 — cos(nh))dh < C/Oth”‘dh,

n=-—oco

or

5l (1- 2 < e,

n=—oo

or

S el (1- 20 < e

Nn—=—oo

It follows that

ez 3 1R (1-T50) 2 1S e a0

[n|i>2 [n|i>2
Taking [ = 2/N for the integer N > 0 in (7.10) yields

Y len(f)P <CN2.

n|>N

This completes the proof. (]
Remark 7.6. If oo = 1, then (7.8) implies (7.7) but not conversely.
Exercise 7.3. Suppose that a periodic function f € L?>(—r, xr) satisfies the condi-
tion -

[ 1ren) - pPar< o

J—T
with some C > 0. Prove that

Y, P lea(f)P <o

and therefore f € W, (-7, 7).
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For an integrable function f periodic on the interval [—, ] let us introduce the
mapping
fr=Aa(f)i=w

where ¢, (f) are the Fourier coefficients of f. This mapping is a linear transforma-
tion. Formula (3.1) says that this mapping is bounded from L!(—7, 1) to [*(Z).
Here Z denotes all integers, and the sequence space 1P(Z) consists of sequences
{bn};__., for which

=

2, [bal” <o

n=—oo

if 1 < p <eoandsup,cy |by| <eooif p=co.

Parseval’s equality (7.3) shows that it is also bounded from L?(—m, 7) to [*(Z).
By the Riesz—Thorin interpolation theorem (Theorem 17.7), we may conclude that
this mapping is bounded from L?(—1, 70) to [”' (Z) forevery 1 < p<2,1/p+1/p =
1, and

> el <e ( I f(X)I”dX> "o

n=—oo



Chapter 8
Besov and Holder Spaces

In this chapter we will consider integrable 2m-periodic functions f defined via
trigonometric Fourier series in L?(—7, 1) as

oo

fx)~ Y culf)e™, (8.1)

Nn—=—oco

where the Fourier coefficients ¢, (f) satisfy Parseval’s equality

o [ b= 3 )

2. -7 PR—

that is, (8.1) can be understood in the sense of L*(—7, ) as

2
dx=0.

3

f) =X calf)e™

In|<N

lim
N—oo | _ g

We will introduce new spaces of functions (as subspaces of L?>(—7, 7)) in terms of
Fourier coefficients. The motivation of such an approach is the following: we proved
(see Theorem 7.3 and Exercise 7.3) that a periodic function f belongs to W, (—7, )
if and only if

oo

D [nflea( )P < oo

n=—oco

This fact and Parseval’s equality justify the following definitions.

(© Springer International Publishing AG 2017 45
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Definition 8.1. A 2m-periodic function f is said to belong to the Sobolev space
W2a (* T, TC)

for some o > 0 if
Y, [P en(f)] <o, 00:=1.

Definition 8.2. A 2r-periodic function f is said to belong to the Besov space
Bgi o(—m,m)

for some o« > 0 and some 1 < 0 < o if

0/2

)Y Y PN <o

J=0 \ 2/<|n|<2/ 41
Definition 8.3. A 2r-periodic function f is said to belong to the Nikol’skii space
Hg (_ﬂ:a 77'-)

for some o > 0 if

sup Y nPlen(N)P <o

j=0,1,2,~~2j§\n|<2j+1

Definition 8.4 (See also Definition 1.10).

1) A 2m-periodic function f is said to belong to the Holder space C*[—m,n] for
some noninteger o > 0 if f is continuous on the interval [—m,x], there is a
continuous derivative f¥) of order k = [o/] on the interval [, 7], and for all
h # 0 small enough, we have

sup |/ (et k) — M ()] < o,

x€[—m,7]

where the constant C > 0 does not depend on £.
2) By the space CK[—m, ] for integer k > 0 we mean the set of 27r-periodic func-
tions f that have continuous derivatives f (%) of order k on the interval [—m, 7).

Remark 8.5. We shall use later the following sufficient condition (see (3.13)): if
there is a constant C > 0 such that for eachn =1,2,... we have

S mflen(f)| < Cn® (8.2)

|m|>n
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with some integer k > 0 and some 0 < & < 1, then f belongs to the Holder space

CH%—n, ml.

The definitions 8.1-8.3 imply the following equalities and embeddings:

(1) Bgz(—n,n) =Wy (—m,m), 00 > 0.
(2) W2O(_ﬂ"a 77.7) = Lz(_”7n)’
3) Bgl(—n,n) CB%G(—E, n) CHY (—m,m),00 > 0,1 <6 <oo.

@) BY g(—m,m) CL*(—7,m),1 <6 <2and L*(~7,m) C BY 4(—7,7),2 < 6 < oo.

(5) L*(—m,m) CHY(—m, 7).
Exercise 8.1. Prove embeddings (3), (4), and (5).

More embeddings are formulated in the following theorems.

Theorem 8.6. If o > 0, then
C*—r,n] C Wy (—m, @)

and
C%*—r,n] C HY (—m, ).

Proof. Let us prove the first claim for integer oc > 0. If o = 0 then
Cl-m, | C L*(—m,7t) =Wy (—m, 7).
If oo =k > 0 is an integer, then Definition 8.4 implies that

1

3
o | ) = D P < o
-

Using Parseval’s equality, we obtain

Y P en(H)Pe 1P < O

Nn=—oo

or
4% [n|* 2 ca(f) [P sin® (nh/2) < Ch?.

Nn=—o0

It follows that
> e ()P < O
[nh| <2

or

Y e <c.

In[<2/|A]
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Letting & — 0 yields

=

Y InHe(HP<c

n=—o0

ie., f € Wzk (—m, ). For noninteger o one needs to interpolate between the spaces
ClY[—n, 7] and Cl¥+ [—7, 7).
Now let us consider the second claim. As above, for f € C*[—n, ], we have

1

/
E/ ‘f(k) (X+h) —f(k) (x)|2dx < C|h|2(ocfk)7

-

where k = [o] if o is not an integer and k = or — 1 if o is an integer. By Parseval’s
equality,

Y e (£)Ple =12 < clae®,

n=—oo

or
2 2 1% ca(£)|>(1 — cos(nh)) gc\h|2(a*k).

n=—oo

It suffices to consider 4 > 0. If we integrate the last inequality with respect to 2 > 0
from O to [, then

oo

S Pen(nP (1200 < cptey,
i nl -
It follows that
Y ()P < cre
2<n|I<4
or equivalently,

2 |n|2k12(kia)|cn(f)|2 <C,

2<|njI<4

where the constant C > 0 does not depend on /. Since 2(k — o) < 0, it follows that

Y Pl <c

2/1<|m<4)1
for every [ > 0. Choosing [ = 27/*!, we obtain

S nP*en(f)F<C

2/ <|n|<2i+!1

ie., f € HY(—m, ). This completes the proof. O



8 Besov and Holder Spaces 49
Theorem 8.7. Assume that o > 1/2 and that . — 1/2 is not an integer. Then

HY (-, ) C C* ' [—x, 7).
Proof. Letk = [a], so that oo = k+ {0}, where { ot} denotes the fractional part of a.
Note that in general, 0 < {a} < 1 and in this theorem {a} # 1/2. We will assume

first that {a} =0, i.e., & = k is an integer and k > 1. If f € HX(—nx, ), then there
is a constant C > 0 such that

> mPea(f)P<C (8.3)

27 <|m|<2i+1

for each j = 0,1,2,.... Let us estimate the tail (8.2). Indeed, by the Cauchy—
Bunyakovsky—Schwarz inequality and (8.3),

S eSS Y mf e

|m|>n J=io 27 <|m|<2/+1
210 ~n
1/2 1/2
& 1
2k 2
<Y 3w Y
j=jo  \2/<|m|<2/+! 2/ <|m|<2/+1
2/0~n
1/2
o 1 o . .
<VC ¥ Y | <veYy i<t
j=io  \2/<|m|<2/+! i=Jo
2/0~n 2/0~n

Here, 270 ~ n means that 2/0 < n < 2/0t1 Therefore, we obtain

S mlew(f)] < Cn V2,

|m|>n

where the constant C > 0 is independent of . This means that (see (8.2)) f belongs
to CK- 112~ g w] = C* 12 [—m, m].

If o > 1/2 is not an integer and & — 1/2 is not an integer, then for f € HY (—r, )
we have instead of (8.3) the estimate

Y mP e (P <c

2/ <|m|<2/+1

where k = [a],0 < {a} <1 and {a} #1/2. If k=0, then 1/2 < o = {a} < 1.
Repeating now the above procedure, we obtain easily
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1 1

2 2
2 2 -2
D lem(HI< X > mP¥len(f) > m[
|m|>n J=io  \2/<|m|<2/+! 2/ <|m|<27 ]
2J0~n
1/2
<C Z Z |m|720¢ <C Z 27((171/2)1‘ Scnf(afl/Z)’
J=io \ 27 <|m|<27+1 i=io
2/0 ~n 2/0~n

i.e., we have again that f € C*~'/2[—x, 7t].
For the case [o] = k > 1, o is not an integer, and o — 1/2 is not an integer, we
consider two cases: 0 < {ar} < 1/2and 1/2 < {a} < 1. In the first case we have

> ml ew(H)] <

lm|=n
1/2 1/2
i 2 |m|2k+2{oc}|cm(f)‘2 Z ‘m|7272{a}
J=io \2/<|m|<2i+1 27 <|m|<2/+1
2/0~n

<c i 2-i-ilayil2 < cp-1/2-{e),
J=Jo
2/0~n
This means again that f € C*~1+1/2Ho} [z 7] = C*~1/2[— 7 z]. In the second
case, 1/2 < {a} < 1, we proceed as follows:

> imfem(f)] <
|m|>n
1/2 1/2
ST mPe,np Y e
J=io \2/<|m|<2it1 2/ <|m|<2/+1
2/0~n

<c i 2-(e}-1/2)) < cp—ted+1/2,
J=Jo
210 ~n

This means that f € CKH{@=12[_x 7] = C*~1/2[—x x]. Hence, the theorem is
completely proved. (I

Corollary 8.8. Assume that o« = k+ 1/2 for some integer k > 1. Then
HY (-, ) c CP=12[—n, 7]

SJorevery 1/2 < 3 < c.
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Corollary 8.9. Assume that oo > 1/2 and oo — 1/2 is not an integer. Then
Bge(—n7n) C C"‘*'/z[—n, b

forevery 1 <0 < oo,
Exercise 8.2. Prove Corollaries 8.8 and 8.9.
Exercise 8.3. Prove that the Fourier series (8.1) with coefficients

1

) = Tltog(T T Tal)

n#0, co(f)=1

defines a function from the Besov space B;/ 92 (—m, ) for every 1 < 0 < oo, but not

for 6 = 1.

Exercise 8.4. Prove that the Fourier series (8.1) with coefficients

1

) = T Tog(L+ )

n#0, co(f)=1

defines a function from the Besov space Béle(fn, ) for every 1 < 0 < o, but not
for 6 = 1. '

Exercise 8.5. Consider the Fourier series (8.1) with coefficients

1

W(f)=———— n#0, — 1.
ea(f) |n|210gﬁ(1+|n|)n¢ co(f)
Prove that
() feH)*(—m,n)iff>0
3/2

Q) feW, (—r,m)if B >1/2
(3) fecC'-m,n]if B>1butf¢C'|—m nlif B <1.

So the embeddings Wy (— 7, w) € C*~'/2[—g, x] and HY (— 7, 7) € C*~/2[—m, 7]
are not valid for & — 1/2 an integer (see Theorem 8.6).

Exercise 8.6. Let =
D dk cos(b*x)
k=0

be a trigonometric series, where b = 2,3,... and 0 < a < 1. Prove that the series
defines a function from C'[—7, 7] if 0 < ab < 1 and a function from the Holder
space C?'[—m, ], y < lifab=1.

Exercise 8.7. Assume that a = 1/b* in Exercise 8.6. Is it true that this function
belongs to C' [, 7]?



Chapter 9
Absolute Convergence. Bernstein and Peetre
Theorems.

We begin by proving the equivalence between a 2rz-periodic function f belonging
to the Nikol’skii space Hy*(—m, ) for some 0 < o < 1 in the sense of Definition 8.3
and the L? Holder condition of order a., i.e.,

1 /=
%-/771 ‘f(x+h>—f(x)|2dx§1(|h|2a 9.1)

for some constant K > 0 and for all 2 # 0 sufficiently small. Indeed, due to Parseval’s
equality we have

1 (7 o .
o |l - f@Pd = X (NPl - 1P

< Y PPl HF+4 Y lealHIE 92)
|n|<2/0 |n]>2/0

where jj is chosen so that 2/0 < ﬁ < 2/0F1 The first sum on the right-hand side of

(9.2) is estimated from above as

Jo
B Y nPleaHP <Y, Y, [nPle()P

|n|<270 J=02/<|n|<2/+1
Jo ) B
ST WEZ D N e e
Jj=0 2/ <|n|<2/+1
5 Jo 5 gt 5 (2272(1)}'0*2 _ 922
—2a\.
< Clh| 2 (2 ) =Clhl 22-2a _ |
j=0
oy 1\ 22
< Clh? (270)7 7" < C|n? <h|> = C|h**
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if 0 < a0 < 1. We used this condition for o because we considered a geometric sum
with common ratio 2272% = 1. The second sum on the right-hand side of (9.2) is
estimated from above as

4% X (PP YeaNP <4 X 27 ¥ P e

J=Jo2i<|n|<2/+1 J=Jo 2/ <|n|<2/+1

S C z 2—20{j S C2—2j0(X S C|h|2(x’
J=Jo

since ﬁ < 2J0+1 and the criterion of Definition 8.3 is satisfied. Thus, (9.1) is proved.

Conversely, if the [? Holder condition (9.1) is fulfilled, then Theorem 7.5 implies
for each N = 1,2,... the inequality

S lealf)P <CN2

[n|>N

with the same « as in (9.1). But this leads to the inequality

N el <,

N<|n|<2N

where the constant C is independent of N. Thus, we obtain for every integer N > 0
that

Y InPleaf)P <C.

N<|n|<2N

Since N is arbitrary, we may conclude that f € Hy(—m,m) for 0 < o < 1 in the
sense of Definition 8.3. Therefore, the L2 Holder condition (9.1) can be considered
as an equivalent definition of the Nikol’skii space Hy'(—m,m) for 0 < o0 < 1.

Exercise 9.1. Prove that f belongs to the Nikol’skii space Hy'(—m,m) for every
noninteger ¢ > 0 in the sense of Definition 8.3 if and only if the following L? Holder
condition holds:

1

T
[P - 0w Pax < Ko

-7
with some constant K > 0 and k = [¢(].

Exercise 9.2. Prove that f € Wy (—x,7), k= 1,2,..., if and only if

| (k—1) /|2 2
5m | 7 ) = D (P < AP

Theorem 9.1 (Bernstein, 1914). Assume that a 2r-periodic function f satisfies
the L* Holder condition with 1/2 < o < 1. Then its trigonometric Fourier series
converges absolutely, i.e.,
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2 len(f)] < oo

n=-—oo

Proof. Since the L? Holder condition (9.1) is equivalent to f € HY (-

0 < o < 1, there is a constant C > 0 such that

Y PNl <c

2-f§\11\<2-f+1

for each j=0,1,2,.... Hence we have

oo

Y, len()l=leolf HZ 2 Inl*lea(H)llnl =

n=—co J=027<|n|<2/+!
1/2
SloN+X | X InP%ealnP Y a7
J=0 \ 2i<|n|<2/+1 2/ <|n|<2/+1

55

) for

<leo(f |+\F22 @212 = |co(f |+\F2( ‘“/2)<oo,

since o > 1/2. Thus, the theorem is proved.

O

Corollary 9.2. Theorem 9.1 holds for C*[—n, |, BY o(—, %), and H' (—7, ) for

every 0. > 1/2and 1 < 0 < eo.

Exercise 9.3. Prove this Corollary.

Theorem 9.3 (Peetre, 1967). Assume that a 2m-periodic function f belongs to

1/2

the Besov space B,'| (—m, 7). Then its trigonometric Fourier series converges

absolutely.
1 /2
Proof. 1f f € B)'; (—m,m), then

1/2

i) Y leP| <o

2i<|n] <271

Hence we have

S el =l +S S Plea(s) Il

n=—oo J=02i<|n|<2/+1
1/2

<o+ 3 mlleP Y !

J=0 \ 2/ <|n|<2/+! 2/<|n| <27+

(9.3)

1/2
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1/2
< y 2 (2i2h)'?
leo(F)I+ X Y Inflea(f)] (27/27)
J=0 \ 2/ <|n|<2/+1
1/2

o+ ST e <

J=0 \ 2/ <|n|<2/+1

due to (9.3). This proves the theorem. U
Corollary 9.4. It is true that B;/ 12 (—m,m) C Cl—r, 7).

Exercise 9.4. Prove that the embedding B;/ 92 (—=m,m) C C[—m,x] does not hold for
1 < 0 < o by considering the function from Exercise 8.3.

Exercise 9.5. Prove that H{(—m, ) C Bl/z( m,m)if o> 1/2.

Theorem 9.5. Assume that a 2r-periodic function f belongs to the Sobolev space
Wpl(—n, ) with some 1 < p < oo, Then its trigonometric Fourier series converges
absolutely.
Proof. Since W) (—m,m) C W, (—7,7) for 1 < py < pi, we may assume without
loss of generality that f € Wpl(fn, ) with 1 < p < 2. Then there is a function
g € LP(—m,m) with 1 < p <2 such that

X a

f) =] glo)di+f(-r), g(r)dr =0. 9.4)
—TT —TT

As we know from the proof of Theorem 7.3, (9.4) leads to

e(f) = 2eulg), n#O.

n

Since g € LP(—m, ) with 1 < p <2, the results of Chapter 7 give

- 1/p'
<2 |cn<g>"’> < o, ©9.5)

where % ﬁ = 1. The facts (9.4), (9.5) and Holder’s inequality imply that

=

Y, len()l =leolf I+Z |Cn

n=-—eco n;ﬁO

| 1/p , 1/p
< leo()]+ (Z |n|p> <Z Icn(g)l"> <o,
n#0 n#0

since 1 < p < 2. This completes the proof. O
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Remark 9.6. For the Sobolev space W] (—, 1), this theorem is not valid, i.e., there
is a function f from Wll(—n,n) with absolutely divergent trigonometric Fourier
series. More precisely, we will prove in the next chapter that the function

sinnx

fl) =2 nlog(1+n)

n=1

(9.6)

belongs to the Sobolev space W, (—7, ) and is continuous on the interval [—7, 7],
but its trigonometric Fourier series (9.6) diverges absolutely.

The next theorem is due to Zigmund (1958-1959).

Theorem 9.7. Suppose that f € W} (—n, 1) N C¥[—m, x| with some 0 < a < 1.
Then its trigonometric Fourier series converges absolutely.

Proof. Since f € W1] (—m, m), it follows that f is of bounded variation. The period-
icity of f implies that

T n N
o | —poPar= 55 [ 3 k) e (e D), 07

21 )x

where the integer N is chosen so that N|h| < 1 for & # 0 sufficiently small. We
choose N = [1/|h]]. Since f € C*|—m,x], the right-hand side of (9.7) can be esti-
mated as

1 r N
m/,ﬂg}|f(x+kh)—f(X+(k—1)h)|2dx

Clh|*
<
— 2nN

x N
/7 S £ (e k) — Flx+ (k— 1)h)]dx

T k=1

(VE () + V() +VE () 2r < CK?‘O‘
_ Clh|* _ C|h|* C|h|® _C|h|0‘+l »
= [/ = TR (Y < k=1~ =T <

o+l
if |h| < 1/2. This inequality means (see (9.7)) that f € H, > (—m, ) with "T“ >
1/2 for a > 0. An application of Bernstein’s theorem completes the proof of the
theorem. (]

Exercise 9.6. Let a (periodic) function f be defined by
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Prove that the function f belongs to the Nikol’skii space Hzl/ 2(—7t777:) but its
trigonometric Fourier series is not absolutely convergent.

Exercise 9.7. Let a (periodic) function f be defined by the absolutely convergent
Fourier series )
e1k)c

K3/2°

f) =Y

k=1

(1) Show that f belongs to the Nikol’skii space Hi (—, ) but

1 7 5 4«
_ _ > oo —
2n_[n|f(x+h) f)[dx=> —5 log n

for 0 < |h| < 1, that is, (9.1) does not hold for o = 1.
(2) Show that f does not belong to the Besov space Bé o(—m,m) forany 1 < 6 < oo,



Chapter 10
Dirichlet Kernel. Pointwise and Uniform
Convergence.

The material of this chapter forms a central part of the theory of trigonometric
Fourier series. In this chapter we will answer the following question: to what value
does a trigonometric Fourier series converge?
The Dirichlet kernel Dy (x), which is defined by the symmetric finite trigonomet-
ric sum
Dy(x):= Y ™, (10.1)
[n|]<N

plays a key role in this chapter. If x € [—m, ] \ {0}, then Dy(x) from (10.1) can be
recalculated as follows. Using Euler’s formula, we have

N N v
Dy(x) = z et _ o—iNx Z ei(n+N)x _ o —iNx Z ik
=N n=-N =0
v | —el@NHDx gV _ iV 1)
__ T VX _ ‘
=e = =
el(N+1/2)x _ o—i(N+1/2)x sin(N+1/2)x
el"/2 —e~ix/2 ~ sinx/2

Thus, the Dirichlet kernel equals

_ sin(N +1/2)x

D
v () sinx/2

x #0. (10.2)

For x = 0 we have
DN(O) =2N+1= liII(l)DN()C)7

so that (10.2) holds for all x € [—7, 7t].
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Exercise 10.1. Prove that

l V1
1) — D dx=1,N=0,1,2,...;
() o x N(X) 7N 07 PEd) s

(2) Ky(x) = 5 2} Dj(x), where Ky(x) is the Fejér kernel (5.2)

Recall that the trigonometric Fourier partial sum is given by

Svf(x) =Y cu(f)e™. (10.3)

In|<N
The Fourier coefficients of Dy (x) are equal to

c (DN):L/” efinx Z eikxdx: 07 |n|>N’
n 2r J— k|<N 1, |I’l|§N

Hence, if f is periodic and integrable, then the partial sum (10.3) can be rewritten
as (see Exercise 4.1)

oo

SV = 3 culDwea e = (D)) = o [ Dul—s )y

N—=—oco
sin(N+1/2)y

dy. (104
siny/2 y- - (10.4)

=5 [ Dy a4y = § " fa+y)

Exercise 10.2. Let f be the function

Show that

(1) (Svf)'(x) = 3 (Dy(x) — 1)
(2) limy—.e Sn f(x) = (x) #0;
(3) 11mN—>°<>SNf( )

Exercise 10.3. Prove that as N — oo,

1
2r

4logN
2

[ Il = 255 4 o).

Since the Dirichlet kernel is an even function (see (10.2)), we can rewrite (10.4) as

sin(N+1/2)y

$uf(0) = 5 [ )+ pa—)

Using the normalization of the Dirichlet kernel (see Exercise 10.1), we have for
every function S(x) that
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sin(N+1/2)y

Sny/2 dy. (10.5)

Sf ) =S0) = 5 [ (Fleeb) + £ (x-3) —25(0)

Our aim is to define S(x) so that the limit of the right-hand side of (10.5) is equal to
zero. We will simplify the problem by splitting it into two steps. The first simplifi-
cation is connected with the following technical lemma.

Lemma 10.1. For all z € [—x, 7, it is true that

1 2| =?
o<
sinz/2  z|~ 24
Proof. First we show that
} z |z|?
2- f‘ <22 10.6
‘smz/ 1= 28 (10.6)

for all z € [—m, 7t]. In order to prove this inequality, it is enough to show that
3
. X
0 <x—sinx < 3

for all 0 < x < /2. The left inequality is well known. To prove the right inequality
we introduce h(x) as
h(x) = x —sinx—x> /6.
Then its derivative satisfies
W (x) =1—cosx—x*/2 =2(sin’x/2 —x*/4) < 0
for all 0 < x < m/2. Thus, (x) is monotonically decreasing on the interval [0, /2],
which implies that
0=h(0) > h(x) = x —sinx — x> /6

for all 0 < x < /2. This proves (10.6), which in turn yields

1 2] 2[z/2—sin(z/2)| 2|3 /24 2I3/24 _mlz| _ =°
sinz/2  z |z||sin(z/2)]  ~ |z||sin(z/2)] T |zl|z]/m T 24 — 24°
since |sinz/2| > |z| /& for all z € [—m, 7]. This finishes the proof. O

As an immediate corollary of Lemma 10.1, we obtain for every periodic and inte-
grable function f that the function
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is integrable on the interval [0, 7] uniformly in x € [—m, 7] if S(x) is bounded, i.e.,

1 2

/0 |f(x+y)+ fx—y) —28(x)| 72>

o
< ;j (/0"|f<x+y>dy+/0"|f<x—y)|dy+zn|s<x))

ol A
<2 [ relayren sw sl ).
- x€[—m,m]

Application of the Riemann—Lebesgue lemma (Theorem 6.1) gives us that

1
siny/2

lim N /On (fx4+y)+ f(x—y) —28(x)) (

2
—— |sin(N+1/2)y=0
lim 2 Ysin(a-+1/2)
pointwise in x € [—7, 7] and even uniformly in x € [—7, 7] if S(x) is bounded on the
interval [—7x, 7).
Thus, we have reduced the question of pointwise or uniform convergence in
(10.5) to proving that

tim [ (7)) = 2500) T2,

N—e Jo

=0 (10.7)

pointwise or uniformly in x € [—7, 7].
For the second simplification we consider the contribution to (10.7) from the
interval 0 < 8§ <y < 7. Note that the function

flx+y)+flx—y) —25(x)
y

is integrable in y on the interval [§, 7] uniformly in x € [, xr] if S(x) is bounded.
Hence, by the Riemann—Lebesgue lemma this contribution tends to zero as N — oo.
We summarize these two simplifications as

Snf(x) —S(x)
5
0

= [ e s —2560) R gy o) o)

as N — oo pointwise or uniformly in x € [—m, 7).

Let us assume now that f is a piecewise continuous periodic function. We wish
to know the values of S(x) in (10.8) to which the trigonometric Fourier partial sum
can converge. The second part of Theorem 5.1 shows that the Fejér means converge
to

Jim o f () = 3 (F(x+0) +7(x-0))
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for every x € [—m, ] pointwise. But since

N S
onf(x) = 72133 _:{(X),

Snf(x) can converge (if it converges) only to the value

(f(x+0)+/(x—0)).

| =

We can obtain some sufficient conditions when the limit in (10.8) exists.

Theorem 10.2. Suppose that S(x) is chosen so that

[ Vs =250, 00,
0 y )
pointwise or uniformly in x € [—r, 1t]. Then

lim Sy f(x) = S(x) (10.10)

pointwise or uniformly in x € [—7, ].

Proof. The result follows immediately from (10.8) and the Riemann—Lebesgue
lemma. 0

Remark 10.3. If in (10.10) we have uniform convergence, then S(x) must necessar-
ily be periodic (S(—m) = S(7)) and continuous on the interval [—, ).

Corollary 10.4. Suppose a periodic function f belongs to the Holder space
C%—mr, x| for some 0 < oe < 1. Then

lim Sy () = £(x)
uniformly in x € [—1, 7.
Proof. Since f € C*|—m,r], it follows that
[fGet+y)+ fx—y) =2f ()| < [fx+y) = fO)+[f(x—y) — fx)]| < Cy*

for 0 <y < 8. This means that the condition (10.9) holds with S(x) = f(x) uniformly
inx € [—x, ], from which the statement of the corollary follows. ]
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Theorem 10.5 (Dirichlet, Jordan). Suppose that a periodic function f is of
bounded variation on the interval [x — 8,x + 8| for some & > 0 and some fixed x.
Then

Jim $x/(6) = 3 (e +0) + F(x—0)).

Proof. Since f is of bounded variation, the limit

lim L (fxty)+fx—y)) =

S 2 (f(x+0)+ f(x—0)) =: S(x) (10.11)

N —

exists. For 0 < y < § we define
F(y):=flx+y)+f(x—y) —25(x),
where S(x) is defined by (10.11). Note that F(0) = 0. Let us also define

vt [ SO

; r, 0<y<aé. (10.12)
0

It is easy to check that

(N+1/2)y gj
GN(y):/ MP4p, 0<y<s.
0 p
This representation implies that

. > sinp b
lim G :/ S0Py = F. 10.13
lim. N (Y) Jo p p ( )

[\

For fixed x we have from (10.8) and (10.12) that

1 [0
Suf(0)=S(0) = [ FOIGMy+o(), N—e.
Here integration by parts gives

)
009 =50) = 1 (FOIGHO — [ Gx0)aF0) ) +o(1)

1

¥
:;<F(6)GN(6)—(/O GN(y)dF(y))+o(1), N —eo. (10.14)

where the last integral is well defined as the Stieltjes integral of the continuous
function Gy(y) with respect to the function of bounded variation F(y). Since the
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limit (10.13) holds and Gy(y) is continuous, we can consider the limit in (10.14) as
N — oo. Hence, we obtain

. 1 T w9
tim (50 -5 = 1 (F0)5 - [ar )
_ %(F(é) _F(8)+F(0)) =0

This completes the proof. O

Corollary 10.6. If f is periodic and if f and f' are piecewise continuous, then the
Fourier series of f converges to %(f(x +0)+ f(x—0)) ar all points. If in addition
[ is continuous on (—eo,o0), then its Fourier series converges to f(x) uniformly on

(7°°7°°)'

Corollary 10.7. If f is periodic and belongs to the Sobolev space Wl1 (—m,7), then
its trigonometric Fourier series converges pointwise to f(x) everywhere.

Proof. Since f € Wl1 (—m,m), it is of bounded variation and continuous on the in-
terval [—m, 7]. In this case, the value S(x) from (10.11) equals f(x) at every point
x € [-r, 7] Thus,

Jim S f(x) = /()

pointwise in x € [, 7]. O

Remark 10.8. The above proof does not allow us to conclude uniform convergence
of the trigonometric Fourier series of functions from the Sobolev space W} (-, ).
However, uniform convergence is in fact the case, as we will prove later in this
chapter.

Exercise 10.4. Show that

fx) = e < 1/2

log &~

I

is of bounded variation but this function does not satisfy condition (10.9) at x = 0.

Hint.
|
/ dy’ = oo,
o ylogy

1
f(x) = xsin

Exercise 10.5. Show that

satisfies condition (10.9) at x = 0 but this function is not of bounded variation, see
Exercise 1.3.
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We can return now to the question of term-by-term integration of trigonometric
Fourier series.

Theorem 10.9. Suppose f belongs to L' (—r, it). Then

Jim SNf )dx — /f

for every interval (a,b) C [—m, 7).

Proof. For a given L' function f (not necessarily periodic) we introduce a new
function F as .
F@i= [ (F0) = ol (10.15)

—T

Itis clear that F (x) belongs to the Sobolev space W, (—7, ) with F(—m) = F () =
0 (periodicity) and
F'(x) = f(x) = co(f)-

This implies
en(F') =inc,(F) = ca(f), n#0, co(F')=0.

Corollary 10.7 gives us that F(x) has everywhere convergent trigonometric Fourier
series

F(x)=co(F)+ Y @e (10.16)

n#0 n

In particular, for every —m < a < b <  we have from (10.16) that

F(b) —F(a) = 2 M 1nb 1’161 Z Cn /a 1n)cdx7

n#0 n n#0

or equivalently (see (10.15)),
b
[ e —eotmac— [ (7 —eota= [ reoa— - aeots)
— z Cn / mxdx.

n#0

Thus, we obtain finally

/ xX)dx = 2 enlf / e™dx= lim Y

n=—eo N=e v

en(f) / hei”"dx

= lim SN F(x)dx
N—eo Jgq
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This proves the theorem. O
Exercise 10.6. Calculate ¢o(F) for F defined by (10.15).
Corollary 10.10. If f € L'(—n, 1), then the series
1)
el gy 5 @D
n#0 n n#0 n
converge.
Proof. The result follows from (10.16). O
Corollary 10.11. The series
i sin(nx)
= log(1+4n)
is not the Fourier series of an L' function.

Proof. Let us assume to the contrary that there is a function f € L'(—x, ) such
that

< sin(nx) 1 & el > e
X) ~ _ = -
) ng‘llog(l—kn) nzl log(1+n) ng‘llog(l—i—n
1S e 1 $ sgn(n)e™ 1 Y sgn(n)e™
2i Zlog(l+n) 2i,< log(1+|n|) Zin#o log(1+ |n|)’

i.e., we have .
1 sgn(n -
Cn(f)—im, n;ﬁ(), Co(f)—()

Since ¢, (f) = —c_u(f), this trigonometric Fourier series can be interpreted as the
Fourier series of some odd L' function. Then Corollary 10.10 implies that

y_ e Ls 1
20 2inlog(1+[n]) i = nlog(1+n)
must be convergent. But this is not true. This contradiction proves this corollary. [

Remark 10.12. 1f we define the function f by the series in Corollary 10.11, then it
turns out that x .
| swac=0, [ |fwiar=+.

Recall that the Poisson kernel is equal to
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1—72

P =
() 1 —2rcosx+r?’

0<r<l1

and its trigonometric Fourier series is

oo

Px)= Y pllgine
N—=—oco
Corollary 10.4 shows us that this series converges to P.(x) uniformly in x € [—, 7].
Theorem 10.13. Suppose that f € C[—r, nt] is periodic. Then
lim (P f)(x) = f(x)

r—1—

uniformly in x € [—n, 7] or

=

lim Y e, (f)e™ = f(x) (10.17)

r—>1—n:7w

uniformly in x € [—n, 7] even if f has no convergent trigonometric Fourier series.

Proof. Using the normalization

1 pis
— P.(x)dx=1
21 /771,' r(X) ’

we have

(s ) =10 = 5= [ B2 = )y
1

= 5 s PO /)y

1
+ ﬁ/gﬂylsﬂpr@)(f(x_y) —f(x)dy=:1 + L.

Since f is continuous on [—, 7], it follows that /; can be estimated as

1 T
Ll < sup \f(x—y)—f(X)T P (y)dy
x€[—m,m),|y|<6 TJ-m
= sup |f(x=y)—f(x)|—=0

x€[-m.a,|y|<o

as 6 — 0. At the same time, I, can be estimated as

1
L| <2max|f(x —/ P.(y)dy.
bl <2man |l [ RO
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For & < |y| < m the Poisson kernel can be estimated as

P(y) = 1—72 _ 1—r2
"YE T orcosy+ 12 4rsiny/2 4 (1—r)2
1—r 1—r nl—r

< = — .
= 2rsin’y/2 ~ 2r8%/m? 2 ré?
If we choose 8% = 1 — r, then I, is estimated as

r 1—r T ‘f(x)lx/l—r

— max
2 xl<n r

1
Ll < —ma —
|2‘ = 7'C|x\§§r|f(x>| 2 r\/ﬁ

as r — 1—. Hence, the estimates for /; and I, show that

—0

lim (B # f)(x) — f(x)) = 0

r—1—

uniformly in x € [-m,x]. The equality (10.17) follows from this fact and
Exercise 4.1. This completes the proof. (]

We will prove now the well known Hardy’s theorem and then apply it to the uniform
convergence of the trigonometric sum Sy f(x).

Theorem 10.14 (Hardy, 1949). Let {ai};_, be a sequence of complex numbers
such that
Ka| <M, k=0,1,2,..., (10.18)

where the constant M is independent of k. If the limit

n .
. 1 J _
lim o, ._JE%O—”H)@_C; (10.19)

exists, then
lim (6, —s,) =0,
where s, = 2?:0 aj, i.e. also
lim s, = a. (10.20)

n—oo

If ay, depends on x and (10.18) holds uniformly in x and convergence in (10.19) is
uniform, then convergence in (10.20) is also uniform.

Proof. For n < m itis true that
m

(m+1)0, — (n+1)0,— Y, (m+1—j)aj=(m—n)s,.
jontl
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Indeed,
m
(m+1)o, —(n+1)o, — 2 (m+1—j)a;
j=n+1
m n m
=Y (m+1=jaj— Y (n+1=jlaj— Y (m+1-ja;
=0 =0 j=n+1
n n n
:Z(m+1—) z(n—l-l—) —Z(m n)aj = (m—n)s,
Jj=0 Jj=0 j=0
Therefore,

(m+1)o,—(n+1)o, i (m+1—j)aj—(m—n)o, = (m—n)s, — (m—n)o,
j=n+1

or equivalently,

Jj=n+1
ie.,
m+1 m+1 &
(th—-Oh)—— }: ( _']1> — Op
m—n m—n ;S0 m—+

Let m > n — oo be such that m/n ~ 1+ 8 (i.e., limy, y—.m/n = 1+ §) with some
positive & to be chosen. Since o, is a Cauchy sequence by (10.19), it follows that

m+1
m—n

(Om—0,) =0, m>n— oo,

At the same time, the condition (10.18) implies that

1 & j 1 & j M
SRR AR
m—n ;S5 +1 m—n ;S5 m+1) j

M(1+1/0) i <1—1>
it j m+1
21 m—n

=M(1+1/9) - —
/ jﬂ%lj m—+1

M(1+1/8)</nméd§ o ”)

=M(1+1/8) <logm—m ”)
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~M(1+1/5) (log<1+5>1+55+1/n>

~M(1+1/8)
x (8 —8%/2+0(8%) —8(1-8+0(8%)))
=M(1+1/8)(8%/2+0(8%)) <2M5

if 8 is chosen small enough. Since § is arbitrary, we may conclude that also the
second term converges to zero. This proves the theorem. (]

Corollary 10.15. Suppose that f € C[—r, 1] is periodic and that its Fourier coeffi-

cients satisfy
M
lea(F)] < ma n#0

with positive constant M that does not depend on n. Then the trigonometric Fourier
series of f converges to f uniformly in x € [—m, 7]

Proof. Since f € C|—nr,x] is periodic, Theorem 5.1 gives the convergence of Fejér
means

Tim oy () = /()
uniformly in x € [—, 7]. Let us define ap = ¢o(f) and

ar(x) = cr (e + e (e ™, k=1,2,....

Then ;
Sy = Zak(x) =Suf(x)
k=0
and
1 & 1 &
onf(x) = —— Sif(x) = —— Sk-
nf() n+1k:0kf() n+1k§6k

Thus, we are in the setting of Hardy’s theorem, because

2M
lax(x)] < —, k=1,2,....
k
Since this inequality is uniform in x € [—, 7], on applying Hardy’s theorem we
obtain that

Jim sy = lim Sy f(x) = £(x)

uniformly in x € [—, 7]. O
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Corollary 10.16. If f € W} (—n,x) is periodic, then
Jim Sy f(x) = £(x)

uniformly in x € [—T, ).

Proof. Since f € W (—m, ) is periodic, there is g € L' (—7, ) such that

10 = [ sa+sem, [ gwa=o

-7 -

Thus, /' = g and

or equivalently,

CAVIIES

Due to embedding (see Lemma 1.14), the function f is continuous on the interval
[—m, 7). Using again Hardy’s theorem, we obtain

Jim S f () = £ ()

uniformly in x € [—, 7r]. This completes the proof. O

Exercise 10.7. Using Theorem 10.9, prove the embedding
Wi (—m,m) CW (—m,7), o>1/2.

Remark 10.17. Corollary 10.16 and Exercise 10.7 show that for every function f
from the spaces Hj* and BY , with 1 < 0 <o and o > 1/2, its trigonometric Fourier
series converges to this function uniformly. Here one must take into account that f
might be changed on a set of measure zero.

Let us return to some special trigonometric Fourier series. Namely, we consider
functions f(x) and f>(x) that are defined by the Fourier series

< sin(nx)

fl(x)—n;inlog(lﬂ) (10.21)
and . (m2)
cos(nx

flx) = Z,l nlog(l o) (10.22)
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These functions are well defined for all x € [—m, ]\ {0}; see Theorem 3.3. In
addition, f(0) = 0, whereas f»(0) is not defined, since the series (10.22) diverges
at zero. We will show that f>(x) does not belong to W, (—7, ) but fi (x) does.

If we assume to the contrary that f> € W,!(—7, ), then its derivative f; has the

Fourier series . in(n2)
sin(nx
Bl ~ =3 S
2 Z‘I log(1+n)

But due to Corollary 10.11 this is not a Fourier series of an L! function. This con-
tradiction proves that f> ¢ W' (=7, ).

Concerning the series (10.21), let us prove first that it converges uniformly in
x € [-m, 7], i.e., fi(x) is (at least) continuous on the interval [—7, ]. Indeed, by
summation by parts we obtain for 0 < M < N that

N sin(nx) Al n—1
ooll L) sin(kx) sin(kx
n:%H nlog(1+n) 7%’“ nlog(l +n) ; k;l (kx)
sin(Nx) —~ sin(Mx)

- Nlog(1+N) Mlog(l+M)

Ntl [ n 1 1
. %JrZ <2 sin(kx) ) ((n+1)log(2+n) - nlog(lJrn)) . (10.23)

Using the calculation from Exercise 5.1, we have

cosx/2 cos(n+1/2)x  sin(nx/2)sin((n+1)x/2)
z sin(k 2sinx/2 N sinx/2 - (1029

The first two terms on the right-hand side of (10.23) converge to zero as N > M — oo
uniformly in x € [, ]. The sum on the right-hand side of (10.23) becomes, using
(10.24),

Nil sin(nx/2)sin((n+1)x/2)  nlog 32 +log(2+n)

T2 sinx/2 n(n+1)log(1+n)log(2+n)
- Nf sin(nx/2) sin((n+1)x/2) log
A sinx/2 (n+1)log(1+n)log(2+n)
NEL sin(nx/2) sin((n+ 1)x/2) 1
- z - =L +5L.
naT 2 sinx/2 n(n+1)log(l+n)

Let us consider two cases: n|x| < 1 and n|x| > 1. In the first case,

sin(nx/2) sin((n+ 1)x/2) < nlx[/2-1 mn

sinx/2 = x/m 27
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Then

—

-

n

1

‘Xd nlog(1+1/(n+1)) T

‘ (n+1)log(14+n)log(2+n) ~ 2, 4% nlog’n
1

2
n=M42 nlog n

[Ii| <

S

n=.

8

—0 (10.25)

(ST I ST

as M — oo uniformly in x. In the first case, for I, we have, by integration by parts,
that

W

Il )

T n"3= x| T
1] < Enz%zn(w Dlog(1+n) ZM":%H log(1+n)
T UK dr
<3 s o
. ¢ |V/M Ukl gy
N Z|x| (10gt M+2+~/M+2 10g2t>
T
4 log(1/]x]) log(M+2) Ju+2 log*t
T 1 |x|(M +2) |x]
=3 (log(l/|x|) T log1+2) T ogmr2) W +M+2))
T 1 1 1 1
= + + +
4 (log(M+2) log(M+2)  log*(M+2) 1og2(M+2))
< T —0
~ log(M+2)

uniformly in x as M — oo. In the second case,

sin(nx/2)sin((n+ 1)x/2) - 1 k3

< < mn.
sinx/2 ~ |sinx/2| T |x] T g

Then

N log (1+1 1 Nl
|11|STCZ l’lOg(+/(ﬂ+ )) <nz n

(n+1)log(1+n)log(2+n) nlog*n
=[] =[]
s 1
<7 O’ M co
2 nlog®n - -

|

uniformly in x. For I, we have, by integration by parts,

[E—

>M

x|
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N+1
Ll <
12} < |sinx/2| 2}‘ 2logn |x| /1 >M tzlogt
=[]+
1 1|~ © dr
) .
x|\ rlogr [H>M [H]>Mt210g t

_ 1/}
" ([1/|x|1log (/0] Tl / [4]2m Plog? t>

[/ +1 [/ +1 o dr
<n([l/l)cl}log[l/l)cl]+ [1/1x1] /M tlog2t>

1+1/M 1+1/M
logM logM

<r

)—>0, M — oo (10.26)

uniformly in x. Finally, we may conclude that the trigonometric Fourier series
(10.21) converges uniformly on the interval [—7, 7], and therefore it defines a con-
tinuous function fj (x). This series, as well as (10.22), can be differentiated term by
term for w > |x| > 0 > 0, because the series

< cos(nx)
r; log(1+n)

converges uniformly (see Corollary 3.4) for 7 > |x| > § > 0. This means that for
this interval, fj(x) belongs to C ! Thus, it remains to investigate the behavior of
the series (10.21) as x — O-+. But the estimates (10.25)—(10.26) show us that (if
we choose M = 1/x,x — 0+) the function fj(x) from (10.21) has the asymptotic

behavior
C

fi(x) ~ Togx” (10.27)

It is possible to prove (see [46, Chapter V, formula (2.19)]) that the asymptotic
(10.27) can be differentiated, and we obtain

C

xlog?x’

fi(x) ~ =

This singularity is integrable at zero. Therefore, the function fj(x) belongs to
Wl (—r, 7).

Exercise 10.8. Prove that the series (10.21) and (10.22) do not converge absolutely.



Chapter 11
Formulation of the Discrete Fourier
Transform and Its Properties.

Let x(¢) be a 27-periodic continuous signal. Assume that x(7) can be represented by
an absolutely convergent trigonometric Fourier series

x(r) = i cme™, t€[-m, 7, (11.1)

m=—co

where the ¢,, are the Fourier coefficients of x(z).
Let now N be an even positive integer and

21k N N
s A
=" k==75003

Then x(#) is a response at #y, i.e.,

oo

)= 3 cne N (11.2)

m=—oco

Since el27¥ — 1 for integers k and [, the series (11.2) can be rewritten as
o ok > [2mk
z cme N (m—IN) _ Z z Cme N (m—IN)
M=—oo [=—c0 —N/2<m—IN<N/2—1
o N/2—1 om,
= 2 2 CntIN€ N
l=—con=—N/2
N2-1 e Np2-1
= Y VY cn= Y, €VX,, (11.3)
n=—N/2 [=—00 n=—N/2

where X,,,n = —N/2,...,N/2—1 is given by
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Xa= Y, Cntin- (11.4)

=—oo

In the calculation (11.3) we have used the fact that the series (11.1) converges ab-
solutely. Combining (11.2) and (11.3), we obtain

N/2 ! 27zkn
xe=x() =Y, X&' N . (11.5)
n=—N/2

The formula (11.5) can be viewed as an inverse discrete Fourier transform, and it
appeared quite naturally in the discretization of a continuous periodic signal. More-
over, the formula (11.4) becomes the main property of this approach. Since

N/il e 2 {0, k—m=#0,+N,+2N, ... 116
el = .
n——N/2 N, k—m=0,£N,£2N,...
we solve the linear system (11.5) with respect to X,,,n = —N/2,...,N/2 — 1, and

obtain
| N2

2nk71
— Y xye N (11.7)
k* N/2

Exercise 11.1. Prove (11.6) and (11.7).

In fact, the formulas (11.5) and (11.7) give us the inverse and direct discrete Fourier
transforms, respectively.

Definition 11.1. The sequence {X, }ilvl 2_;\,1/2 of complex numbers is called the dis-
crete Fourier transform (DFT) of the sequence {Yk} N /2 ifforeachn=—-N/2,...,
N/2—1 we have
1 N/2 ! s 2mkn
X, = NkizN Yee N (11.8)
/2

We use the symbol .% for the DFT and write
Xn = y(yk)n
or simply X = .Z(Y).

Definition 11.2. The sequence {Zk} Pl of complex numbers is said to be the

N/2—1
~N/

N/2
inverse discrete Fourier transform (IDFT) of the sequence {X,},~
k=-N/2,...,N/2—1 we have

) if for each
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N/2 1 - 2mkn
= Y XN, (11.9)
n=—N/2

We use the symbol .% ~! for the IDFT and write
Zi=F (X

or simply Z = .7~ 1(X).
The properties of the DFT and IDFT are collected in the following lemmas.

Lemma 11.3. The following equalities hold:

(1) F-UF(Y))=Y;
2) Z(F7'(X)=X;

(3)
N/2—1 N/2—-1
F (X7 (Y, Z XY,
k=—N/2 N, % —N/2

Proof. Using (11.6), (11.8), and (11.9), we have

| N2 - 2mkn 1 N2-b N2 2min \ ; 2mkn
F H(FY)h= 2 F(Y))pe'' v = N 2 2 Ye W | eV
n=-—N/2 n=—N/2 \I=—N/2

| N2 N/2—1 Denlit) 1
R IRAED IR R U
l_—N/2 n=-N/2 N

This proves part (1). Part (2) can be proved in the same manner. [l
Exercise 11.2. Prove part (3) of Lemma 11.3.

Corollary 11.4 (Parseval’s equality).

1 N/2—1 N/2—1
N X K= X 17X
n=-N/2 k=—N/2

Remark 11.5. Due to the periodicity of the complex exponential, we may extend
the values of X,,, m=—N/2,...,N/2— 1 periodically to any integer by

Xpon = Xp, [=0,%1,42,.... (11.10)

NJj2-1

Corollary 11.6. For a sequence X = {X,},'~ 1o we define

N/2—1
Xrev - {Xan}ni,N/z-
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Then
T (X) = NF (Xev)-
Proof. By Definition 11.2 and the periodicity condition (11.10) we have
N2t [ 2k N2t j2mkn _N/ 2 e
NF (Xiey )k = z Xy_ne TN = Z X_,e”! Z X, el N
n=—N/2 n=—N/2 n=N/2
N/2 27rk71 N/2 ! kn :
= 2 X,,el z X e N +XN/2€ *X,N/ze_mjk
n=—N/2+1 n=—N/2
N/27l 2mkn
= Y XN =F (X
n=—N/2
This concludes the proof. O
Definition 11.7. The convolution of discrete sequences X = {X,,}QZ Z:NI o and Y =
{Y,l}N/ 2 Nl P is defined as the sequence whose elements are given by
N/2 1
XY= Y XY, (11.11)
I=—N/2
where X, and Y, satisfy the periodicity condition (11.10).
Proposition 11.8. For every integer 1, it is true that
N/27171 s 2mnm N/2 ! 27rnm
2 Y,e "N 2 Y,e "N .
m=—N/2—1 m=—N/2
Proof. The claim is trivial for [ = 0. If [ > 0, then
N/2_1_1 :2mnm N/2 ! 2nnm _N/2 ! : 2mnm N/2_1 Zmzm
Z Y,e™'' N = Z Y,.e” + Z Ve ™' N — Z Y,e™!
m=—N/2—1 m=—N/2 m=—N/2—1 m=N/2—I
N/2—-1 N/2 1 S
_ 2 Y,e” 2 Y, Ne—l " (m—N)
m=—N/2 m=N/2—I
N/2 ! 2ntnm N/2 ! 27|mm
— z Yye N = z Y,e N
m=N/2—1 m=—N/2
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due to the periodicity condition (11.10). If / < 0, then

N/27171 + 2mwnm N/2 ! 27[nm N 21 27rnm 7N/27Z?] s 2mtnm
2 Ype N = 2 Y,e™! 2 Ve N — z Ye N
m=—N/2—1 m=—N/2 m=N/2 m=—N/2
N/2 ! 27mm N/2 -1 27rnm
= z Ye ' N 2 Ye ' v
m=—N/2 m=N/2
N/2—1-1 ‘ N/2—-1 2
— 2 Y,._ne IN (m=N) — 2 Yme N
m=N/2 m=—N/2
due to periodicity condition (11.10). This proves the proposition. (]
Corollary 11.9. For every integer l it is true that
N/2—1-1 N/2—1
Yn= 2 Yu
m=—N/2—1 m=—N/2
Lemma 11.10. The convolution (11.11) is symmetric, i.e.,
(X*Y)k = (Y*X)k
foreveryk=—-N/2,....N/2—1.
Proof. We have
N/2 1 k+1-N/2
XY= Y XY= Y YiXi
I=—N/2 j=k+N/2
N/2—1+(k+1) N/2—1
= Y VX = Y VX j=(Y*X)
Jj=—N/24(k+1) j=—N/2
by Corollary 11.9. O
Lemma 11.11. For eachn= —N/2,...,N/2—1 it is true that
(1) F(X«Y)y=NFX)nF (Y )p;
(2) F U X*Y)=F (X)Z V),
Proof. Using (11.11), we have
| N2t 2z 1 N/2—-1  N/2-1 .
F(X+Y), = — XY )e N X, Yi e N
(*)Nz(*) Zlele

81
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| N2-1 Nj2-l-d

z X, Z Yme’iz%(mﬂ)

N, = “N/2  m=-Nj2-1

N/2—1 N/2—1-1
1 _i2lml _i27mm
=5 2/ Xe W Z/ Yue N (11.12)
[=—N/2 m=—N /2~

Proposition 11.8 allows us to rewrite (11.12) as

1 N/2 1 TThy 71 JTnm
FXAY )=~ 3 Xe ' F 2 Ve VN = NZ(X)nZ (Y ).
Nl— —N/2 m=—N/2
Part (2) is proved in a similar manner. O

Corollary 11.12. Foreachn=—N/2,...,N/2—1 it is true that

FK )= (F %)« 7 W),
FXY)=(F(X)* (1)),

N/2—1

where X -Y denotes the sequence {X;.- Y}, .~ /2

Proof. Lemmas 11.3 and 11.11 imply that
(;?*?) =g (32 (52*?)) —NF (9(52) .gz(?)) .
n n n

Setting X :=.%Z " !(X) and Y :=.Z ' (Y), we obtain easily from the latter equality
that
NZ'X-Y)y=(F'(X)«Z7(Y)),.

The second part is proved in a similar manner. O

Let us return to the continuous signal x(z), ¢ € [—m, ], which is represented by an
absolutely convergent trigonometric Fourier series (11.1). Formula (11.4) allows us
to obtain

N/2—1 N/2-1 | o N/2—1
Z |Xn_Cn|: z 2 CntIN —Cn| = z zanrlN
n=—N/2 n=—N/2 |l=— n=—N/2 |I#0
N/2-1
S Yl <Y eyl (11.13)
n=-N/217#0 [V[>N/2

Similarly, we have
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N2t 2k N2t - 2mkn
ﬁil(xn)k_ Z CnelN|: Z (Xn_cn)elN‘
n=—N/2 n=-—N/2
N/2-1
< Y K-l <Y el (11.14)
n=—N/2 V=N /2

In the formulas (11.13) and (11.14) the numbers ¢, are the Fourier coefficients of

the signal x(¢), and {X, }i:’f_;\,l/z is the DFT of {)c(tk)}sz/z_;Vl/2 with #; = 27k /N.

Theorem 11.13. If x(1) is periodic and belongs to the Sobolev space W}'(—m, 1)
for somem=1,2,..., then

1
Xn:Cn+0<1\/}'n—l/2>7 N — oo (1115)
and
| N2 - 2mkn 1
F (Xn)k = ZN/zC'nel N 4o (1\]"11/2) 5 N — o (1116)
n=-—

uniformly in n and k from the set {—N/2,...,N/2—1}.
Proof. Using Holder’s inequality, we have
1/2 1/2
5 (2 wek) (2w
[v[>N/2 [v[>N/2 lv[=N/2

The first sum on the right-hand side tends to zero as N — e~ due to Parseval’s equality
for a function from the Sobolev space W;"(—, 7). The second sum can be estimated
precisely. Namely, since for every m = 1,2,... we have

z |V‘—2m - </ t_zmdl‘> XN_m-H/Z,
IV[=N/2 N2

we conclude that (11.15) and (11.16) follow from the last estimate and (11.13) and
(11.14), respectively. (]

Corollary 11.14. An unknown periodic function x(t) € W' (—m,m),m=1,2,...,
can be recovered from its IDFT as

2rk _1 1
x<N>:§ (Xn)k+0(1\m_l/2), N — oo

uniformly in k from the set {—N/2,....N/2—1}.
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Exercise 11.3. (1) Show that

2m1

a=c¢e' 5

—-N/2__N/2 s 2nmn

na a it
(_1) 42% ) (1758 N

1—ae

—_

7 ({dR25,) =

2=

(2) IfasequenceY = {Yk}ivz/ 277\,1/2 is real, then show that

FX)p=FY)N-n.



Chapter 12
Connection Between the Discrete Fourier
Transform and the Fourier Transform.

If a function f(x) is integrable over the whole line, i.e.,

| 1ris <o
then its Fourier transform is defined as

_ L —ix¢
7m/_wf(x)e dx.

Similarly, the inverse Fourier transform of an integrable function g(&) is defined as

Fg(x) )eltedE

g(x :=¢%—n/_ig(5

Theorem 12.1 (Riemann-Lebesgue lemma). For an integrable function f(x), its
Fourier transform F f(§) is continuous, and

lim Zf(§) =

£ koo

Proof. Since e = —1, we have

~

_ ﬂx.’,‘ in 1 = efié
7(6) = ——= [ fe e —— [ iy m/E)e oy

This fact implies that

—2f(& S+ m/) = f(x))e "+ dx.

)= 7o [
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Hence

2IiE / Flrt1/€) — f(x)]dx — 0

as |E| — oo, since f is integrable on the whole line. This is a well known property of
integrable functions. Continuity of f(&) follows from the representation

FE+m =78 = 2= [ e e ax
and its consequence

If(5+h)*f(§)l

||e7”‘h—1|dx+ \dx— L+D.

2
\/27r /xh\<6 V21 /|xh\>5

For the first term /; we have the estimate

S
m/\16h|<6 X)fehldx < \/E/;oo |f(x)|dx —0, &—0.

For the second term /I, we have

dx—0
V2717 /\X\>5/\h\

as |h| — 0. If we choose & = |h|'/2, then both I; and I tend to zero as || — 0. This
completes the proof. O

If a function f(x) has integrable derivatives f*)(x) of order k = 0,1,2,...,m, then
we say that f belongs to the Sobolev space W"(R).

Exercise 12.1. Prove that if f € W] (R), then lim,_, 4. f(x) = 0.

Theorem 12.2 (Fourier inversion formula). Suppose that f belongs to W, (R).
Then

at every point x € R.

Proof. First we prove that

[ rwaee= [ _Fe

for every pair of integrable functions f and g. Indeed,
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/:of(x)(?(x)dx: J%/:Lﬂx) /:og(é)efi"édédx
= 7= |8 [_rwesasz = [ Fes(eae

by Fubini’s theorem. Suppose now that g(&) is given by

)L 1El<n,
g(é)—{(), E|>n

Its Fourier transform is equal to

1 /” e e — 1 (et el _ gsin(nx)-
V21 J-n V2r \ —ix —ix T X

8lx) =
Thus, we have the equality

V2w [ ey

where f € W/'(R). Letting n — oo, we obtain

p.v./m dg_gﬂ[/ PRl (12.1)

We will prove that the limit in (12.1) is actually equal to v/27f(0). Since

/°° sin(nx)dx .

—oo X

the limit in (12.1) can be rewritten as

Y}EEO\/Z/_‘” £00) sin(nx)
_ ‘5‘,}2130\/»/ sminx)dx
=21 f(0) +l1m \/7/ ft/n)— ))sm( )dt.

It remains to show that the latter limit is equal to zero. In order to prove this fact we
split the above integral as follows:
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sin()
t

dr

| _(tem)— o)

sin(7) sin(t)

= (f(2/n) = £(0)) de+ [ (f(e/n) = f(0)) dr =11 + .

|t]<1 t [t]>1

Since f € W!(R), it is continuous with respect to the definition of Sobolev spaces
in this chapter. Therefore,

sin(7)
t

| < sup | f(z/n) — f(0)]

lt|<1 le|<1

dt -0, n-— oo,

For the second term, I, we first change variables to obtain

B B sin(nz)
B[ U@ -0 e

oo

- [T u@-ron (] ZSi“(”y)dy>'dz

! y

w [ -so ([ 0) 0

Integration by parts in these integrals leads to

o . o
- / f(2) / sin(my) dydz
1/n 1/n 0 y

—1/n —1/n i
_/ () /Z sin(ny) dydz
oo 0 y

—oo

L= (@ o) [y

Hi@ 1) [ Si“i”” dy

_ <lim £(2) —f(o)) /0 B Smi”y Jdy— (£(1/n) = £(0)) /0 v Si“i”y ) dy

Z—o0

- "z sin(t)
[ [ -1y - 1) |

—1/n sin(ny)
y

(im0 s0)) [Ty e [F g

— d
7 y
y J—eo

Since lim,_, +.. f(z) = 0 (see Exercise 12.1) and since f is continuous, we obtain (as

n — oo)

"z sin(t)
t

b 05~ lim [ ) [ e
T A "z sin(t)
_f(O)E — lim f (z)/o fdtdz

n—oo | _ o
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oo nz q1
ZAnfm)fkgsu.f@)A LI
—1/n nz gi
_ fim ﬂg/mfhm

—-nfO) - [ ) dz+/_if’(Z)

T
= —7rf(0)+f(0)§ +f(0)§ =

Here we used again the fact that lim,_, 1. f(z) = 0 and Lebesgue’s dominated con-
vergence theorem. Thus, (12.1) transforms to

pv. [ F(E)dE =Vamf(0),

or equivalently,

In order to prove the Fourier inversion formula for every x € R, let us note that

—_—

FONE) = (@) = = [ flay)e ™y

- = e = ).

Since f,(0) = f(x), it follows that
f(x) = £(0 ): F U Ff)(0)
T — [ - = — [ e fEuE =7 (F 0w,

This completes the proof. (]
Remark 12.3. As a by-product of the above proof we record the limit

n—oo JU

lim — / £ G o)

for every f € W/ (R).
Lemma 12.4. If f belongs to the Sobolev space W{"(R) for some m = 1,2, ..., then

f@)—0<g%) (12.2)

as |&] = o
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Proof. Since f € W]"(R), it follows that ', f,..., f"~1) € W/ (R). By Exercise
12.1, we have
lim f®(x)=0

X—+oo
foreach k=0,1,...,m — 1. This fact and repeated integration by parts give us
[t saes SEst) k[ rwe e L e e
oo —ié - i J o i€ )
—ixg - 1 o .
e
——f(x +,7/ " (x)e " dx
aer/ W e )W
1 /"" 1oy —ixE 1 = () [ amixE
= — f(x)e dx:---:,i/ f(x)e"dx =0 =
Gey )T aey T HE
due to the Riemann—Lebesgue lemma. (I

The equality (12.2) allows us to consider (with respect to the accuracy of calcu-
lations) the Fourier transform only on the interval (—R,R) with R > 0 sufficiently
large, i.e., we may neglect the values of % f(&) for |£| > R. This simplification
justifies the following approximation of the inverse Fourier transform:

* o 1 Ra‘ ix§
= [ Freetac

At the same time and without loss of generality we may assume that the function
f(x) is equal to zero outside some finite interval. In that case it can be proved that
F f(&) is a smooth function for which (12.2) holds.

Definition 12.5. We say that f € V(i/’]”(—R7R) if feW/"(R) and f =0 for x ¢
(—R,R).

Theorem 12.6. Suppose that f € W}'(—R, R) is supported in a fixed interval [a,b] C
(—=R,R) with R > 0 sufficiently large for some m =23, .... Then

2 ! e a 2n+1 {_x(2nt1)
- 7t N/ (m+2) 5 m/(m+2)
" \/;Nm/(m”) =7 ( /2] ) e
n=— /2
1
o (AWWH)) (123)

uniformly in x € (—R,R) for R = N m+2) gpd even N — oo,
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Proof. Since f(x) =0 for x ¢ (—R,R), using the Fourier inversion formula (see
Theorem 12.2) we have

x)— ff(x) = . )eire __L )eie
10-570) = o= [~ Freiar - o [ F e

1 n
= —— LX&
Lemma 12.4 implies then that
1
f(x)_f*(x) _O<le) : (124)

Let us divide the interval [—R,R] into N + 1 subintervals [&,, &, 1], where n =
—N/2,...,N/2 — 1 such that

“R=& Np <& np1 < <Ep=R

where IR 2R
n
én—Ta §n+1_§n—ﬁ
Let us also set . R
% _ 5n + Gntl _ R
én_iz —N(2n+1).
Then we obtain
* 1 k ix€
rw = [ Freeta
1 V2! .. 2R
- FF(ENel¥on 2
mzN FENES T
N{2-1 -Snﬂ
W T f(E7)e™r ) dé
n—N/Z/” )
2R M . R3
—v 2 FR@n+1)/N)e REn+D/N L0 (N2> (12.5)

n=—N/2
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Exercise 12.2. Prove that

1 N/2-1 Enit . »
= 7 ixg o * ]xé;n
VzTr,,ZN/z/ (T - e ) dg

0(%). suppf=lab]

o R*Z ’ suppr(—R,R)

uniformly in x € supp f.

Hint. Use the Taylor expansion for the smooth function .Z f(&)e* at the point &

If we combine (12.5) with (12.4) and choose R = N2/ ("+2) then we obtain (12.3).
This completes the proof. O

Remark 12.7. The main part of (12.3) represents some kind of inverse discrete
Fourier transform. In order to reconstruct f at a point x € [—R, R] we need to know
only the Fourier transform of this unknown function at the points

2n+1

W’ n:_N/Q,,,N/Z_l,

where m is the smoothness index of f. What is more, the formula (12.3) shows us

that it is effective if
2m—2 m

>7
m-+2 m—+2

or m > 2. This means that f must belong to the Sobolev space W{'(—R,R) with
some m > 3.



Chapter 13
Some Applications of the Discrete Fourier
Transform.

First we prove the Poisson summation formula.

Definition 13.1. Let f be a function such that

lim Y f(x+27mn)

N—oo ey

exists pointwise in x € R. Then
fr(x) =Y flx+2mn) (13.1)
n=—oco
is called the periodization of f.

Remark 13.2. Tt is clear that f,(x) is periodic with period 27. Hence we will con-
sider it only on the interval [—7, 7t].

Theorem 13.3 (Poisson summation formula). Suppose that f € L'(R). Then
fo(x) from (13.1) is finite almost everywhere, satisfies fp(x+2m) = fy(x) almost
everywhere, and is integrable on the interval |—n,xt). The Fourier coefficients of

fo(x) are given by

1 n : 1
o | e e = <= f(m).

V2r
If in addition
2 | Ffm)| <<,
m—=—oo
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then

2 flx+2mn) = 2 Z f(m (13.2)

n=-—co m__oo

In particular, f, (x) is continuous, and we have the Poisson identity

i fQ2rn) = f :i (13.3)

n=-—co

Proof. Since f € L'(R), we have

/ |fp(x |dx</ i |f(x+27mn)|dx = Z / f(x+2mn)|dx

T p=—oo Nn=—oo
7r+27m 0o
Z / (t)|dt = / |£(£)|dt < oo.
N=—oo 7t+27'm oo

This shows that f, is finite almost everywhere and integrable on [—7, 7]. Applying
the same calculation to f;,(x)e™* allows us to integrate term by term to obtain

cm(fp) = o / fp(x)e ™ dx = 2 / f(x+2mn)e ™ dx

nffoo

7r+27rn

71m(t727'm)
z 21 / @

N=—oo n+27‘m

n+2mn

_ Z 1 /
V2r oo V2T J—m427n”

_ \/%% | /:c Flr)e—mdr = \/%y Flm).

Now, if the series

f(t)e ™ dr

> |7 fm)|

m=—oo

converges, then that convergence is equivalent to the fact that

S [en(fy)] <.

m=—oo

Thus, f,(x) can be represented by its Fourier series at least almost everywhere (and
we can redefine f;,(x) so that this representation holds pointwise), i.e.,

=

fp(x): Z Cm(fp)eimx~

m=—oo
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This means that (see (13.1))

ngw Fxt2mn) = \/% mgw F fm)e™.
Finally, set x = 0 to obtain the Poisson identity (13.3). (]
Example 13.4. If
flx) = \/‘%67%7 xeR,

where ¢ > 0 is a parameter, then it is very well known (see, e.g., Example 16.7 and
Exercise 16.4) that

FIE) ==

V2n
Formula (13.2) transforms in this case to
x+427n had .
2 e +477 — i Z eftmzelmx7
Vant = 2r =

and the Poisson identity transforms to

o0
Z —m2n?ft _ z e—tm2 .

n=-—oo m=—oo

As an application of the Poisson summation formula we consider the problem of
reconstructing a band-limited signal from its values on the integers.

Definition 13.5. A signal f(¢) is called band-limited if it has a representation

2mA

11‘5
\/2771:/271% dé, (13.4)

flt) =

where A is a positive parameter and F is some integrable function.

Remark 13.6. If we set F (&) = 0 for || > 27A, then (13.4) is the inverse Fourier
transform of F € L!'(R). In that case f is bounded and continuous.

Theorem 13.7 (Whittaker, Shannon, Boas). Suppose that F € L' (R) and F (&) =
0for|&| > 2mA. If A < 1/2, then for everyt € R we have

2 Fln smn ) (13.5)

b
e —n)
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where the fraction is equal to 1 whent =n. If A > 1/2, we have

\/7/<§|<2;m $)ldé.

F (&) = Z F(&+2mn)

Nn—=—oo

=

OEDY f(n)““”

n—=—oo

Proof. Let
be the periodization of F. Formula (13.4) shows that

where . (F) denotes the Fourier transform of F(&). Hence, by the Poisson summa-
tion formula, we have (see (13.2))

oo

W= S et — Jemin
nzZ_,wF(éJrM) \/Emzz_wf( Je Vz?m_z_mf .

Since every trigonometric Fourier series can be integrated term by term, we obtain

[ﬂ £)eiéde = / 2 (& 4+ 27n)eedE

| =
\/7 Z:mf / i(r—m gdg
1 (t m)mw _ e—i(t—m)n:
\/27( m;w i(t—m)
sm 7r( m)
\/ﬁ m;wf —-m)

Now, if A < 1/2, then F(&) for |§| < & is equal to its periodization F,(&) (see
Definition 13.1) and
n .
| R@)eas = varso).

These equalities imply immediately that

=

fe)y="3 fn)

n=—oo

sinz(t —n)
w(t—n) ’

so that (13.5) is proved. If A > 1/2, then we cannot expect that F () = F,(&) for
|| > , but using Definition 13.1 we have
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= \/%/er( Hédé M \/>/<§<27m
N n;wf( Smn \/7/71'<|5<27Tl

where
P S ing
Fon == [ F(e)eag.
Therefore,
)= 3, T

1t§d§

ltédé

+i () — ) S“‘Z(t_;" 7)o

Here the middle series is equal to

_\/127rng>° </7r<§|<2ml () é) e

or

=

1 sinz(r —n)
_Jz?/yz<§<znzF(§)<n=2_‘w n(t —n)

Exercise 13.1. Prove that

i sin ﬂ(f — n) ein;’: _ eit§7
n(t—n)

sel-

n=—oo

Hint. Show that )
. (eiﬂ:) _ sinz(t —n)
" w(t—n)

Using Exercise 13.1 and the periodicity of e"% we have

0D f(n)s“‘”

n=—oo

This proves the theorem.

n(t—n)

n(t—n)

1n§> dé

7, 7.

\/>/7t<<§|<27rl 5)ldé.

97

F(&)e" dg.
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Theorem 13.7 shows that in order to reconstruct a band-limited signal f(¢), it is
enough to know the values of the signal at integers n. In turn, to evaluate f(n) it is
enough to use the IDFT of F(&); see (13.4). Indeed, let us assume without loss of
generality that A = 1/2. Then

fln) = Jerede.

l 4
— F
V2T /—7:
If F is smooth enough (say F € Cz[fn, 7)), then formula (12.5) gives (R = & and
N>1)

s— N/2-1
2” 2 Fe' 2/5“ 0(1)

2
k=—N/2 N
V2 N2 i 1
_ Nﬂ:l— 2 Fk62k+0< >7
k=—N/2

where F; denotes the value of F (&) at the point 7(2k + 1)/N. Therefore, up to the
accuracy of calculations,

i.e., for N a sufficiently large even integer,

flt)= i \/]\276 %J_l(Fk) SH;Z(I_;)n)




Chapter 14
Applications to Solving Some Model
Equations

14.1 The One-Dimensional Heat Equation

Let us consider a heat conduction problem for a straight bar of uniform cross sec-
tion and homogeneous material. Let x = 0 and x = L denote the ends of the bar
(the x-axis is chosen to lie along the axis of the bar). Suppose that no heat passes
through the sides of the bar. We also assume that the cross-sectional dimensions
are so small that the temperature u can be considered constant on any given cross
section (Figure 14.1).

[ (< [
\ \ \

Fig. 14.1 Geometry of the heat conduction problem for a bar.

Then u is a function only of the coordinate x and the time 7. The variation of
temperature in the bar is governed by the partial differential equation

ity (x,1) = u(x,1), 0<x<Ljt>0, (14.1)

where o/ is a constant known as the thermal diffusivity. This equation is called the
heat conduction equation or heat equation.
In addition, we assume that the initial temperature distribution in the bar is given
by
u(x,0)=f(x), 0<x<L, (14.2)

where f is a given function. Finally, we assume that the temperature at each end of
the bar is given by

(© Springer International Publishing AG 2017 99
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u(0,¢) =go(r), u(L,t)=g1(t), t>0, (14.3)

where go and g are given functions. The problem (14.1), (14.2), (14.3) is an ini-
tial value problem in the time variable #. With respect to the space variable x it is a
boundary value problem, and the conditions of (14.3) are called the boundary con-
ditions. Alternatively, this problem can be considered a boundary value problem in
the xt-plane (Figure 14.2):

M(O,t):g()(l) O(4214)0521’# M(L’t):gl(t)

u(x,0) = f(x)

x=0 x=1L

Fig. 14.2 Geometric illustration of the heat equation as a boundary value problem.

We begin by considering the homogeneous boundary conditions when the func-
tions go(z) and g;(¢) in (14.3) are identically zero:

0Py = Uy, 0<x<Lt>0,
u(0,1) =u(L,t) =0, >0, (14.4)
u(x,0) = f(x), 0<x<L.

We look for a solution to the problem (14.4) in the form
u(x,t) =X(x)T (). (14.5)

Such a method is called a separation of variables (or Fourier’s method). Substituting
(14.5) into (14.1) yields

or
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in which the variables are separated, that is, the left-hand side depends only on x,
and the right-hand side only on ¢. This is possible only when both sides are equal to

the same constant:
X// 1 T/

X 2T
Hence, we obtain two ordinary differential equations for X (x) and 7 (¢):
X"+ AX =0,

T'+0*AT =0. (14.6)

The boundary condition for u(x,) at x = 0 leads to
u(0,t) =X(0)T(¢)=0.
It follows that
since otherwise, T = 0, and so u = 0, which we do not accept. Similarly, the bound-
ary condition at x = L requires that
X(L)=0.

So, for the function X (x) we obtain the homogeneous boundary value problem

X 44X = L
{ +AX =0, 0<x<lL, (147)

X(0) = X(L) =0.

The values of A for which nontrivial solutions of (14.7) exist are called eigenvalues,
and the corresponding nontrivial solutions are called eigenfunctions. The problem
(14.7) is called an eigenvalue problem.

Lemma 14.1. The problem (14.7) has an infinite sequence of positive eigenvalues

where c is an arbitrary nonzero constant.

Proof. Suppose first that A > 0, i.e., A = u?. The characteristic equation for (14.7)
is 72 4 u? = 0 with roots r = iy, so the general solution is
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X (x) = ¢y cos lx + ¢y sin x.

Note that u is nonzero, and there is no loss of generality if we assume that g > 0.
The first boundary condition in (14.7) implies

X(0)=c; =0,
and the second reduces to
cysinuL =0,
or
sinuL =0,

since we do not allow ¢ = O either. It follows that
UuL=nrm, n=1,2,...,

or

n?m?

=

n=1,2,....

Hence the corresponding eigenfunctions are

T
X, (x) = csin nT‘x

If A = —u? <0, u >0, then the characteristic equation for (14.7) is r> — u?> =0
with roots r = £ . Hence the general solution is

X (x) = ¢y cosh x+ ¢y sinh .

Since
elr feHx . ehr — e Hx
coshux = — and sinhux= —

this is equivalent to
X (x) = cfe" +che M.

The first boundary condition requires again that ¢; = 0, while the second gives
csinhuL = 0.

Since u # 0 (u > 0), it follows that sinh uL # 0, and therefore we must have ¢; = 0.
Consequently, X = 0, i.e., there are no nontrivial solutions for A < 0.
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If A = 0, the general solution is
X(x) =cix+cp.

The boundary conditions can be satisfied only if ¢; = ¢, = 0, so there is only the
trivial solution in this case as well. O

I‘lﬂ

Turning now to (14.6) for 7'() and substituting -5~ for A, we have

Hence the functions

u(x,1) =e” sin — (14.8)
L

satisfy (14.1) and the homogeneous boundary conditions from (14.4) for each n =

1,2,.... The linear superposition principle gives that every linear combination

_(nna 2 nmwx
2 cpe 7 "sin T

is also a solution of the same problem. In order to take into account infinitely many
functions (14.8), we assume that

Zc,, (")’ gip MY (14.9)

where the coefficients ¢, are still undetermined, and the series converges in some
sense. To satisfy the initial condition from (14.4) we must have

u(x,0) = chsin"Lﬂ —f(x), 0<x<L. (14.10)

n=1

In other words, we need to choose the coefficients ¢, so that the series (14.10) con-
verges to the initial temperature distribution f(x). We extend f from [0, L] to [—L, L]
as an odd function and then obtain that

nnx
L/ flx sm—

It is not difficult to prove that for r > 0, 0 < x < L, the series (14.9) converges
(with any derivative with respect to x and ¢) and solves (14.1) with boundary condi-
tions (14.4). Only one question remains: can every function f(x) be represented by
a Fourier sine series (14.10)? Some sufficient conditions for such a representation
are given in Chapter 10.
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Remark 14.2. We can consider the boundary value problem for a linear differential
equation
V' +p(x)y +q(x)y = g(x) (14.11)

of order two on the interval (a,b) with the boundary conditions

y(a)=yo, y(b)=y1, (14.12)

where yg and y; are given constants. Let us assume that we have found a fundamen-
tal set of solutions y; (x) and y;(x) to the corresponding homogeneous equation

V' 4+ p(x)y' +q(x)y =0.

Then the general solution to (14.11) is

¥(x) = c1y1(x) + c2ya(x) +yp(x),

where yp,(x) is a particular solution to (14.11) and ¢; and ¢; are arbitrary constants.
To satisfy the boundary conditions (14.12) we have the linear inhomogeneous

algebraic system
ciyi(a) +caya(a) = yo —yp(a),

(14.13)
c1y1(b) +cay2(b) = y1 — yp(b).

If the determinant

is nonzero, then the constants ¢; and ¢> can be determined uniquely, and therefore
the boundary value problem (14.11)—(14.12) has a unique solution. If

then (14.11)—(14.12) has either no solutions or infinitely many solutions.
Example 14.3. Let us consider the boundary value problem

Vi uly =1, 0<x<,
y(o) =)o, y(l) =1,

where p > 0 is fixed. This differential equation has a particular solution yp(x) = ﬁ

Hence, the system (14.13) becomes
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c18in0+cpcos0 =yg — ﬁ,
cisinil +cacos il =y — ﬁ,
or
=Yy — ﬁa
cisint =y — # — (yo—ﬁ) COS L.
If
0 1
. o
sinfl cos

i.e., sint # 0, then ¢ is uniquely determined, and the boundary value problem in
question has a unique solution. If sin yt = 0, then the problem has solutions (in fact,
infinitely many) if and only if

L ( 1) cosu
M w2 Yo 2 .

If u =2rk, then siny = 0 and cos t = 1 and the following equation must hold:

1 1
VI——>5=Y0— >,

u? u?
i.e.,y; =yo. If 4t = mw+ 27k, then siny = 0 and cos t = —1, and we must have

N 2
yity=—.
112

Suppose now that the ends of the bar are held at constant temperatures 77 and 75.
The corresponding boundary value problem is then

Uy = uy, 0<x<L,t>0,
u(0,6) =T ,u(L,t) =T, t>0, (14.14)
u(x,0) = f(x).

After a long time (+ — o) we anticipate that a steady temperature distribution v(x)
will be reached that is independent of time and the initial condition. Since the solu-
tion of (14.14) with T} = T, = 0 tends to zero as t — oo, see (14.9), we look for the
solution to (14.14) in the form

u(x,t) =v(x) +wix,t). (14.15)
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Substituting (14.15) into (14.14) leads to

az(vxx+wxx) = Wi,
v(0)+w(0,t) = Ty,v(L) +w(L,t) = Tx,
v(x) +w(x,0) = f(x).

Let us assume that v(x) satisfies the steady-state problem

/!
= L
{v (x)=0, 0<x<L, (14.16)

v(0)=T), v(L)=".

Then w(x,t) satisfies the homogeneous boundary value problem for the heat equa-
tion:

Wy = Wy, 0<x<L,t>0,
w(0,£) = w(L,t) =0, (14.17)
W(x’ O) = f(x)a

where f(x) = f(x) — v(x). Since the solution of (14.16) is

-1

v(x)

X+Ti, (14.18)

the solution of (14.17) is

> nro. 2
wirt) =Y e (1) ’sinnTnx, (14.19)
n=1

where the coefficients ¢, are given by

2 (L T, — T,
cn:z/o {f(x)— 2L 1)c—Tl sinndex.
Combining (14.18) and (14.19), we obtain

T, —T < nmo )2
u(x,t) = 2L Ly T+ ZC,,e_(%) "sin——.
n=1

Let us slightly complicate the problem (14.14), namely assume that

ity = Uy + p(x), 0<x<Lt>0,
u(0,6) =T ,u(L,t) =T, t>0, (14.20)
u(x,0) = f(x).
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We begin by assuming that the solution to (14.20) consists of a steady-state solution
v(x) and a transient solution w(x, ) that tends to zero as t — oo

u(x,t) = v(x) +w(x,z).

Then for v(x) we will have the problem

(14.21)

Vi(x) = ép(x), 0<x<L,
v(0) =T1,v(L) = T>.

To solve this we integrate twice to get
1 /= Y
v(x) = —2/ dy/ p(s)ds+cix+cs.
o’ Jo 0
The boundary conditions yield ¢, = 77 and

1T T ! Ld ' d
CI—Z 2—1—$/0 )’/OP(S)S’

Therefore, the solution of (14.21) has the form

Th,—T X L y 1 X y
v(x) = = "‘faz/() dy/0 p(s)ds+¥/0 dy/o p(s)ds+Ti.

For w(x,t) we will have the homogeneous problem

0wy =w;,, 0<x<L,t>0,
w(0,t) =w(L,t) =0, >0,

w(x,0) = f(x) := f(x) = v(x).

A different problem occurs if the ends of the bar are insulated so that there is no
passage of heat through them. Thus, in the case of no heat flow, the boundary value
problem is

0Cuy =1, 0<x<L,t>0,

1 (0,7) = uy(L,t) =0, >0, (14.22)

u(x,0) = f(x).

This problem can also be solved by the method of separation of variables. If we let
u(x,t) = X (x)T(¢), it follows that

X"+AX =0, T'+a*AT=0. (14.23)

The boundary conditions now yield
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X'(0)=X'(L)=0. (14.24)

If A = —u? <0, u >0, then (14.23) for X (x) becomes X" — u>X = 0 with general
solution
X (x) = ¢ sinh x + ¢y cosh px.

Therefore, the conditions (14.24) give ¢; = 0 and ¢; = 0, which is unacceptable.
Hence A cannot be negative.
If AL =0, then
X (x) =c1x+cp.

Thus X’(0) = ¢; =0 and X'(L) = 0 for every c», leaving ¢, undetermined. Therefore
A =0 is an eigenvalue, corresponding to the eigenfunction Xp(x) = 1. It follows
from (14.23) that T'(¢) is also a constant. Hence, for A = 0 we obtain the constant
solution ug(x,1) = c3.

If A = u? > 0, then X” 4 u?X = 0 and consequently

X (x) = ¢y sinx+ c; cos Ux.

The boundary conditions imply ¢; =0 and u = %%, n = 1,2,..., leaving ¢, arbi-

. . .. . 2.2 .
trary. Thus we have an infinite sequence of positive eigenvalues A,, = % with the
corresponding eigenfunctions

nix
Xy(x)=cos—, n=1,2,....
L
If we combine these eigenvalues and eigenfunctions with zero eigenvalue 9 = 0

and Xy (x) = 1, we may conclude that we have the infinite sequences

2.2
nix
An = Xn(x):cosT, n=0,1,2,...,

and s
TT. nmo.
un(x,t) = cos %e_(T) L n=0,1,2,....
Each of these functions satisfies the equation and boundary conditions from (14.22).

It remains to satisfy the initial condition. In order to do so, we assume that u(x,)
has the form

> nro. 2
w(x,1) = %“+2cncos$e—(T> ' (14.25)

n=1
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where the coefficients ¢, are determined by the requirement that

co nmwx

u(x,0) = > + Y cucos T fx), 0<x<L.
n=1

Thus the unknown coefficients in (14.25) must be the Fourier coefficients in the
Fourier cosine series of period 2L for the even extension of f. Hence

2 L nmwx
anz/o f(X)COSde, n:O,l,Z,...,

and the series (14.25) provides the solution to the heat conduction problem (14.22)
for a bar with insulated ends. The physical interpretation of the term

co 1 /'L

LD_ - dx

> =1 )y W
is that it is the mean value of the original temperature distribution and a steady-state
solution in this case.
Exercise 14.1. Let v(x) be a solution of the problem

Vi(x) =0, 0<x<L,
V(0) =T,V (L) =Ts.

Show that the problem

0Py =u;,, 0<x<L,t>0,
uy(0,¢) = T,ux(L,t) = Th,t > 0,
u(x,0) = f(x),

has a solution of the form u(x,7) = v(x) + w(x,t) if and only if 7} = T5.

Example 14.4.
Uy = Uy, 0<x<1,t>0,
u(0,1) =u(1,1) =0,
u(x,0)=3%-_, ”iz sin(nmx) := f(x).

As we know, the solution of this problem is given by

u(x,r) = Z o Sin(nnx)e_(””)zt.

n=1
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Since

oo

u(x,0) Z ¢y sin(nmx) Z sin(nmx),

n=1 =

we conclude that necessarily ¢, = nLZ (since the Fourier series is unique). Hence the
solution is

=

2
Z sin(nmx)e —(nm)s

Exercise 14.2. Find a solution of the problem

Uy =U, O0<x<mit>0,
ux(oat) = I/tx(ﬂ,t) =0,t>0,
u(x,0) = 1 —sinx,

using the method of separation of variables.

Let us consider a bar with mixed boundary conditions at the ends. Assume that
the temperature at x = 0 is zero, while the end x = L is insulated so that no heat
passes through it:

0Puy =u;, 0<x<L,t>0,
u(0,2) = uy(L,r) =0, >0,

u(x,0) = f(x).

Separation of variables leads to

(14.26)

X"+AX =0, 0<x<lL,
X(0)=X'(L)=0,

and
T'+a’AT =0, 1>0.

As above, one can show that (14.26) has nontrivial solutions only for A > 0, namely

(2m—1)>x?
412

(2m—1)mx

lm: Xm(x)zsinT, m:1,2,3,....

The solution to the mixed boundary value problem is

i m—1)ma |2
g CmSin 72m;L1)nxef(%) !
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with arbitrary constants c,,. To satisfy the initial condition we have

2m-1)r
ZCmSIIl mL) , 0<x<L.

m=1

This is a Fourier sine series but in some specific form. We show that the coefficients
¢, can be calculated as

2 L 2m—1
Cm:i/o f(x)Sinwd)@

and such a representation is possible.

In order to prove this, let us first extend f(x) to the interval 0 < x < 2L so that
it is symmetric about x = L, i.e., f(2L —x) = f(x) for 0 < x < L. We then extend
the resulting function to the interval (—2L,0) as an odd function and elsewhere as a
periodic function fof period 4L. In this procedure we need to define

F(0) = f(2L) = f(-2L) =0.
Then the Fourier series contains only sines:
- . nmx
x) = r; Cnsin —,
with the Fourier coefficients

2L
om L [ o

Let us show that ¢,, = 0 for even n = 2m. Indeed,

1 2L
=7 / Flo)sin 2 dx

2L
L/ flx —derL/ f2L— x)sm—dx
MTTX I . mmu(2L—y)
L/ f(x)sin —dx—i A f(y)sdey
1 /0
_i/ f(x)s'an’”derz F()sin ™ ydy 0,
which is why
> (2m—1)mx
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where

2L _1) dx
C2M1_L/ 2L

(2m— 1)71:de

2L
L/f s1n ) dx+L/ S(2L—x)sin T

_ . - )nrx
= Z/O f(x)sdex,

as claimed. Let us remark that the series

—1
Z Cm sm T )X

represents f(x) on (0,L].
Remark 14.5. For the boundary conditions
ue(0,1) = u(L,1) = 0

the function f(x) must be extended to the interval 0 < x < 2L as f(x) = —f(2L—x)
with f(L) = 0. Furthermore, f is an even extension to the interval (—2L,0). Then
the corresponding Fourier series represents f(x) on the interval [0,L).

Exercise 14.3. (1) Let u(x,?) satisfy

Upy = Uy, O0<x<1,t>0,
u(0,t) =u(1,t) =0, t>0,
u(x,0) = f(x), 0<x<l,

where f € C[0, 1]. Show that for every T > 0 we have

1 1
2 2
/0 (e, T)[Pdx < /0 () P,

Hint: Use the identity 2u(u; — ) = dyu? — O (u- 1) + 2 (1),
(2) Use Fourier’s method to solve

Uxx = Uz, 0<x<1,t>0,
u(0,2) = u(1,1),u,(0,2) = u,(1,¢) t>0,
u(x,0) = f(x), 0<x<1,

where f € C[0, 1] with piecewise continuous derivative.
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(3) Use Fourier’s method to solve

Uy +U = Uy, O0<x<l1,t>0,
u(0,6) =u,(0,1) =0 >0,
u(x,0) =x(1—x), 0<x<1.

(4) Show that
1 2
- —(x=&+1)7/(41)
x,t d
u(x,t) e t[ ¢(&)e g

solves the problem

Upe F Uy = Uy, —o0 < x<oot >0,
M(x70) = (p(x)7 —oo Jx < oo,
u(x,r)is bounded for —oeo < x < oo, > 0.

14.2 The One-Dimensional Wave Equation

Another situation in which the separation of variables applies occurs in the study
of a vibrating string. Suppose that an elastic string of length L is tightly stretched
between two supports, so that the x-axis lies along the string. Let u(x,¢) denote the
vertical displacement experienced by the string at the point x at time ¢. It turns out
that if damping effects are neglected, and if the amplitude of the motion is not too
large, then u(x,7) satisfies the partial differential equation

APy =uy, 0<x<L,t>0. (14.27)
Equation (14.27) is known as the one-dimensional wave equation. The constant a?

is equal to T'/p, where T is the force in the string and p is the mass per unit length
of the string material (Figure 14.3).

u(x1)
Fig. 14.3 Geometry of the one-dimensional wave equation.
To describe the motion completely it is necessary also to specify suitable initial

and boundary conditions for the displacement u(x,7). The ends of the string are
assumed to remain fixed:



114 PartI:  Fourier Series and the Discrete Fourier Transform
u(0,7) =u(L,t)=0, ¢>0. (14.28)

The initial conditions are (since (14.27) is of second order with respect to ¢)
u(x,0)=f(x), u(x,0)=gx), 0<x<L, (14.29)

where f and g are given functions. In order for (14.28) and (14.29) to be consistent,
it is also necessary to require that

f(0) = f(L) = g(0) = g(L) =0. (14.30)

Equations (14.27)—(14.30) can be interpreted as the following boundary value prob-
lem for the wave equation (Figure 14.4):

u(0,1) =0 APt = Uy u(L,t) =0
u(x,0) = () '
MI(X,O) :g(x)
x=0 x=L

Fig. 14.4 Geometric illustration of the wave equation as a boundary value problem.

Let us apply the method of separation of variables to this homogeneous boundary
value problem. Assuming that u(x,#) = X (x)T(¢), we obtain

X"+AX =0, T'+d°AT =0.
The boundary conditions (14.28) imply that

X"4+AX=0,0<x<L,
X(0)=X(L)=0.
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This is the same boundary value problem that we have considered previously.

Hence,
2

n°m . nmX
An = 2 X, (x) =sin—, n= 1,2,....
Taking A = A, in the equation for 7'(¢), we have
" nma\ 2
(0 + () T(0) =o.
L
The general solution to this equation is
nrwat nrwat
T(t) =kjcos ky sin
( ) 1 I + k2 L )

where k1 and k; are arbitrary constants. Using the linear superposition principle, we
consider the series

- nwx nmat nmat
=Y sin A b, si ) 1431
x,1) ’;sm i (ancos i + by, sin i ( )

where the coefficients a, and b, are to be determined. It is clear that u(x,t)
from (14.31) satisfies (14.27) and (14.28) (at least formally). The initial conditions
(14.29) imply

(14.32)

Since (14.30) are fulfilled it follows that equations (14.32) are the Fourier sine series
for f and g, respectively. Therefore,

/ sm ——dx,
L

sm —
= nna / gl

Finally, we may conclude that the series (14.31) with the coefficients (14.33) solves
(at least formally) the boundary value problem (14.27)—(14.30).
Each displacement pattern

(14.33)

. nmx nrat . nrmat
up(x,1) = sin I (an cos N + b, sin )
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is called a natural mode of vibration and is periodic in both the space variable x

and time variable ¢. The spatial period 2}—1L in x is called the wavelength, while the

numbers ¢ are called the natural frequencies.

Exercise 14.4. Find a solution of the problem

um:un,o <x < 1,t > 07
u(0,1) = u(1,t) = 0,1 > 0,
u(x,0) = x(1 —x),u/(x,0) = sin(77mx),

using the method of separation of variables.

If we compare the two series

- . N7x nrat . _nmat
u(x,t) = Z sin — (an cos —— + by sin ) ,
=L L L

- . NTX _(nra)?
I/t(xat) = chsmTe (nL ) !

n=1

for the wave and heat equations, we see that the second series has an exponential
factor that decays rapidly with n for every ¢ > 0. This guarantees convergence of the
series as well as the smoothness of the sum. This is no longer true for the first series,
because it contains only oscillatory terms that do not decay with increasing . This
means that the solution of the heat equation is a C* function in the corresponding
domain, but the solution of the wave equation is not necessarily smooth.

The boundary value problem for the wave equation with free ends of the string
can be formulated as follows:

@i = uy,0 <x <Lt >0,
ux(oat) = ”x(Lat) =0, >0,
u(x,0) = f(x),u(x,0) = g(x),0 <x < L.

Let us first note that the boundary conditions imply that f(x) and g(x) must satisfy
f0)=f(L)=¢'(0)=g(L)=0.

The method of separation of variables gives that the eigenvalues are

nmw\ 2
/ln:(f), n=0,1,2,...,

and the formal solution u(x,?) is

bot - T Tat Tat
u(x,t) = 0 ;_aoJrE’cosu (ancos%+bnsinn; )

n=1
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The initial conditions are satisfied when

f(x):%—kZancosnLﬂ
n=1
and () bOJrib nwa  nmx
X) = — —— COS —— |
8 2 T ATy L
where
7 (L
an:i/o f(x)cosn—zxdx, n=0,1,2,...,
2 /L
by = — dx
0=7 | stoax,
and 5 .
nmx
b, = — —dx =1,2,....
v= o [Ceweos e n=1.2

Exercise 14.5. (1) Show that there is no uniqueness for the problem

Uxx = Uz, 0<x<L,t>0,
M(O,I):M(L,[),ux(o,t):ux(L,l), t>0,
u(x,O):f(x),ut(x70):g(x), 0<x<L,

i.e., this problem is ill posed.
(2) Find a solution of the problem

Uy = Uy, 0<x<L,t>0,
uy(0,7) =u(L,t) =0, t>0,
u(x,0) = f(x),u(x,0) = g(x), 0<x<L.
Let us consider the wave equation on the whole line. It corresponds, so to speak,

to an infinite string. In that case we no longer have the boundary conditions, but we
have the initial conditions

{azuxx:un,—oo<x<r>o7t>0, (14.34)

u(x,0) = f(x),u(x,0) = g(x).
Proposition 14.6. The solution u(x,t) of the wave equation is of the form
ulx,t) =@(x—at)+yx+at),

where @ and y are two arbitrary C? functions of one variable.
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Proof. By the chain rule,
Oyt — a* Oyt = 0

if and only if
where § = x+at and N = x —at (and 50 d, = Jz + Iy, é&, = dg — dn). It follows
that
dzu=0(S),
or
u=wy(&)+eon),
where Y/ = 0. O

To satisfy the initial conditions, we have

fx) =) +yx), gx)=—a@' (x)+ay(x).

It follows that

Integrating, we obtain

o(x) = %f(x) - i/oxg(s)ds-i-ch y(x) = %f()c)—i-2]—61/0)(g(s)ds—|—c27

where ¢ and ¢; are arbitrary constants. But ¢ (x) + y(x) = f(x) implies ¢c; + ¢, = 0.
Therefore, the solution of the initial value problem is

1 1 xX+-at
u(x,1) = > (fx—at)+ f(x+at))+ — / g(s)ds. (14.35)

2a Jx—at

This formula is called d’Alembert’s formula.

Exercise 14.6. Prove that if f is a C? function and g is a C! function, then u from
(14.35) is a C? function that satisfies (14.34) in the classical sense (pointwise).

Exercise 14.7. Prove that if f and g are merely locally integrable, then u from
(14.35) is a solution of (14.34) in the sense of integral equalities and the initial
conditions are satisfied pointwise.

Example 14.7. The solution of

Uy = Uy, —o0 < x < oot >0,
u(x,0) = f(x),u (x,0) =0,
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where
I, x| <1,

)= {o x> 1,

is given by d’ Alembert’s formula

u(x,t) = l(f(x—t)—i—f()c—i—t)).

2

Some solutions are graphed below (Figure 14.5).

u(x,0)
1
T
u(x,1/2)
1
e
u(x,2)
1/2
1 1 _11 1 1 i

Fig. 14.5 Some solutions of Example 14.7.

119
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We can also apply d’Alembert’s formula to the finite string. Consider again the
boundary value problem with homogeneous boundary conditions with fixed ends of
the string:

@i =1y, 0 <x < L,t >0,

u(0,¢) = u(L,t) =0, >0,
Lt(, ): ()?ut x,0)=g(x,0§x§L,
f(0) = f(L) = g(0) = g(L) = 0.

and k(x) is 2L-periodic. Let us also assume that f and g are C? functions on the inter-
val [0,L]. Then the solution to the boundary value problem is given by d’ Alembert’s

formula
xX+at

(h(x— at)—&-h(x—l—at))—i—zla/x k(s)ds.

—at

u(x,t) =

| =

Remark 14.8. It can be checked that this solution is equivalent to the solution given
by the Fourier series.

Exercise 14.8. Prove that

x+at

) = ;<f<x a4 fxran)+o [ gl

—at
x+a — ‘r
/ / F(s,7)dsdt

azuxx:M11+F(x,t)7 —o<><_x<oo7l‘>07
u(x,0) = f(x),ur(x,0) = g(x), —o0<x<oo.

solves

Example 14.9. (Linearized system of the equation of gas dynamics) The isen-
tropic (the entropy is assumed to be constant) flow of an inviscid gas in the one-
dimensional case satisfies the nonlinear equations
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2
c
ut—l—u-ux—i—;psz,

prtu-pi+pu, =0, —oco<x<oot>0,

where u(x,7) is the velocity of the gas at x and time 7, p(x,#) is the density, and
¢ = c¢(p) is the known local speed of sound.

As a first step in understanding the general nature of solutions to this system we
assume that u(x,7) and p(x,#) are not very different from their values at time t = 0
and that these values and their derivatives are “‘small.” Neglecting products of terms
of “small” order, we arrive at the linear system (which is the linearization of the
original system)

2
C, C =
us + Opx — O, Oszx plla
0 SO g
—Uyy = U,
pi + potty = 0, o = ity

where py is the density of the fluid at rest and co = c(po). This is just a wave equation
for p and u. Thus we have that

u(x,t) = \/% (f (x—cor) + g(x +cot))

p(x,1) = v/po (f (x = o) — g(x+cor)),

where f and g are arbitrary C> functions, and they are the same here due to the
linearized system. If in addition

u(x,O) =0 (x)’ p(x70) = (Pz(X)7

then
u(x,t) = %(wl(x—cof)+¢1(x+cot))+ 2% (@2(x = cot) = @2 (x+cot)),
p(x,1) = é(@z(X*Cot)+<P2(X+Cot))+ 2%00 (@1 (x—cot) — @1 (x+cot)) .

14.3 The Laplace Equation in a Rectangle and in a Disk

One of the most important of all partial differential equations in applied mathematics
is the Laplace equation:

Uy +uy, =0 2D equation,
Ty anan (14.36)
Uy + Uy, +uz; =0 3D equation.
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The Laplace equation appears quite naturally in many applications. For example, a
steady-state solution of the heat equation in two space dimensions,

0 (hx +tyy) = s,
satisfies the 2D Laplace equation (14.36). When electrostatic fields are considered,

the electric potential function must satisfy either the 2D or the 3D equation (14.36).
A typical boundary value problem for the Laplace equation is (in dimension two)

{Mxx‘f’uyy = O, (xay) €eQcC Rz’ (1437)

u(x,y) = f(x,y), (x,y) €99,

where f is a given function on the boundary d€2 of the domain Q. The problem
(14.37) is called the Dirichlet problem (Dirichlet boundary conditions). The problem

Uee +tyy =0, (x,y) € Q,
9 (x,y) =g(x,y), (x,y)€0Q,

where g is given and 3—3 is the outward normal derivative, is called the Neumann
problem (Neumann boundary conditions) (Figure 14.6).

y v V=1

0Q

Fig. 14.6 Domain Q and the outward unit normal vector v on the boundary 0.

Dirichlet problem for a rectangle
Consider the boundary value problem in most general form:

Wiy +wyy =0, O0<x<a0<y<hb,
w(x,0) = g1 (x),w(x,b) = fi(x), 0<x<a,
w(0,y) = g(y),w(a,y) = £(y), 0<y<b,
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for fixed a > 0 and b > 0. The solution of this problem can be reduced to the solu-
tions of

Uyy + 1ty =0, 0<x<a0<y<b,
u(x,0) = u(x,b) =0, 0<x<a, (14.38)
u(oay):gZ(y)7u(aay):fZ(y)7 OSySba

and
Uyy + Uty =0, 0<x<a0<y<b,
u(x,0) = g1 (x),u(x,b) = fi(x), 0<x<a,
u(0,y) = 0,u(a,y) =0, 0<y<b.

Due to symmetry in x and y, we consider (14.38) only (Figure 14.7).

y
u(x,b) =0
b
u(0,y) = g(v) Q u(a,y) = f(y)
X
u(x,0)=0 a
Fig. 14.7 Geometric illustration of the boundary value problem (14.38).
The method of separation of variables gives for u(x,y) = X (x)Y (y),
Y'+AY =0 0 b
+ ’ SysH (14.39)
Y(0)=Y(b) =0,
and
X" -AX=0, 0<x<a. (14.40)

From (14.39) one obtains the eigenvalues and eigenfunctions

nwy

77 n:1,27....

P (%)2, Y,(y) = sin
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We substitute A, into (14.40) to get the general solution
b i
X(x)=c cosh% + ¢p sinh %

As above, we represent the solution to (14.38) in the form

e nny( )
= — (an h by h— 14.41
ng‘lsm b a, cos b + sin b ( )

The boundary condition at x = 0 gives

with

At x = a we obtain

= z sinn—ﬂ:y (ancosh@ +b, sinh@) .
= b b b

It is a Fourier sine series for f(y). Hence,
nm ~
ay cosh b —l—bn smh— b / f(y)sin Tydy =:b,.

This implies -
by — ay cosh *7¢
bn = —

14.42
sinh % ( )

Substituting (14.42) into (14.41) gives
S . nmy nrx by —a,cosh ”ga nix
M(x,y) :;SIHT (a"COShb+sinh"b7m hT

S nrcy»l; sinh 7%
— AT G "Z“

o nwx o nwa nmwa o nmx
n z "™, cosh %= sinh 7% — cosh 2% sinh %=
b " sinh 24
n=1 b
i n7ty~ smh nn’x + i ) nﬂ?y smh M
Sin —=a, ——>—
mra an mra ’
=1 inh 774 & b sinh 224

because cosh o sinh 3 — sinh a cosh § = sinh(f8 — o). Using the properties of sinh o
and cosha for large o, we may conclude that inside of the rectangle, i.e., for
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0 <x < a,0<y<b, we may differentiate this series term by term as often as we
wish, and so u is a C* function there.

Exercise 14.9. Find a solution of the problem

Uyy + 1ty =0, 0<x<2,0<y<l,
u(x,0) = u(x,1) =0, 0<x<2,
M(O,y):O,M(Z,y):y(lfy), 0§y§1,

using the method of separation of variables.

Exercise 14.10. Find a solution of the problem

Uyy + Uty = 0, 0<x<a0<y<b,
uy(x,0) = uy(x,b) =0, 0<x<a,
ur(0,y) = (), ux(a,y) = g(y), 0<y<b,

using the method of separation of variables.
Dirichlet problem for a disk

Consider the problem of solving the Laplace equation in a disk {x ER?: x| < a}
subject to the boundary condition

u(a,0) = f(6), (14.43)

where f is a given function on 0 < 6 < 2x. In polar coordinates x = rcos0, y =
rsin 0, the Laplace equation takes the form

1 1
Upp + —Up + —Upp = 0. (14.44)
r r

We apply again the method of separation of variables and assume that
u(r,0) =R(r)T(6). (14.45)
Substitution for « in (14.44) yields
/! 1 / 1 "
R'T+—-RT+ —<RT" =0,
r V2
or

PR"+rR' —AR=0,
T" +AT =0.

There are no homogeneous boundary conditions; however, we require T (0) to be
2m-periodic and also bounded. This fact in particular leads to (f(0) = f(27) and
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f(0)=f'(2m))
T(0)=T(2n), T'(0)=T(2n). (14.46)

It is possible to show that equations (14.46) require A to be real. In what follows we
will consider the three possible cases.
If A =—u% <0, u >0, then the equation for T becomes 7" — u>T = 0, and

consequently T(0) = 0 | e hO,

It follows from (14.46) that

{Cl +c0 = cle2n:u +C26727w,

cl—C)y = C]Czﬂl’l 72”“,

— (€
so that c; = ¢, =0.

If A =0, then 7" =0and T(60) = 1 + ¢, 6. The first condition in (14.46) implies
then that ¢, = 0 and therefore 7T (0) = constant.
If A =u?>0,u>0,then

T(6)=cicos(uB)+cyasin(ub).

Now the conditions (14.46) imply that

c1 = cicos(2mp) + cosin(2mu ),

¢y = —cysin(2wu) + cpcos(2mw),
or

crsin®(um) = ¢y sin(um) cos(ur),

casin?(um) = —cy sin(um) cos(un).
If sin(um) # 0, then
{cl = cpcot(Um),

) = —C} COt([JTE).

Hence ¢} +¢3 =0, i.e., ¢; = ¢ = 0. Thus we must have sin(u7) = 0, and so

An=n% T,(0)=cicos(n@)+cysin(nf), n=0,1,2,.... (14.47)

Turning now to R, for A = 0 we have r”R” +rR' =0, i.e., R(r) = k; +ka logr. Since
logr — —oo as r — 0, we must choose k, = 0 in order for R (and u) to be bounded.
That is why

Ry(r) = constant. (14.48)
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For A = u? = n? the equation for R becomes
PR"+rR —n’R =0.

Hence
R(r) = klr" +k2}"7”.

Again, we must choose ky = 0, and therefore
Ru(r)=kir", n=12,.... (14.49)

Combining (14.45), (14.47), (14.48), and (14.49), we obtain
u(r,0) = %0 + i " (aycos(nB) + by, sin(n0)). (14.50)
n=1
The boundary condition (14.43) then requires
u(a,0) = ‘izo + i " (apcos(nB) + bysin(n0)) = £(6).
n=1

Hence the coefficients are given by

L 0)do
ap = ; 0 f( ) )
1 2
W= — A f(0)cos(nB)do,
and
by = na"/o F(6)sin(n6)d6.

This procedure can be used also to study the Neumann problem, i.e., the problem
in the disk with the boundary condition

u
Sr(a.0) = 1(0). (14.51)

Also in this case the solution u(r, 0) has the form (14.50). The boundary condition
(14.51) implies that

%(n 0) = il na" ! (a, cos(nB) + b, sin(nd)) = £(6).
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Hence
1 2
a, = m 0 f(@)cos(n@)d@
and
1 2n )
bn = W 0 f(@) Sln(ne)de.

Remark 14.10. For the Neumann problem a solution is defined up to an arbitrary
constant “7" Moreover, f must satisfy the consistency condition

[ 0y =0,

since integrating

oo

f(6) =" na""'(aycos(nb)+b,sin(nd))

n=1
termwise gives us zero.

Remark 14.11. The solution u(r,0) of the Laplace equation in a disk {x € R? :
|x| < a} subject to the boundary condition u(a,0) = f(0) without the assumption
that f/(0) = f'(2x) (but with the assumption f(0) = f(2x)) can be obtained as

=

u(r,0) = %O + Y " (aycos(n@) + by sin(n6)) + Y P 12¢,sin(n—1/2)6.
n=1 n=1
(14.52)

Exercise 14.11. Prove (14.52) and then show that we have no uniqueness in this
boundary value problem. Hint: Use the fact thatif ¢, =0, n = 1,2,..., then we may
uniquely determine ag, a,, b, satisfying the boundary condition u(a,0) = f(0), and
if a, =b, =0, n=1,2,..., we may uniquely define c¢,,n = 1,2,... that depend
parametrically on an arbitrary constant ag.

Remark 14.12. The solution u(r,8) of the Laplace equation in the disk {x € R?:
|x| < a} subject to the boundary condition ug(a,8) = f(0) with (possibly non-
smooth) periodic function f(6) can be obtained as

. a6 + by

u(r,0) 5

+ Y r"(aycos(n®) + by sin(n6)) + Y P12¢, cos(n—1/2)6.
n=1 n=1

(14.53)

Exercise 14.12. Prove (14.53) and then show that we have no uniqueness in this
boundary value problem (see the previous exercise).
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Chapter 15
Introduction

In this part we assume that the reader is familiar with the following concepts:

(1) Metric spaces and their completeness.

(2) The Lebesgue integral in a bounded domain £2 C R"” and in R".

(3) The Banach spaces (L?, 1 < p < oo, Ck) and Hilbert spaces (L2): If1<p<eo,
then we set

1/p
LP(2) :={f: Q — Cmeasurable : || f|;» o) := </Q |f(x)|”dx> < oo},
while

L7(Q) :={f : 2 — Cmeasurable : || f|| ;= ) := esssup|f(x)| < oo}
xeQ

Moreover,

Q)= {f:Q = C:|fllcxg) = max Y, [0“f(x)| <o},

xX€Q |or| <k
where ( is the closure of £. We say that f € C*(Q) if f € C*(Q) forallk € N

and for all bounded subsets ; C €. The space C*(£2) is not a normed space.
The inner product in L2(€2) is denoted by

(.9 = [ F)0x.
Also in L?(2), the duality pairing is given by
(8 = [ F@ea
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(4) Holder’s inequality: Let | < p < oo,y € LP,andv € LP with
1 1
p D

Then uv € L' and

Awawwwxs(Awavm);(lewﬂhQ

where the Holder conjugate exponent p’ of p is obtained via

P
9

with the understanding that p’ = if p=1and p’ = 1if p = oo,

(5) Lebesgue’s dominated convergence theorem:
Let A C R" be measurable and let { f;};_, be a sequence of measurable func-
tions converging to f(x) pointwise in A. If there exists a function g € L' (A) such
that [ fi(x)| < g(x) in A, then f € L'(A) and

lim [ fidr= [ fa.

(6) Fubini’s theorem on the interchange of the order of integration:

nyf(x’y)dXdy/)(dJC(/IVf(x,y)dy) :/ydy (/Xf(x,y)dx>

if fe (X xY).
(7) The divergence theorem: Let £ C R" be a bounded domain with C ! boundary
9Q, and let F be a C! vector-valued function on Q. Then

/ div F (x)dx = v.Fdo(x),
Q 0Q

where V is the outward normal vector to 02.



Chapter 16
The Fourier Transform in Schwartz Space

Consider the Euclidean space R", n > 1, with x = (x1,...,x,) € R" and with |x| =

\/x3+ -+ +x2 and scalar product (x,y) = >/i_1Xjy;. The open ball of radius § > 0

centered at x € R" is denoted by
Us(x):={yeR": |x—y| < }.
Recall the Cauchy—Bunyakovsky—Schwarz inequality

|Ge, ) < [l Iyl

Following Laurent Schwartz, we call an n-tuple o = (0i1,..., &), 0 € NU{0} = Ny
an n-dimensional multi-index. Define

lal=o0+ 4oy, al=ao!--op!

and

o oy,

X =xx 00=1, 0l=1.

n o
Moreover, multi-indices & and 8 can be ordered according to
a<pP

if aj < B forall j=1,2,...,n. Let us also introduce a shorthand notation

9% =99, 9= ——.
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Definition 16.1. The Schwartz space S(R") of rapidly decaying functions is
defined as

S(R") = {f € C*(R") : | floup = sup xo‘aﬁf(x)‘ < wofor any o, B € NI}

xeR"

The following properties of S = S(IR") are readily verified.

(1) Sis alinear space.

(2) 0% :S — S forevery a > 0.

(3) xP. .5 — Sforevery B > 0.

(4) If f € S(R"), then | f(x)| < ¢u(1+ |x|)~™ for every m € N. The converse is not
true (see part (3) of Example 16.2).

(5) It follows from part (4) that S(R") C LP(R") for every 1 < p < co.

Example 16.2.

1) flx)= e~h* € § for every a > 0.
@) f(x)=e a0+ ¢ 5 for every a > 0.

3) flx)=eM¢s.
4 Cy(R") C S(R"), where

Cy(R") ={f € C*(R") : supp f compact inR"}

and supp f = {x € R": f(x) # 0}.
The space S(R") is generated by a countable family of seminorms because | f| g is
only a seminorm for ¢ > 0 and 8 > 0, i.e., the condition

|fle,p =0 ifandonlyif f=0

fails to hold for, e.g., a constant function f. The space (S,p) is not normable but it
is a metric space if the metric p is defined by

P V*ghﬁ
p(f,g) = o—lel=Ipl, _12_Slep
( ) a%éo 1+‘f_g|oc,[3

Exercise 16.1. Prove that p is a metric, that is,

(1) p(f,g) >0andp(f,g) =0if and only if f = g.
) p(f.g)=plef)
(3) p(g,h) <p(gf)+p(f,h).

Prove also that [p(f, ) —p(g,1)| < p(f,8)-

Theorem 16.3 (Completeness). The space (S,p) is a complete metric space, i.e.,
every Cauchy sequence converges.
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Proof. Let {fi}7_,, fc €S, be a Cauchy sequence, that is, for every € > 0 there
exists no(e) € N such that

p(fisfm) <& k,m>ng(e).

It follows that
sup| 0P (fi— fu)| < &
xekK
for every B > 0 and for every compact set K in R". This means that {f;}7 | is a

Cauchy sequence in the Banach space CW(K ). Hence there exists a function f €
C'BI(K) such that

|BI
lim f;, <=5

k—soo

Thus we may conclude that our function f is in C*°(R"). It remains only to prove
that f € S. It is clear that

sup|x*9P f| < sup |x*9P (fi — )| +sup|x“d” fi|
xekK xekK

xekK

< Co(K)sup |9P (fi — f)| + sup|x*aP fi.
xek xekK
Taking k — eo, we obtain

sup [x*9P f| < limsup| fi o p< oo
xek k—soo ’

The last inequality is valid, since {f;};; is a Cauchy sequence, so that |fi|, g
is bounded. The last inequality doesn’t depend on K, and we may conclude that
|fla,p < oo 0r fES. O

Definition 16.4. We say that f; > f as k — oo if

|fi —f ‘a,ﬁ‘)Oa k — oo

for all o, 8 > 0.

Exercise 16.2. Prove that W = §, that is, for every f € S there exists { fi }7_;,
fe € C3(RM), such that fi > £,k — oo,

Now we are in position to define the Fourier transform in S(R").

o~

Definition 16.5. The Fourier transform % f(&) or f(&) of the function f(x) € S is
defined by

FHE=F&) = m) 2 [ e g R
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Remark 16.6. This integral is well defined, since
@) < enem ™ [ (14 1) v < o,
Rﬂ

for m > n.

Next we prove the following properties of the Fourier transform:

(1) Z is a linear continuous map from S into S.
(2) E92F(E) = (i)l Blog (xb £(x)).

Indeed, we have

oFE) = 2m) 2 [ (<in)fe 9 f(x)ax

Rn

and hence
|x|1A|

< cm(zn)*"/Z/ o _dx <o

o Fee) 7 (1+ X))

L=(R")
if we choose m > n+|f|. At the same time we have obtained the formula
I (&) = (—iw)P f(x). (16.1)

Further, integration by parts gives us

EF(E) = (—)2m) 2 [ 858 (x)a,

Rﬂ

from which we have the estimate

&7

since dZ f(x) € S for every o > 0 if f(x) € S. And also we have the formula

<c [ 1o fto)dr <o,

L=(R)

gof = (—i)llgar. (16.2)

If we combine these last two estimates, we may conclude that .% : § — § and .%
is a continuous map (in the sense of the metric space (S,p)), since .# maps every
bounded set from § again to a bounded set from S.

The formulas (16.1) and (16.2) show us that it is more convenient to use the
following notation:

. . d a
Dlzflalzflaixj, Da:Dll"’Dgn.
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For this new derivative the formulas (16.1) and (16.2) can be rewritten as
DEf = (—1) 5o, £°F=Dey.
Example 16.7. 1tis true that
F(e 1) () = e 2P,
Proof. The definition gives us directly

Fe @) = @m) 2 [ e -dhfgy
]Rn
— (2m) "2 3P / — L (P2i(0) - 1EP) g

n

— (2m) "2 3IEP H/ o 30HEN? 4

1
S}

In order to calculate the last integral, we consider the function f(z) =€~ 2 of the
complex variable z and the domain Dg depicted in Figure 16.1.

Fig. 16.1 Domain Dg.

We consider the positive direction of going around the boundary dDg. It is clear
that f(z) is a holomorphic function in this domain, and by Cauchy’s theorem we
have

But



138 Part II:  Fourier Transform and Distributions
If R — oo, then

/ ¥ - @R
0

Hence

oo

oo . 2
/ e—%(’“?f)zdt:/ e 7dt, j=1,...,n.

Using Fubini’s theorem and polar coordinates, we can evaluate the last integral as

roo 2 2 2T oo 2
( / e2dt) - / e 2P+ grds — / a6 / e rdr
—oo R2 0 0

= 27r/ e "dm =2m.
0

Thus oo
/ e 2018 g = \/oxr
and
- 8o~ 3EP TT /a7 = o~ 3I6P
Flem 7)(&)=(2n) ze 2 [[v2an=e 25",
j=1
This completes the proof. O

Exercise 16.3. Let P(D) be a differential operator,

P(D)= Y auD?

o[ <m

~

with constant coefficients. Prove that @ =P(&)u.

Definition 16.8. We adopt the following notation for translation and dilation of a
function:

(0f) (@) = fx—=h), (0uf)(x) = f(Ax), A #O.
Exercise 16.4. Let f € S(R"), h € R"”, and A € R, A # 0. Prove that
() 0.f(§) =401 F(§) and 62 7(§) =|A| 01 F(£):

@ (€)= MO F(E) and ,7(E) = ().

Exercise 16.5. Let A be a real-valued n x n matrix such that A~! exists. Define
fa(x) := f(A~'x). Prove that

fa&) = (Nal®)

if and only if A is an orthogonal matrix (a rotation), that is, AT = A1,
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Let us now consider f and g from S(R"). Then

R

1o = [ F@Eas = en 2 [ @ ([ e o) ag
=m0 ( [, STz ) ax= (7.5,

where F*g(x) := Fg(—x).

Remark 16.9. Here .7* is the adjoint operator (in the sense of L?), which maps S

into S since .% : S — S. The inverse Fourier transform . % ! is defined as .# ! :=

T

In order to justify this definition we will prove the following theorem.

Theorem 16.10 (Fourier inversion formula). Let f be a function from S(R"). Then
FrFf=f.

To this end we will prove first the following (somewhat technical) lemma.

Lemma 16.11. Let fy(x) be a function from L'(R") with [gu fo(x)dx = 1 and let
f(x) be a function from L= (R") that is continuous at {0}. Then

lim [ & () F(x)de= £(0).

g—0+ JRn

Proof. Since

Len (%) roae—r = [ e (3) (70010,

we may assume without loss of generality that f(0) = 0. Since f is continuous at
{0}, there exists & > 0 for every n > 0 such that

T
PO <17l

whenever |x| < §. Note that

[ ) < il
Rn

We may therefore conclude that
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/f‘”fo(ﬁ)ﬂx)dx] < Hf:HLu -s—n/m foe)‘dx

—n X
#lsleee [ ()]
< o ol + 17l /  oolay

=n+fllp-Le-

But I — 0 as € — 04. This proves the lemma.

x2
Proof (Proof of theorem 16.10). Let us consider v(x) =e~ = . We know from Exam-
ple 16.7 that [g, v(x)dx = (2)"/? and Fv = v. If we apply Lemma 16.11 with
fo=(2m)~"?v(x) and f € S(R"), then by Exercise 16.4,

@m:f(0) = tim [ ev(Z)f(dr=lim {f.e o102

E11m (f, e~ 61/ )Lz— 11m <f, (0ev)) 2

= lim (Ff,0ev);2 = / Ff(& Sdg,

£—0+

where we have used Lebesgue’s dominated convergence theorem in the last step.
This proves that

F0) = @r) "2 | F(§)ODdE = (77 £)(0).

Rr

The proof is now finished by

fx) = (12)(0) = (F*F (1./))(0) = (2ﬂ)‘”/2/ F(Taf)(§)eO)de

= @m [ 69 (E)dE = 7 F (),

where we have used Exercise 16.4. (]
Corollary 16.12. The Fourier transform is an isometry (in the sense of L*).

Proof. The fact that the Fourier transform preserves the norm of f € S follows from

IZ fl72 = (Zf.F = (. F " Ff)e = (£, N2 = £z
This is called Parseval’s equality. (I

Note that
(yf,g)Lz = (f,y*g)Lz
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means that

[ 7@s@E = [ f0Fstde= [ )7 @a

This implies that

[ @@= [ ez

or
(Zf,8) 2wn) =7 8) 12mn)-



Chapter 17
The Fourier Transform in L7 (R"), 1 < p <2

Let us begin with a preliminary proposition.

Proposition 17.1. Let X be a linear normed space and E C X a subspace of X such
that E = X; that is, the closure E of E in the sense of the norm in X is equal to X.
Let Y be a Banach space. If T : E — Y is a continuous linear map, i.e., there exists
M > 0 such that

[Tully <Mlully, wu€cE,

then there exists a unique linear continuous map Tox : X — Y such that Tex|g = T
and
[ Texully <Mjully, ueX.

Exercise 17.1. Prove the previous proposition.

Lemma 17.2. Let 1 < p < oo. Then
Co R £ L7 (R"),

that is, Cy’ (R") is dense in LP (R") in the sense of LP-norm.

Proof. We will use the fact that the set of finite linear combinations of characteristic
functions of bounded measurable sets in R” is dense in L?(R"), 1 < p < . This is
a well known fact from functional analysis.

Let now A C R” be a bounded measurable set and let € > 0. Then there exist a
closed set F and an open set Q such that F C A C Q and u(Q\ F) < €” (or only
u(Q) < €? if there is no closed set F C A). Here U is the Lebesgue measure in R”.
Let now ¢ be a function from C’(R") such that suppp C Q,¢|r =1and0 < @ < 1;
see [19]. Then

_ p — . _ P ‘ —
0= 1alsgen) = [, 100 —ra(P e [ 1de=n@\F) <",
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or
o — xall ey <&

where y4 denotes the characteristic function of A, i.e.,

) 1, x€A,
X)) =
A4 0, x¢A.

Thus, we may conclude that Ci’ (R") = LP(R") for 1 < p < eo. O

Remark 17.3. Lemma 17.2 does not hold for p = e. Indeed, for a function f = ¢y #
0 and for every function ¢ € Cy'(R"), we have that

1/ = @l = () = lco| > 0.

Hence we cannot approximate a function from L= (R") by functions from Cj (R").

This means that
I
Cy (R # L™ (R").

But the following result holds:
Exercise 17.2. Prove that S(R") = C(R"), where

C(R") :={f €C(R"): lim f(x)=0}.

[ox[—e0

Now we are in a position to extend F from S C L' to L!.

Theorem 17.4 (Riemann-Lebesgue lemma). Let .% : S — S be the Fourier trans-
Sform in Schwartz space S(R™). Then there exists a unique extension Fx as a map
from L' (R") to C(R™) with norm || Zex|| 1 p = (27) "2

Proof. We know that ||.Z f||,~ < (27) /2| f||;1 for f € S. Now we apply the pre-
— 7l
liminary proposition to E = S, X = L', and Y = L”. Since § Lo (which follows

— 7l
from Cy C S and Cy £ 1Y for every f € L' (R"), there exists {f;} C S such that
|| fi — fll;1 — 0as k — oo. In that case, we can define

Lo
Fexf = ]}1m Z fx

Since 5= C (see Exercise 17.2), it follows that Fex f € C and || Fex|l1_ = <
(27t)~"/2. On the other hand,

12 fll= = 1 (0)] = 27) "> | fllpn
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for f € L' and f > 0. Hence || Fex|| 1 1~ = (2m) /2. 0

Proof (Alternative proof). If f € L'(R"), then we can define the Fourier transform
F f(&) directly by

FIE) = m) "2 [ D podr,

n

/nei(x,é)f(x)dx‘ < /R” |f ()| doe = || f[ 1 -

since

Also we have

@m)"2 | fi&+n) —f(é)HLN — sup

(Rn} EGR”

<2 |f()ldx /‘Hm F()|dx = 1y + Do

\|7

/ &89 (=) 1) £(x)dx
Rn

Here we have used the fact that [e¥ — 1| < |y| for y € R with [y| < 1. It is easily seen
that I; — O for || — 0 and I, — O for € — 0, since f € L' (R").

This means that the Fourier transform f(é) is continuous (even uniformly con-
tinuous) on R”. Moreover, we have

2(8) = ()2 [ 0 (1) s (w4 2 ) Y

This equality follows from

F&)=—m 2 [ e i) pxas

and Exercise 16.4. Thus,

—0
L! (R™)

27(§)| < (2m) ™"

= (x+ )

for || — oo. O

Theorem 17.5 (Plancherel). Let % : S — S be the Fourier transform in S with
|-Z fll;2 = || fll;2- Then there exists a unique extension Fey of F to L*-space such

that Fey - L2 ™% L2 and || Z oy | 122 = 1. Also Parseval’s equality remains valid.
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—72 72
Proof. We know that § = L?, since Cy L 12, Thus for every f € L?>(R") there exists
{fikio C S(R") such that || fy — f|2(gny — O as k — . By Parseval’s equality in
S we get
17 fi—= Z fill iz = i = fill iz = 0, kil — oo

2
Thus {Z fi}7_, is a Cauchy sequence in L?(R"), and therefore, .7 f; 5 g, where
g € L?. Therefore, we may put Ze, f := g. Also we have Parseval’s equality

[Fex fll2 = lim [LZ fiell 2 = Tim [ fiell 2 = [1£1] 2
k—s o0 k—sc0

which proves the statement about the operator norm. O

Remark 17.6. In L?-space we also have the Fourier inversion formula .7}, Zex f =

f’ Orye;]yexf:f.
Exercise 17.3. Prove that if f € L?>(R"), then
2
M yexf(g) = RETwyfR(g)’ where fg(x) = X{x:|x|<R} (x)f(x)
(2) yexf(é) L:z lilg)‘lﬁ_ﬁ(e*g‘x‘f).

Exercise 17.4. Let us assume that f € L' (R") and .7 f(&) € L' (R"). Prove that

Fx) =@y [ 097 f(E)E = F 7 Ff ().

n

This means that the Fourier inversion formula is valid.

Exercise 17.5. Let f; and f; belong to L?(IR"). Prove that

(f1,2)12 = (F [i,.7 f2)2-

Theorem 17.7 (Riesz-Thorin interpolation theorem). Let T be a linear contin-
uous map from LP1(R") to L1 (R") with norm estimate My and from LP2(R") to
L2 (R") with norm estimate My. Then T is a linear continuous map from LP (R") to
L1(R™) with p and q such that

I -6 1 -
1_6 ., 1=6 1_0 1-6 1 g

b )

P m o, 9 a1 @

with norm estimate M19M21_9.

Proof. Let F and G be two functions with the following properties:

(1) F,G =0,
@) [Fllzr =Gl =1.
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Let us consider now the function @(z) of a complex variable z € C given by

L/Jrlz
1

)= MMy [ T(RFRTR ) (g6 (v,
where % + qi, =1, é + qi, =1, |fo] <1, and |go| < 1. The two functions fj and g
1 2
will be selected later. We assume also that 0 < Re(z) < 1.
Our aim is to prove the inequality
07,71-0
(T .82l <MY | f o gl

where

1 6 1-06 1 6 1-06 1 1

— =4 —-_= — 4+ R 7+—/:1.

p P24 @t @ g q
. . . . 24 l-z 541 .
Since T is a linear continuous map and F71 * 2, G % are holomorphic func-
tions with respect to z (consider a* = esloga g > 0), we may conclude that ®(z) is a
holomorphic function also.

(1) Let us assume now that Re(z) = 0, i.e., z = iy. Then we have

s iy | I-iy
1-iy - .

. . iy, Iy )
<D(iy) :lelyM271+l)’<T(fOFpl + 2 ),gqul 9 >L2'

Since |a*| = 1 for a,x € R, a > 0, it follows from Holder’s inequality and the
assumptions on 7' that

iy  1-iy

2G4

1—iy

dy.
foF 717

@(iy)| < My 'M,

/
LP2 L2

1

1 i,

7
g0|G " 4 <|IFI3 1G] 3 =1
L2

1
_ H|fom

LP2

(2) Let us assume now that Re(z) = 1, i.e., z = 1 +1iy. Then we have similarly that

1+iy | —iy lti»" ;,W
|D(1+iy)| < MMy || foF 7 72 gGh L
LP1 LN
1 L =4
S dh \|gqu1 L < IFIT Gl =1
L7

If we apply now the Phragmén—Lindeldf theorem for the domain 0 < Re(z) < 1, we
obtain that |®(z)| < I for every z such that 0 < Re(z) < 1. Then |®(0)| < 1 also for
0 < 6 < 1. But this is equivalent to the estimate
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1 1
(T (foF?),80G7 )12| <MIM,~°, (17.1)
where % = p% + %,é = %4—% and é+% = 1. In order to finish the proof of

this theorem let us choose (for arbitrary functions f € L” and g € L7 with pand ¢
as above) the functions F, G, fy and g¢ as follows:

F=|fil’, G=|ga1|?, fo=sgnfi, go=sgngi,

-/ 8
where f] = Tl ° 81 = Tel 7 ° and
L f>0,
senf=10,  f=0.
“1, f<o.

1 €
In that case, fi = foF ?» and g; = goG¢ . Applying the estimate (17.1), we obtain

" () Tl
‘ 7l ) Tl /

which is equivalent to

<MM;~°,

6ys1-6
(TF.8) el <MYMy™ " || fllpo 8]l -
This implies the desired final estimate

1T fllpa < M16M2176 £l

and finishes the proof. O

Theorem 17.8 (Hausdorff-Young). Let .7 : S — S be the Fourier transform in
Schwartz space. Then there exists a unique extension Fex as a linear continuous
map

Fex 1 LP(R") = LV (R"),

where 1 < p <2 and % + ﬁ = 1. What is more, we have the norm estimate

(11
| Zel,y_ < )" 573)

This is called the Hausdorff—Young inequality.

Proof. We know from Theorems 17.4 and 17.5 that there exists a unique extension
Fex of the Fourier transform from S to S for spaces:
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(1) Py : L'(R") — L=(R") with norm estimate M, = (27r)~%;
(2) Fex : L*(R") — L*(R") with norm estimate M> = 1.

Applying now Theorem 17.7, we obtain that Z¢x : LP — L4, where

It follows that

ie,g=p and 0 = % — 1. For 0 to satisfy the condition0 < 0 < 1weget1 <p<2.
We may also conclude that

|l < (@7 5000 = oy ()

to obtain the desired norm estimate. O

Remark 17.9. In order to obtain Z¢x in LP(R"), 1 < p < 2, constructively we can
apply the following procedure. Let us assume that f € LP(R"), 1 < p <2, and
{fi}r_y € S(R") such that

il — 0,k — e

It follows from the Hausdorff—Young inequality that
I fe = F fill ot ey < oo I fic = il Lo ey -
This means that {.7 f; };_, is a Cauchy sequence in L” (R"). We can therefore define
Fut L lim 7 fi.
And we also have the Hausdorff—Young inequality
| sy = i |7 fillr < Jim Gl felln = Gl £l

Example 17.10 (Fourier transform on the line). Let f>(x) =
fixed. It is clear that f> € L' (R) and

= 115)2’ where € > 0 is

o0 e Lx& dx
A /
\/ 2r - 18

o~
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e izé
ie? of a com-
plex variable z € C. It is easily seen that z = ig, € > 0, is a pole of order 2. We

consider the cases £ > 0 and £ < 0 separately; see Figure 17.1.

In order to calculate this integral we consider the function F(z) :=

Imz Imz

A A

i€ N i€
R R R Or R
> c > e
k i Z ) R Z
DR

Fig. 17.1 Domains Dy and D of integration.

(1) Let & > 0. By Cauchy’s theorem we have

F(z)dz=0= /F )dz+ / F(z)dz=:0 +D.

|z]=R
Imz<0

aDg

It follows that

)

Feo o=y
Il—>/ 27 R — o
—18

and
12—>0, R — o

due to Jordan’s lemma, since £Imz < 0. We therefore may conclude that

oo @—ixg
/ et
e (x—1i€)?

for & > 0.
(2) Let& < 0. In this case again £Imz < 0. So we may apply Jordan’s lemma again
and obtain
R .—ixé dx
F(z)dzz/ ° — st / F(z)dz =2miRes F(z).
D} - —ige)? =ie

l2=R
Imz>0
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Hence

o a—ixé
[N —ani(e i PO o= 20

If we combine these two cases, we obtain

1
(x_lg)z(é):méH(_é)egév
where
I, t>0,
H(I):{O, t <0,

is the Heaviside function. Similarly we obtain

e (©) = —VaREH ()

Example 17.11. Let fi(x) = —-, where € > 0 is fixed. It is clear that f; ¢ L'(R),

x—ig?

but fi € LP(R), 1 < p < 2. Analogously to Example 17.10 we obtain

/i\ ( ) _ 7imH(€)e_€§7 é 7£ 07
x+ie 0 | —-i/Z, £=0,

and

/1\ imH(_é)egév 5 7&0’
( i\/Z E=0.

Exercise 17.6. Find the Fourier transforms of the following functions on the line.

7x’ O’
(1) f(X)={g Y

) flx)=e M and f(x) = 1.
3) falx)= ﬁ £>0.

Exercise 17.7. Define the Laplace transform by
L(p) = / Fx)ePidy,
0

where |f(x)| < Me®™, x>0, f(x) =0,x <0, and p = p; +ip2, p1 > a. Prove that
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(1) L(p) = V2rf()e 75(ps).

(2) Apply the Fourier inversion formula to prove the Mellin formula

1 P1+i°°L rig
= — > .



Chapter 18
Tempered Distributions

In this chapter we will consider two types of distributions: Schwartz distributions
and tempered distributions. To that end we consider the space Z := C;’ (R") of test
functions. It is clear that Z is a linear space and & C S. A notion of convergence is
given in the following definition.

Definition 18.1. A sequence {¢y};", is a null sequence in 7 if
(1) there exists a compact set K C R” such that supp ¢y C K for every k and
(2) for every v > 0 we have

sup [D¥ @i (x)[ = 0, k — o,
xekK

G G G
We denote this fact by ¢ Z.0. As usual, @y 2 ¢ € 2 means that @ — @ Z0.
Now we are in a position to define the Schwartz distribution space.

Definition 18.2. A functional T : 2 — C is a Schwartz distribution if it is linear
and continuous, that is,

(1) T(oupr+oe) =0o1T(¢))+ T (@) forevery @1, ¢, € 2 and o, 00 € C
(2) for every null sequence ¢ in Z, one has T (@) — 01in C as k — oo,

The linear space of Schwartz distributions is denoted by 2’. The action of T on @
is denoted by T(¢) = (T, @).

Example 18.3. Every locally integrable function f, that is, f € L}OC(R"), defines a
Schwartz distribution by the formula

(Tr.0)i= [ F0p0ds

(© Springer International Publishing AG 2017 153
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It is clear that Ty is a linear map. It remains only to prove that 7y is a continuous
map on 7. Let {¢};"_, be a null sequence in 2. Then

(77 00| < supl@u ()] [ 1F(0)ldx =0, koo
xeK K

by the definition of null sequence.

Example 18.4. 1f (T, @) := ¢(0), then T € &'. Indeed, T is linear, and if ¢ 20,
then (7, @) = @ (0) — 0 for k — oo. This distribution is called the §-function and
is denoted by 4, i.e.,

(6,0)=0(0), 9c2.
Remark 18.5. A distribution T is regular if it can be written in the form
T.9)= [ fx)oar

for some locally integrable function f. All other distributions are singular.
Exercise 18.1. Prove that § is a singular distribution.

Definition 18.6. The functional 7 defined by

= o)
e—0+J|x|>e x
on 2(R) is called the principal value of % We denote it by T =p.v. %
Remark 18.7. Note that 1 ¢ L\ (R), but we have the following result.

Exercise 18.2. Prove that

pvf /(p )dx pv/ wdx.

X

Example 18.8. Let o be a hypersurface of dimension n — 1 in R” and let do stand
for an element of surface area on o. Consider the functional

(T.9)= [ alx)p(x)do

on 2, where a(x) is a locally integrable function on 6. We can interpret 7' in terms
of surface source. Indeed,

([ at@)s(x—&)dog. ) = [ a(&)(3x—8).00)do; = [ a(@)p(E)do.
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It is easy to see that T is a singular distribution. This distribution is known as the
simple layer.

Definition 18.9. If T € 2’ and g € C*(IR"), then we may define the product g7 by

(T, 0):=(T,g0), ¢c2.
This product is well defined, because g € 2.

If f is a locally integrable function whose derivative % is also locally integrable,
J

then

af B af o o de
<ax]v(P> —(p(x)dx— f8x]dx_ <f7 an>’ (S 9

 Jre Ox; Jrn

by integration by parts. This property is used to define the derivative of any distrib-
ution.

Definition 18.10. Let 7 be a distribution from 2’. For a multi-index o we define
the derivative d*T by

(0°T,9) = (T.(~1)"9%), ¢c2.
It is easily seen that 09T € 2.

Example 18.11. Consider the Heaviside function H(x). Since H € L. _(R),
it follows that

(H'9) = ~(t1.9/) = = [ ¢/(x)ax = p(0) = (3.0).

Hence H' = §.

Example 18.12. Let us prove that (log|x|)’ =p.v. L in the sense of Schwartz distri-
butions. Indeed,

((log (). ) = ~(log ], 9") = — [ ~tog(lx])o(x)d

= [Mostoe Wax— [ tog(-2)/ (10

=~ [ 10g()(9'(0)+ ¢/ (=x))dr =~ [ ogx)(9(x) ~ (x)'dx
= —tog() o)) o(~0ff + [ PN g oy L)

by integration by parts and Exercise 18.2.
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1\’ 1
p-v.— | =—p.V. 3,
X X

Exercise 18.3. Prove that

where p.v. X% is defined as

(p.v. iz,q;) = lim o) —9(0),

e—0+Jjx|>e x?

The following characterization of 2’ is given without proof: T € 2’ if and only if
for every compact K C R” there exists n9(K) € Ny such that

(T, )| <Co Y, sup|D%g|

or|<ng*EK

for every ¢ € 2 with supp¢p C K.
Definition 18.13. A functional T : S — C is a tempered distribution if

(1) T is linear, ie., (T,o0 + By) = (T, ) + B(T,y) for all o, € C and

o, ye S
(2) T is continuous on S, i.e., there exist ny € Ny and a constant ¢ > 0 such that

(T.o)[<co X 10lop

lecl,|Bl<ng

for every ¢ € S.

The space of tempered distributions is denoted by §'. In addition, for 7;,T € S’ the
convergence T 5, T means that Ty, 0) £ (T, @) forall p €.

Remark 18.14. Since 2 C S, the space of tempered distributions is narrower than
the space of Schwartz distributions, §' C 2’. Later we will consider the even nar-

rower distribution space &”’, which consists of continuous linear functionals on the
(widest test function) space & := C=(R"). In short, ¥ C S C & implies that

s'csca.
It turns out that members of &’ have compact support, and they are therefore called
distributions with compact support. But more on that later.

Example 18.15. Let us consider R!.

(1) Itis clear that f(x) = el " is a Schwartz distribution but not a tempered distrib-
ution, because part (2) of the previous definition is not satisfied.

2) If f(x)= %n‘, aix* is a polynomial, then f(x) € §, since
k=0
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o m
(1.0 =| [ 3 o
JRi=0
N 5 5
< ZlakI/R(lJrIXI)_l_ (1+[x) 0l ()|
k=0

m
<CY lalle
k=0

oksirs [ (1)1 a

so condition (2) is satisfied, e.g., for 6 = 1, np = m+ 2. This polynomial is a
regular distribution, since (77, @) = [ f(x)@(x)dx is well defined.

Definition 18.16. Let T be a distribution from 2’. Then the support of T is defined
by
suppT :=R"\ A,

where A = {x € R" : (T, ¢) = Ofor all ¢ € C™ withsupp ¢ C Us(x)}.
Exercise 18.4. Prove that

(1) if f is continuous, then supp Ty = supp f;
(2) supp(d*T) C suppT;
(3) suppé = {0}.

Example 18.17. (1) The weighted Lebesgue spaces are defined as

LB = {7 € LB Il = ([ 1+ WPl <)
for 1 < p < eoand

Lg(R") :=A{f € Lige(R") : || f| .z :=ess HiuP(l + )1 f (x)] < oo}
X€E n
If f € L' 5(R") for some § > 0, then Ty € §'. In fact,
(17001 = [ o0 <11, ol

This means that [, f@dx is well defined in this case and

(Ty, @) = /Rnfwdx.
(2) If feLP,1< p<eo,then f €S Indeed,

LP(R") C L' 4(R") for 5>§,
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where % + ﬁ = 1. This follows from Hoélder’s inequality

[+ eirelac< ( <1+|x|>5"’dx)pl' s

(3) Let T € 8" and ¢y(x) € C5(R") with ¢y(0) = 1. The product ¢y (§) T is well
defined in S’ by
x x
(@ (@) 70)=(To(7)0)

If we consider the sequence Tj := @y (§) T, then

k—s00 . S s
@ (Ti,0) = (T, 0o(r) @) — (T, 9) (since @o(3)¢ = @), so that T = T.
(b) Ti has compact support as a tempered distribution. This fact follows from

the compactness of support of @ = @o (7).

Now we are ready to prove a more serious and more useful fact.

Theorem 18.18. Let T € S'. Then there exists Ty, € S such that
(T 9) = /R,, Ti()p(x)dx — (T, @), k— oo,

where @ € S. In short, S S

Proof. Let j(x) be a function from 2 = Cy’(R") with [, j(x)dx =1 and j(—x) =
J(x). Let ji(x) := k" j(kx). By Lemma 16.11 we have

Jim (e, @) = Jim [ j(0)@(x)dx = (0)

for every @ € S. That is, j(x) s, o(x).
The convolution of two integrable functions g and ¢ is defined by

(g*o)( /gx Y)e(y)dy.

If h and g are integrable functions and ¢ € S, then it follows from Fubini’s theorem

that
(heg9) = [ o)ar [ mx=y)gdy= [ s0dy [ nix—y)p(x)ar
— [ 500y [ Rh(y—x)p(x)dx = (g. Ri+ ).
Rn Rl’l

where Rh(z) := h(—z) is the reflection of A.
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Let now ¢o(x) € Z with @y(0) = 1. For every T € §' let us put T; := ji * T,
where T} = @p (%) T. From the above considerations we know that (ji * T}, @) =

(Ti Rji* ).
Let us prove that this 7; meets the requirements of the theorem. First of all,

X

(T ) = (i T ) = (T R @) = (0 (7) T )
= (T (7)) Giex @) = (1) k=
because

(@) @ (§) — 1 pointwise for k — oo, since ¢y(0) = 1 and ¢y(§)¢@ S, 0,
(®) jikxo 3 ¢ for k — e by Lemma 16.11:

[ ie=no0dr= [ jael—2)d: - 9.
R”? R?

Finally, ji(x) € C5(R") implies that T € C5'(R") C S also. O

Definition 18.19. Let us assume that L : S — S is a continuous linear map. The
adjoint map L' : §' — §' is defined by

(L'T,p):=(T,Lp), TcS.
Clearly, L' is also a continuous linear map.

Corollary 18.20. Every continuous linear map (operator) L : S — S admits a con-
tinuous linear extension L : §' — §'.

Proof. If T € §', then by Theorem 18.18 there exists 7} € S such that 7 5. T. Then
(LT}, ) = (T, L' @) — (T,L'@) =: (LT, p)
as k — oo, 0

Now we are in a position to formulate the following theorem.

Theorem 18.21 (Properties of tempered distributions). The following linear
continuous operators from S into S admit unique continuous linear extensions as
maps from §’ into S’

() (uT,@):=(T,up), ues;

(2) (9°T, @) := (T,(—1)*9%¢);
(3) <ThTa(p> = <T7 T—h(p>;
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@ (0T, ¢):=(T,[A["019), A #0;
(5) (FT,p):=(T,F@).

Proof. See Theorem 18.18, Definition 18.19, and Corollary 18.20. O

Remark 18.22. Since (F '\ ZT, @) = (FT, 7 ') = (T, 7.7 o) = (T, ), we
have that Z % = #Z 1 =Jin§.

Example 18.23. (1) Since

(FLo) = (1LF0) = [ (o)) = mimt [ 097 pa

R
= (2n).7 "' F(0) = 21)29(0) = (21)(5,¢)

for every ¢ € S, we have that
1=(2n)%6

in S,
(2) 6= (2m) 3 -1, since for @ € S we have

(8.0) = (5. 79) = Fo(0) = (2m) 1 [ " p(rdr= (2m) 1 (L,9).

n

Moreover, .# 16 = (2m)~2-1in §'.
- &2
3) e 7T = a’fe_%, Rea >0, a # 0. Indeed, for @ > 0 we know that

2 (vax)? n &2
Fe " T)=F(e 2 ) ~z

If a is such that Re a > 0, a # 0, then we can use analytic continuation of these
formulas. 5 5
(4) Consider (1 —A)u = f, where A = % +ot % is the Laplacian in R” and
1 n
and u, f € §'. This equation can be solved in §’ using the Fourier transform.
Indeed, we get

(1+1P)a= 7,

or

= (1+E%)77,

or

u=F ((1+[EP) 7)),
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If fcS, then ZfcSand (1+]|E]?)"".Zf €S also, and then u € S exists. If

f €S, then by Theorem 18.18 there exists f € S such that f} 5 f. We conclude
that

s .
u = lim uy,

k—o0
where uy =.Z (1 + |E]?) L7 f).

Exercise 18.5. Let P(D) be an elliptic partial differential operator

P(D)= Y auD*

o <m

with constant coefficients and P(&) # 0 for & # 0. Prove that if u € §" and Pu = 0,
then u is a polynomial.

Corollary 18.24. IfAu=0in S and |u is less than or equal to some constant, then
u is constant.

Exercise 18.6. Prove that

(1) 9(p.v.)lc) = —i\/gsgné;
() f(pvx%) =—/Z¢|.

Definition 18.25. Let us introduce the tempered distributions

1 1
— = lim -
x=+i0 e—0+ x k1€

(if they exist), i.e.,

1 , 1
<xﬁ:iO’(p> _eli%’+<xiis"p>’ 9Es.

In a similar fashion,

1 1
——— = lim ———
(x+i0)2 et (xtie)?

in 8’ (if they exist).

Example 18.26. We know from Example 17.11 that

_ . o
1 @:{ VITH(E)e 6, & A0,

xX+ie —iy/5, =0,
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and -
1 ( )_ innH(_é)egé7 g#oa
x—ie 70 iy/Z, £E=0.
Hence - -
T [-ivEmHE), &40,
x+i0  e—0+x+ie | —i Z, £=0,
and - -
U [ivaEH(-8), E#o,
x—i0  e—0+x—ie  |iy/Z, E=0.
It follows from Exercise 18.6 that
11 In 1
=—iv2 =2 -4/ = =2p.v.—
x+i0+x—i0 iV2rsgnd (1 25gn‘g’> pvx
and thus
1 L 1 _s 1
X0 Tx—i0 PV

In a similar fashion,

—_—

! L \Vam 1 =iVanyans = 2mis,

x—i0  x+i0
and so |
— = 27ié.
x—i0 x+1i0 g
We add and subtract to get finally
1 1 . 1 I .
eriO—p.v.;—mS and x—iO_p'v';+m6'
Exercise 18.7. Prove that
(1) . -
1 1
——— =—V2rnEH d — =V2réH(-¢);
G = VZREH(E) and s = VIREH(-E):
)
1 1 1 1 1
=2p.v.— and - = —2mid’;
Gri02 oo PVE ™ o Griop . M
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3)
L i—s—n'S’ and =p.v i—7r15"
(x+1i0)2 —PhVaTH (x—10)2 —PVa ’
4)
gkl =~/ Tpv
27 18|
5

B = (2m)"2ilPI9Ps.

Exercise 18.8. Prove that

(D ]
@) , 1
s’gm@:—ﬁpw F
2

Example 18.27. Since

|
—~
=7
—
—
e
N~—
53
S
~
|
—
—
[\ )
S
~—
|
[SST .
—~
[
e
~—
Q
S
~
|
—~
—
3]
]
N~—
|
[N}
—~
—
e
~—
R
S
~

we get

098 = (2m) 8 (i5)%.

In particular, in dimension one,

YTy 1

5 = g,k =2mitsW.
2n1 & x i

Let us consider the Cauchy—Riemann operator

and

in R2,
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Let us prove the following facts about these operators:

(1) :
0-0=0-d=-A
4 ’
(2 | X
) (> =8 inR?
T z
The last fact means that { 1
;x—&-iy

is the fundamental solution (see Chapter 22) of 9. Taking the Fourier transform of
(2) gives us

1 N
7-(&) =73(e)
which is equivalent to
(& -&) - =m-m) 1= 3,
or
L= )

= - = —i —,
z i&—& S +i&
Let us check that this is indeed the case. We have, by Example 17.11,

~ . o
l(g):i/ —i(&1x+62y) yii/ _lizydy/ e 1€1xdx
z 2n x+1y o X+ 1y

1 1§1x 151)‘
— 7/ *lizydy/ / léz)dy/
oo X+ 1y 277: o X+ 1y

_ i /0 /2R (—iv/2RH (& )e 4 )dy

0 .
+$ / e 2 (iv2rH (— & )e ¢ )dy
o ) 0 )
=i (H(él)/o e*Y(@lJrléz)dy_H(_gl)/ ey(élﬂéz)dy).

For &; > 0 we have

e(&+&) 7
&1 +i& 0

1

- we*)’(éﬁiéz)d =1 - N
/0 Y & +i&
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For & < 0 we have

0

i/o e YGH&) gy = ﬂ = ,ié'
. Si+i& | &1 +i&
Hence R

1 i

2(&) T +ig]

which proves (2). Part (1) is established with a simple calculation:

— 1fad aN[(d .o\ 1[[aN\* [a\}\ 1 -
a'&:4(ax_l8y> <8x+19y>_4<<3x) *(ay) )‘4““”'



Chapter 19
Convolutions in S and S’

Let us consider first the direct product of distributions. Let us assume that 73, ..., 7,
are one-dimensional tempered distributions, 7j € §'(R), j = 1,2,...,n. The product
Ti(x1)--- T, (x,) can be formally defined by

(Ti(x1) -+ Tu(xn), @(x15 o yxn)) = (T1 (x1) - Tum 1 (Xn—1), @1 (X1, -+, X0—1))
=(T1(x ) T2 (Xn—2), @2(x1,- .+, X0-2))
:"':<T1(X1)’<Pn—1(xl)>,

where

@11, xnm1) 2= (Ty(x), @(x1,. .., x)) € SR,
Qi(x1, - X)) = (Tnejrt, @j—1 (X1, .., Xn—j1)) € SR,

In this sense, it is clear that
O(xX1yennyXn) =0(x1) - O(xn)-

But the product T (x)7>(x), where the x are the same, in general case does not exist,
that is, it is impossible to define such a product. We remedy this by recalling the
following definition.

Definition 19.1. The convolution ¢ x y of the functions ¢ € S and y € S is defined
as

(@ y)( /(PX vy

We can observe the following immediately.
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(1) The convolution is commutative for every n > 1. If n > 2, then

(@xy)(x /(px Vy(y)dy = /(p = (y*9)(x).

If n =1, then

(o*y)( /(px )y (y)dyz—L_mw(z)w(x—Z)dz

— [ vt ez = (v o).

(2) It is also clear that the convolution is well defined for ¢ and y from S, and
moreover, for every o > 0,

I (9 W)x) = (%9 y)(0) = [ oplr—y)wlr)dy

= [ (D000 =y (r)dy

= (C12 [ o= 0fy()dy = (0,

where we integrated by parts and used the fact that dy, @ (x—y) = —d), @(x— ).

We would like to prove that for ¢ and y from S it follows that ¢ * y from § also. In
fact,

(1) xy e C(R") since I*(Q*y)=@*d%yand 9% :S — S.
(2) @y decreases at infinity faster than any inverse power:

1
[ot-vvom| <a [ o towolara | vl
<l =yl 1>

!
‘1

< == JwO)dy+ea [ "M w()[dy
x| Jyi< ! y> 5!
c ) _
< |x|lm+W:C|x| m? méeN

Next we collect some important inequalities involving the convolution.

(1) Holder’s inequality implies that
105 Wllmgeny < 10l gen - 1Vl g - (19.1)

where % + i = 1,1 < p < oo. This means that the convolution is well defined

even for ¢ € LP(R") and y € L” (R"). In particular,
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1@ Wl ) < @11 ey~ W] 12 Ry - (19.2)

(2) It follows from Fubini’s theorem that

los il < [ ax [ lotx=yllw()idy

= [ w0y [ lolr=y)ids= gl vl (193)

(3) Interpolating (19.2) and (19.3) leads us to (see the Riesz—Thorin theorem, The-
orem 17.7)
o+l <[l -lell,- (19.4)

(4) Interpolating (19.1) and (19.4) leads us to (again by the Riesz—Thorin theorem)

oyl <llwllz -l

where
1 1 1
1+ -=-+-.
s r p

Indeed, the linear operator Ty = @ * ¥ with ¢ € L”(R") maps as

/ 1 1
7.1/ (R") - [°(R"), —+4—=1
Pop

and
T:L'(R") — LP(R");

see (19.1) and (19.4), respectively. Thus

T:L'(R") — L'(R"),

where
1 6 1-6 0
rop 1
and
1 6 1-6 1 6
N p p p
This gives
1 1 1
———=1--.
r S p

Now we are in a position to consider the Fourier transform of a convolution.
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(1) Let o,y € S. Then @ xy € S and .# (¢ * y) € S. Moreover,

Flpry)=0m ¢ [ e 0a [ plx—y)yi)d
/l// dy/ () (x — y)dx

2n’%/‘l/ 0 gy 0@ 8z = 2m)2.7 9 Ty,

N\:

i.e., .
pxy=02m)2p -y
Similarly,
F Noxy)=2n)2 7 o F 'y
Hence

which implies that
Fo1x Ty = (2n)2.F (¢1- 1),
or
(2) Let us assume that ¢ € L' and v e Ll?, 1 <p<2 Then (19.4) implies that

Qxy € LP, 1 < p <2. Further, .7 (¢ * ) belongs to L by the Hausdorff-
Young inequality. Thus,

ory=(02n)ip-yeL

Lemma 19.2. Let ¢(x) be a function from L' (R") with [pn ¢ (x)dx =1 and let y(x)
be a function from L*(R™). Let us set ¢ (x) :=€ "¢ (), € > 0. Then

lim o s~ )
Jim gexy =y

Proof. By (19.4) we have that @¢ * ¢ € L>(R"). Then

Pery=(2m)20:- ¥
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as € — 0+. Note also that
90) = (2m) 1 [ e p(de= 2m) ¢,
Hence
PV = (2m)85(e8) W(E) L 9(E), e—0+.
By the Fourier inversion formula it follows that

2

L
Qe xyY — Y
as € — O+. O

Theorem 19.3. For every fixed function @ from S(R") the map @ «T has, as a
continuous linear map from S to S (with respect to T ), a unique continuous linear
extension as a map from S' to S' (with respect to T) as follows:

(o+T,y) = (T,Rpxy),
where RQ(x) := @(—x). Moreover; this extension has the properties

(1) o+T =(21)3¢-T
(2) 9%(@+T) =% +T — ¢ +J*T.

~

Proof. Let us assume that @, y, and T belong to the Schwartz space S(IR"). Then
we have checked already the properties (1) and (2) above. But we can easily check
that for such functions the definition is also true. In fact,

osT.y) = [ (o DWwar=[ [ ol=nT)drp(rar
= [,70) [ olr= 3wty

= Ju TO dy/ Ro(y—x)y(x)dx = (T,Rp + y).

For the case T € ' the statement of this theorem follows from the fact that S E A
(see Theorem 18.18). U

Corollary 194. Since o xT =T x ¢ for ¢ and T from S, we may define T x ¢ as
follows (for T € §'):
(T, y):=(T,Rp*y).



172 Part II:  Fourier Transform and Distributions

Example 19.5.
(1) Itis true that 6 * ¢ = ¢. Indeed,

(0x9,y)=(8,Rxy) = (Rpxy)(0)= | oO)y()dy=(0.y).

Alternatively, we note that

— ~

Sxp=(2m)258-9=

)
I
)

is equivalent to

bxp=¢

inS.
(2) Property (2) of Theorem 19.3 and part (1) of this example imply that

%(8xp)=86%0% =0d%¢.

(3) Let us consider again the equation (1 —A)u = f foruand f € L? (or even from
S"). Then (14|&|?)i = f is still valid in L? and & = (14 |E[*) ™' f or

where .
E(r—3) = 1 eilt—3.8) &
T Gay S THEET

This is the inverse Fourier transform of a locally integrable function. This func-
tion K is the free space Green’s function of the operator 1 — A in R*. We will
calculate this integral precisely in Chapter 22.

Lemma 19.6. Let j(x) be a function from L' (R") with [g. j(x)dx = 1. Set jg(x) =
e"j(%), €>0.Then

lje*f = fllr — 0, &— 0+,

Sor every function f € LP(R"), 1 < p < . In the case p = o we can state only the
fact

/R(jg*f)gdx—>/Rf-gdx7 £ 0+

for every g € L'(R™).
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Exercise 19.1. Prove Lemma 19.6 and find a counterexample showing that the first
part fails for p = eo.

Remark 19.7. 1f j € C5(R") or S(R"), then j¢ * f € C5’(R") or S(R") also for every
felP(RY), 1< p<eoo.



Chapter 20
Sobolev Spaces

Lemma 20.1. For every function f € L*(R") the following statements are

equivalent:

(1) L) e 2w,

(2) &§if(&) € LX(RY),

(3) lirr(; A xists in L*(R"). Here Aif(x) := f(x+te;) — f(x) witht € R and
11—

ej=(0,...,1,0,...,0).
2
(4) There exists { fi}7_y, fx €S, such that f 5 f and g—){’; has a limit in L*(R™).

Proof. (1)< (2): Since - ~
Djf=¢;f,

&7

we have

=Dl

by Parseval’s equality.
(2) = (3): Leté& jfbe a function from L?(R"). Then the equality

—

1 1, e -~ elréi 1 —~
TAE) = L - 1f(E) = S 618
J
holds. But
ersi—1
—1
15
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pointwise as t — 0. Hence

—

O
;Ajf—néjf, t—0
i.e. (again due to Parseval’s equality),

t— 0.

fAf

The same arguments lead us to the statement that (3) = (1).
2 / !
4) = (1): Let f; be a sequence from S such that fj L f. Then f; 5, f and % 5,

also By condition (4) we have that the limit hrn gf k= g exists. We

may conclude that % — g. This means that g = ng inS.
J J

(2) = (4): Let us write f(é) as the sum of two functions f(é) =g(&)+n(&),
where

g(&) = J?(i)x{|§j|<1}7 h(&) = f(é)%{\éjbl}'

2
Let {gx} be a sequence in S such that g, L gand suppgr C {|&;| < 2}.
2
Let {h;} be a sequence in S such that A 5 &jhand supphy C {|€;| > 11
If we define the sequence f(x) =.% ! (gk + %") (x), then
]

—~ hy 72 ~

f(&) :gk+§—" L g(&)+h(&) = F(&).

J

But .
a ) . 2 . "
Tfk_ =i&jgr +ihk L i&j(g+h) =i&;f.

Xj

This means that (by the Fourier inversion formula or Parseval’s equality)

d fx L af
ax; i) = Fr

This completes the proof. O

We have also the following generalization of Lemma 20.1 to a multi-index o.
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Lemma 20.2. Let f be a function from L*(R") and let s € N. Then the following

statements are equivalent:

(1) D*f € *(R"),|a| < s
(2) E%f e (R, |of <

(3) }llin(l)% exists in L>(R"), |a| <'s. Here A% f := (A;;il --'A;;")f and h € R" with

hj#0forall j=1,2,...,n.

2
(4) There exists fi € S such that fj, LR f and D° f; has a limit in L*(R") for || < s.

Proof. The result follows from Lemma 20.1 by induction on |c|.

Definition 20.3. Let s > 0 be an integer. Then

H'R"):={f € *(R"): ¥ [D*fl|> < =}

o <s

is called the (L%-based) Sobolev space of order s with norm

12
[ 1 s ey == < > |Daf||i2(uan>> :

o <s

Remark 20.4. Tt is easy to check that H*(R"), s € N, can be characterized by

HE)={f e 2®): [ (1+IEPPIFE)PAE <o},

Proof. Tt follows from Parseval’s equality that

P IID"‘fizle@ =3 e,
-3 [ EPIF@IRE = [ 3 eI e
ol<s ol<s

But it is easily seen that there are positive constants ¢; and ¢; such that

ca(L+[EP) < X 8% < ca1+[EPY,

|| <s

or

2 M= (1+ &))"

la|<s

O
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Therefore we may conclude that

> I0%flz <o 3 IDflG <o [ (1+IEFPIFE)PE <o

o] <s [or|<s
This establishes the characterization. |

This property of an integer s justifies the following definition.

Definition 20.5. Let s be a real number. Then we define
H(R"):={feS: (1+|EP)2f e L*(R")}

with the norm 1
2

ey = ( [, (1 G I7ERaZ )
Definition 20.6. Let s > 0 be an integer and 1 < p < . Then

Wy (R") = {f € LP(R") : 3, [D*fllpp(n) < =}

o] <s

is called the Sobolev space with norm

1/p
||fHWpJ'(]R") = < 2 ||Daf|zn(w)> :

la|<s

Exercise 20.1. Let s > 0 be an even integer and 1 < p < oo. Prove that

gy = ([, 1770+ 1 A)I”dx)ll’

is an equivalent norm in W;(R").

Definition 20.7. Lets > 0 be a real number and 1 < p < . Then

~

W)= (res’s ([ 15 rgmiprar) <o)

with the norm

g = ([, 1971+ 1) )



20 Sobolev Spaces 179
Exercise 20.2. Let s € R. Prove that

feH(RY)
if and only if

feL(r).

Proposition 20.8. Let us assume that 0 < s < 1. Then

NP £ = F0)P
L as1ePF@Pag = [ irPacra, [ [ Sy @0

where Ay is a positive constant depending on s and n.

Remark 20.9. Since 1+ |&[> =< (1+|&]%)%,0 < s < 1, the right-hand side of (20.1)
is an equivalent norm in H*(R").

Proof. Denote by I the double integral appearing on the right-hand side of (20.1).
Then

1 :/ ‘f(y_;'_z) —f(y)|2|Z|7”72sdydz
er . RH

lei@6) — 12

|2 dz

= [ 1z [0 1PIfE) PE = [ 7P
JRe JRr JRn

Rn

by Parseval’s equality and Exercise 16.4. We claim that

\ei(z’é)*”z 25 41
L = lea

Indeed, if we consider the Householder reflection matrix

2w T
A::I_W7 v=_&—|8ler, SeR,

then AT =A~! = A and A& = [E|e; = (|&],0,...,0). Tt follows that

o |ei(z.§) 112 o [ ei(Az,Ai:) 112
€] 2‘/ Ts'dzzm 2‘/ %dz
r 7] R Iz|

n

- elAE) _ 12 ivilél _ 112
— g [ gy e [ IRy
Jeo o B

AN s
= R)lez—.As .
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Therefore,

/lf 2dHA/ / |£) )[Plx —y| 7" > dxdy
= [ 1F©PE+ [ 16PIfE)Pac,

This completes the proof. O
Remark 20.10. Note that A, exists only for 0 < s < 1.

Exercise 20.3. Prove that

I oy = [ (LHIEP2)IF(E)PaE |

2 " —
SRR

A +A S [ D) Do) Pl P dady,

|o =k

Example 20.11. 1 ¢ H*(R") for all 5. Indeed, assume that 1 € H*(R") for some sp
(it is clear that so > 0). This means that (1 +]E]A) 2T € LA(R"). Tt follows from this

fact that 1 € L} (R"), and further, TeLl (R").But1=(27)28, and we know that
0 is not a regular distribution.

loc

Next we list some properties of H*(R").

(1) Since f € H*(R") if and only if f(&) € L2(R") and L2(R") is a separable Hilbert
space with the scalar product

(Foanizan = [, (1417 A g,

it follows that H*(R") is also a separable Hilbert space, and the scalar product
can be defined by

(.0 = [ (1+1EPYF-5aE.
We may prove the following property:
R =EHRY)), seR

in the sense that

|(f:8) 2y
Ifll-s(mny == sup DR
ozgers®) |18l msm)
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This means that H—*(R") is the dual space to H*(R") with respect to the Hilbert
space L?(IR"). Indeed, since by Parseval’s equality

-~

(F:8) 2@ = (F8r@n = (1+IER) 1.1+ 16)°8) 2.

it follows that

sup DO IA®RY] sup
0£geH? (R") ||g||Hs R?) 0+£g€L2(R") Hg”Lg R")

|(f8)2(mn)] |(£,8) 2 :Hf‘

T 111 £z (em -

We have used here the fact that the space L? ((R") is dual to L2(R") for every
seR.
(2) For —oo < s < 1 < oo, it follows that S C H'(R") C H*(R") C §'.

Example 20.12. 6 € H*(R") if and only if s < —7. Indeed, if we define

then & € H*(R") is equivalent to (27r) 7 (£)* € L*(R"), which in turn is equivalent
tos < —3.

(3) Let ¢ be a function from H*(R"), and v a function from H*(R"). Then ¢ €

L2(R") and y € L? ((R"), so that ¢ - ¢ € L' (R") by Holder’s inequality. We
may therefore define (temporarily, and with slight abuse of notation)

T -

and obtain
(@, ¥) 2y | < 10 s ey - Wl s (eny -

For example, if ¢ is a function from HZ+!7€(R"), £ > 0, and y = 92, then

BF) ER
<ax_,<p> =/ =— <pd€—127r /51@
j L2(Rn> JR"

)1+1+8<Rn) and éj 6 szgflfg(Rn)'
(4) Consider a differential operator with constant coefficients

= z agD”.

o] <m

is well defined, since @ € L

Then P(D) : H*(R") — H*™(R") for all real s.
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Proof. By the properties of the Fourier transform we have

PO nqe = [ (1+1EF " IPDIf g
= [ a+1ER IPE)R- @)
<c [ (A+IEPY 1+ ER)IFE)PIE = el e

for all real s. O

There is a generalization of this result. Let P(x,D) be a differential operator

D)= Y ax(x)D*

loc|<m
with variable coefficients such that |ay (x)| < ¢ for all x € R" and |¢t| < m. Then
P(x,D) : H"(R") — L*(R").
Indeed,

IP(x.D)fll2 <co X IID*fllp=co Y,

lo|<m o <m

(1+11)7

SC()

= -

(5) We have the following lemma.

Lemma 20.13. Ler ¢ be a function from S, and f a function from H*(R") for s € R.
Then ¢ - f € H*(R") and

Il < | (1+1ERY 2B, 1AL

Proof. We know that

Hence
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for all s € R. Indeed,
(€)= (1+]EP)2 < (1+n)2 +[E =] = (n)+[E —n| < M)(1+]€ - 7).
Since 1+ |& —n| < v2(§ —n), we have
&)y <25y - —n)*

for s > 0. Moreover, for s < 0 we have

- 95 <2t
It now follows from (19.4) that
Il = |€0F| , <c | o1e 1)z , <e|@)8] , |[m 7| .
for all s € R. (]

Exercise 20.4. Suppose s > n/2. Show that if u,v € L?(R") and

_ [ w(§—mn)v(n)dn
W(é) */nwv

then w € L2(R") and ||w][,;2 < C|lull,2 ||| ,2-

(6) Let us now consider distributions with compact support in greater detail than
what we saw in Chapter 18.

Definition 20.14. Set & = C~(R"). We say that T € &” if T is a linear functional
on & that is also continuous, i.e., ¢y — 0 in & implies that (T, ¢;) — 0 in C. Here
@ — 0 in & means that
sup[0“@| — 0, k—eo
K

for every compact subset K C R” and multi-index o.

It can be proved that T € & if and only if there exist co > 0, Ry > 0, and np € Ny
such that

(T.@)[ <co D, sup [D%(x)l

\a|§n0 |X|SR0

for all @ € C*(R"). Moreover, members of &’ have compact support.
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Assume that 7' € &”. Since @(x) = e~ '%%) € C=(R"), it follows that (T,e~(%:5))
is well defined and that there exist co > 0, Ry > 0, and ny € Ny such that

(Te @) <cp T sup [DIe 0| <y T €Y=< (1+EP)7.

|ee| <o [¥<Ro loe|<no

If we now set R '
T(E):= (2m) "H(T,e 1)),

then 7 is a usual function of &. The same is true for
9T () = (2m) /(= 1)/o(T, 9% -4))

and hence T € C=(R"). On the other hand, (7, e 108))| < ¢o(E)™0 implies that
IT(&)] < c((&)™ and hence T € LZ(R") for s < —ny — 4. So, by Exercise 20.2, we

n

may conclude that every T € &” belongs to H*(R") for s < —ng — 5
(7) We have the following lemma.

Lemma 20.15. The closure of Cy(R") in the norm of H*(R") is H*(R") for all
s € R. In short, C§ (R") s H*(R").

Proof. Let f be an arbitrary function from H*(R") and let fg be a new function such

that R
5= {f@ & <R,
0, |E| > R.

o~

(&) = xr(E)F(

Then fr(x) = .F ' (xrf)(x) = 27m) 3 (F ' yr * £)(x). It follows from the above
considerations that .7 ~!yg € C*(R") as the inverse Fourier transform of a com-
pactly supported function (but ¢ C;’(R")) and

I1f = frll s :/ F(&) = fr(§)(§)>dE = F(E)F(E)¥dE — 0
R" >R

as R — o, since f € H*(R"). This completes the first step.

The second step is as follows. Let j(§) € C5 (|| < 1) with [ga j(§)dE = 1. Let us
set jx(&) := K'j(kE). We recall from Lemma 19.6 that ji x g = g
1 < p < oo. Define the sequence v :=.Z ~!(ji * fr). Since ¥, = jy * fg, it follows
that suppv; C Ug+1(0), and so v; € Ci(R"). Hence v € S. Therefore, v € H*(R")
and

ol — 50w o Fol2d
(Vi = SRl s () /‘§‘<R+1<5> |Ji* fr — fr|"dE

< Cx e * fr— fr[?dE — 0,k — oo,
|E|<R+1
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Since v ¢ Ci’(R"), we take a function x € i (R") with k(0) = 1. Then

K(%)vkivk, A — oo,

This fact implies that & () vk B v as A — oo, Setting fii(x) := Kk (§) w(x) €
Cy (R™), we get finally

—0

HS

X
1 = fillgs < 17 = Fells = L fe = vellg + = (5 )

if A, k, and R are sufficiently large. O
Now we are in a position to formulate the main result concerning H*(R").

Theorem 20.16 (Sobolev embedding theorem). Le? f be a function from H*(R")
fors>k+1%, where k € No. Then D* f € C(R") for all o such that |ot| < k. In short,

H* C CK(RM), s>k+g.
Proof. Let f € H*(R") C §'. Then
D f=F '\ F(D"f)=F (&)

What is more,

o 7 ol 7 _ |§||oc\ S| 7
L ger@ag <e [ 1el @l = [ e (erIiEg

2l 1/2 R 12
s¢ (/” |<§€|>23 dé) (/Rn <§>2S|f(€)2d§> < C/ Hf”HJ(]Rn)

if and only if 2s —2|a| > n, or s > |ot| +n/2.

This means that for such s and o the function D*f is the Fourier transform of
some function from L' (R"). By the Riemann—Lebesgue lemma we have that D* f
from C(R"). O

Lemma 20.17. L2(R") C LY(R") if and only if =2 and s > 0 or 1 < q <2 and
s>n(1-1).

Exercise 20.5. Prove Lemma 20.17.
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Lemma 20.18 (Hormander).

(1) F:HR") — LIR") for 1 <qg<2ands>n (é — %)

(2) F :LP(R") - H*(R") for2<p<eoands >n<% - %)

(3) F:LX(R") — L*(R").

Proof. (1) See Lemma 20.17. N

(2) Let f be a function from L (R") for 2 < p < co. Then f € S" and [(f, @) ;2 (rn)| =

(£, @) 2| < IF1, 1@l where 1 < p' < 2. But if ¢ € HS(R") for s >

n (=1 then |6l <ol So

(s @2 < ellfll,- 19l

Therefore (by duality),
17, <elfles

fors>n(%—%) :n(%—%>
(3) This is simply Parseval’s equality HfHLZ =1l
This completes the proof. (]

Exercise 20.6. Prove that

(1) xp.1 € H*(R) if and only if s < 1/2.

() Xp0.11x), ]] € H*(R?) if and only if s < 1/2.

() K(x) = (W) € H5(R") if and only if s < 2 — /2.

(4) Let f(x) = x(x)loglog|x|~!' in R?, where x(x) € C3(|x| < 1/3). Prove that
feH'(R?) but f ¢ L=(R?).

Remark 20.19. This counterexample shows us that the Sobolev embedding theorem
is sharp.
Lemma 20.20. Let us assume that ¢ and f from H*(R") for s > 5. Then 7 (@ f) €
L'(R™).

Proof. Since f, ¢ € H*(R"), it follows that f,® € L2(R") for s > 5. But this implies
(see Lemma 20.17) that f and @ € L' (R") and

~

F(of) = 2n) g+ f

also belongs to L! (R"). O
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Remark 20.21. Tt is possible to prove that if ¢, f € H*(R") for s > 5, then ¢ f €
H*(R™) with the same s.

Exercise 20.7. Prove that W) (R")- W} (R") C W, (R") if p > n.

Next, we consider the trace map 7, defined initially on S(R") by tu = f, where
f(X) =u(0,x) ifx = (x1,...,x,) and X' = (x2,...,x,).

Proposition 20.22. The map T extends uniquely to a continuous linear map
T: HS(RVL) _)Hs—l/Z(Rn—l)
Sorall s > 1/2, and this map is surjective.

Proof. If f = tu, then for all u € S(R") we may define
fien = [ aeua.
Hence, using the Cauchy-Bunyakovsky-Schwarz inequality, we have

PP < [ aera+igrya [ a+iEP) e,

—oo

Since

- | | ) 1
/—w (1+|f§’|2+é%>sd61 ~ 1+ [EP) /—w (1 + (wﬁ}’:lw)z)“vdél
1+|E72)1/2

s < d
=Py [ s>,

we have

(1P RIFE P <6 [ @)+ IER) Az,

where C; denotes the latter convergent integral with respect to p. Integrating with
respect to &' in the latter inequality leads to

||f||12qsf1/2(ﬂgnfl) <GCs ||”||%-IS(R") :
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This means that the first part of this proposition is proved, since S(R") is dense in
H*(R"). Surjectivity follows also. If g € H*~'/2(R"~1), s > 1/2, we can define

N N 1+ & 2\s/2—-1/4
ae) =) D
(1+16)
Then u := .7 1 (u(&)) defines u € H*(R") and u(0,x’) = Cg(x) with some nonzero
constant C. g

20.1 Sobolev Spaces on Bounded Domains

Let Q be a bounded domain in R” with smooth boundary 9. We define for integers
k > 0 the Sobolev space H*(Q) = W§(£) as the set of all f € L*(Q) for which
there exist (by analogy with Lemma 20.1 if we extend f by zero outside of €2) the
generalized derivatives 9% f in L?(Q) for all || < k. The norm in this space is
defined then by

1/2
MM@=(ZAWWWQ . 202)

lor| <k
We define the space Hj (£2) as the completion of C3(£2) with respect to the norm of
H*(Q).

Theorem 20.23 (Poincaré’s inequality). Suppose f € H(’)‘(Q), k > 1. Then there is
a constant M > 0 such that

1F 1) <Mﬁ|Z:kHanHL2<Q>' (20.3)

Proof. We apply induction with respect to k. Since £2 is bounded, it can be enclosed
in a cube
O ={xeR":|x;| <A,j=1,...,n},

and f € C;’ (L) will continue to be identically zero outside of €. Then for all x € 0,
we have

flx) = [ ; O f(E12)dEL x= (r1,2). (20.4)

We have used here the fact f = 0 on Q. Using the Cauchy-Bunyakovsky-Schwarz
inequality, we obtain that

A A X1 A
[ rwPan <24 [ an [ 10, 5& ) Pag <40 [ 10, £GP
—A —A —A —A
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Integrating now with respect to x’, we obtain

/|f |2dx<4A2/ |0y, f|dx < 4A2 2/ |08 £[?dx.
BI=1

Since Cg(£2) is dense in H] (L2), the case k = 1 is established. Let us assume that
for all f € HY(Q), k> 1, we have

vy <M 3 (91, 0
IBl=k

Then for all f € H*"!(Q) we have that d;f € HX(2), j=1,...,n, and by induction
we have

193 vy <M 3 [P @0 g <M T 197200

Bl=k [Y=k+1

Thus .

z H&ijkal(.Q) <M 2 HanyLz(Q)

j=1 [Y=k+1
or

I lar iy <M" 3 1197Fll20)
[y|=k+1

Hence the theorem is completely proved. g

For all real s > 0 the space H*(£2) with fractional s can be obtained as the inter-
polation space between L?(€2) and H*(Q) with some integer k > 1 (see, e.g., [39,
p- 286] for details).

Corollary 20.24. SupposefEHg(.Q), k>1.Then 0%f|yo =0forall |of <k—1.

Proof. This fact can be proved also by induction on k > 1 using (20.4). Since Cj (£2)
is complete in HY (), it follows that for k = 1 and x = (x1,x’) € dQ we have from
(20.4) that

- /XI 9x1f(§1,x’)d§1 =
—A

Using induction on k and the representation

0“1() = [0, (01 (81,0

forx € dQ and |or| < k— 1, we obtain the desired result. O
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Also, the converse of this corollary holds: if f € H*(2) and 9% f|,, =0 for || <
k— 1, then f € H5(£2). For details, see [11].

Exercise 20.8. Prove Rellich’s theorem: if €2 is bounded and s > ¢ > 0, then the
inclusion map H{j(2) — H((L2) is compact. Hint: Use the Ascoli-Arzela theorem
(Theorem 34.7).

We define for every integer k > 0 the space
HYRY) = {f € L*(R}): 9%f € L*(R"), el < k)
with the norm
= 1/2
_ / o YV
Hf”H/‘(]R’jr) - <a|z<k/R"1 dx /0 |a f(XI;X )| d)C]) . (20.5)

We may say that an element f € H*(R) is the restriction on R” of some element
from H*(R"). More precisely, the following proposition holds.

Proposition 20.25. For every integer k > O there is an extension linear operator E
defined on H*(R™) with image in H*(R") such that

IEf aar () < ClI Nl aze ey (20.6)

where the constant C > 0 is independent of f.

Proof. Since S(R") is dense in H*(R") (see, for example, Lemma 20.15), it follows
that for every f € S(R".) and integer k > 0 we may define E as

f(-x)a X1 2 Oa
E =
f(x) { ];:% ajf(—j)q,x'), x1 <0,

where aj, j =1,...,k+1, are to be determined. Let us prove that this operator E
satisfies this proposition. It is clear that E is linear and that for k =0 (a; = 1),

Ef(x) _ {f(x)7 X1 Z 07

f(=x1,%), x1 <0,

belongs to LZ(R”) and (20.6) holds. If £ > 1 is an integer, then for 0 <[/ < k we have
formally
a)glf(x)’ 'xl > 07

1 _
Iy (Ef(x)) = { bl a(— ) al f(—jar ), x <0.

Let us choose a; as the solution of the linear algebraic system
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k+1 ;
Yoaj(—j) =1, 1=0.1,... .k
j=1

The determinant of this system is the well known Vandermonde polynomial, and it
is not equal to zero. Hence, this system has a unique solution with respect to the
coefficients a;, j =1,...,k— 1. After these coefficients have been determined, the
inequality (20.6) follows immediately. (]

Remark 20.26. For arbitrary s > 0 the result of Proposition 20.25 can be obtained
by interpolation of Sobolev spaces H*; see [39, p. 285].

Let 2 C R”" be a bounded domain with a C* boundary 0. Since dQ is a compact
set, it can be covered by finitely many open sets U;, j = 1,...,m, such that

m
J0Q C UUj
=1

and there is a partition of unity {@;}"7_, with ¢; € C5'(U;) and 37", ¢; = 1 on 0.
Thus for every function u(x) defined on d€2 we have u = X | ¢;u. The functions
ju can be written in local coordinates y' as @;u = (@;u)(x(y')), ' € R"~!, and the
U, are mapped into the unit ball {y € R" : |y| < 1} so that (see Figure 20.1)

UinQ —{yeR": |y <1,y >0}

and
UiNdQ — {yeR": |y| < 1,y1 =0}.

For these purposes we may use the extension operator E from Proposition 20.25
such that (s > 0)

E:H(Q)—H'U), U=JU;.
j=1

Fig. 20.1 Representation of the boundary in local coordinates.
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Definition 20.27. A function u is said to belong to H*(dQ) if pju, j=1,2,...,m
belong to H*(R"~!) as a function of y'. The norm in H*(9€), s > 0, is defined as

m
|MHHY Q) ZH(pJuHHS RA— I
Remark 20.28. Tt can be shown that H*(d€2) is independent of the partition of unity

and that the norms are equivalent with respect to the different partitions of unity.

Let 7 be a trace map (linear):
U= ulyo

for all u € C*(£2) defined on Q.

Proposition 20.29. For s > 1/2 the map T extends uniquely to a continuous linear
map

T HY(Q)— H2(0Q)
with the norm estimate

17l =129y < Cllutll s

Moreover, this map is surjective.

Proof. The proof is based on Proposition 20.22, the definition of H*(d€2), and the
following diagram:

H'(Q) H12(0Q)
E J [in local coordinates
HT(U) Hsfl/Z(Rnfl)

See [39, p. 287] for details. O



Chapter 21
Homogeneous Distributions

We begin this chapter with the Fourier transform of a radially symmetric function.

Lemma 21.1. Let f(x) be a radially symmetric function in R", i.e., f(x ) Si(lx]).

Let us assume also that f(x) € L'(R"). Then the Fourier transform f(&) is also
radial and

=161 [T A (e

2

where Jy (-) is the Bessel function of order v.

Proof. Let us take the Fourier transform
&) =mt [ D (xpax

,/ Al 1dr/sn1 o-ilElr(e.0)4

where x =10, & =|&|@,and 0,9 € S" ! := {x € R": |x| = 1}. It is known [43] that

s

/ eilEho0) g — 27> / " eilElreos v (gin y)2dy,
-1 rt) Jo
where I is the gamma function. This fact implies that f(é) is a radial function,
since the last integral depends only on |£|. A property of Bessel functions [23] is
that

T — J@(ﬂa)
—i|€|rcosy [ ; n-24 :2%—1 T <I’l 1> 2 . 21.1
/0 e (siny) 1 v > (r|§|)% (21.1)
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Collecting these things, we obtain

=161 [ A (e

and the claim follows. O

Remark 21.2. If we put the variable u = cos y in the integral I appearing in (21.1),
then we obtain

T . 1 .
J— / 671\§|rcos "’(sin l//)"’qu/ _ / efl|§\ru( /1_ uz)n73dl/l.
0 -1

In particular, if n = 3, then (21.1) implies that

_ [ eilelrugy, — p8inUEIr) Iy (r[€])
= [t =Vt

- 2 sin(|E|r)
Ji(rlg]) =/ =——-
11! \/; (1€]r)2
If n =2, then
1 e—il&lru
1= [ |- Sdu=nh(riE)),

1 71\€\ru
hirED = % [ S

Remark 21.3. For later considerations we state the small- and large-argument
asymptotics of J, for v > —1 as

Cv|x|va |x| — 0+,
Jv([x]) ~ c, fCOS(Av‘x‘ +By), |x|— +e

(see [23]).

Exercise 21.1. Prove that f(A&) = f(&) if A is a linear transformation in R” with
rotation A’ = A~ and f is radially symmetric.

Let us return again to the distribution (cf. Example 19.5)

1 B 1
=Gt ” (7)) @
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Let us assume now that n = 1,2, 3,4. Then the last integral can be understood in the
classical sense. It follows from Lemma 21.1 that
. y e o T (rxdr
K =K =(2rm) 2|x|' 2 _—z
1) =Kl = (2m) 8 [T
a o =P a2 (p)dp
= (27) % x| n/ o
o prtlx|
It is not too difficult to prove that for |x| < 1 we have

1, n=1,
Ki(x)| <cqlogpr, n=2,
x>, n=234.

Exercise 21.2. Prove this fact.

Remark 21.4. A little later we will prove estimates for K (x) for every dimension
and for all x € R™.

There is one more important example. If we have the equation (—1 —A)u = f in

L*(R") (or even in S), then formally u = (27) 2.7 ! (\§|21—1) * f = K_y * f, where

= p3Juz(p)dp
p*—|x|?

Koa(l) = 2m)~Ha [

But there is a problem with the convergence of this integral near p = |x|. Therefore,
this integral must be regularized as

lim
£—0+,

= p3Juz(p)dp
/0 p2—|x|? —ie’

Recall that

(1) 03f(x):=f(Ax), A #0and
2 (02T, ¢):=2""(T.019), A>0.

Definition 21.5. A tempered distribution 7 is said to be a homogeneous distribution
of degree m € C if
o) T =A"T

for every A > 0. In other words,

(oA T, @) = A"(T, 0),
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or
(T.9)=2""(T,019),

for @ € S. The space of all such distributions is denoted by H,,(R").

Lemma 21.6. % : H,(R") — H_,_,(R").

Proof. Let T € H,,(R"). Then

~

(0,7, ) = )F”(Tﬁ%(p) = A*"<T,o;\<p> = AT, \"03,0)

=(T,0,.0) =2""(01 T,¢) =27"27"(T, ) = AT )

forall ¢ €S. (]
Definition 21.7. We set H;;(R") :={T € H,,(R") : T € C=(R"\ {0})}.
Exercise 21.3. Prove that

(1) ifTEH,’;,,thenD“TGH* P |andx T €eH;,
2) Z F - H*—>H*

me|al’

Exercise 21.4. Let p(x) be a function from C*(R") with [D%p (x)| < ¢(x)" 1%l for
all @ > 0 and m € R. Prove that p(&) € C*(R"\ {0}) and (1 — @)p € S, where
¢ € Cy(R") and ¢ = 1 in Us(0).

Example 21.8. (1) 0 € H*,(R"). Indeed,
(026,9) =27"(8,010) =101 ¢(0) =27"p(0) = 27"(5,9).
But suppd = {0}. This means that § € C*(R"\ {0}). Alternatively, one could
note that .
0=(2m)"2-1€HjR")

and use Exercise 21.3 to conclude that

§=7"(@2n)"7-1) e H" ,(R").

(2) Let us assume that @ € C“(S”‘l) and m > —n. Set T, (x) := |x|"® (ﬁ) for
x € R"\ {0}. Then 7,,(x) € L} .(R") and T,, € H;;(R"). Indeed,

Ax

(0:T0) = [ oiTapmar= [ 11210 (75 ) 00dx =27 (T,

Since |x|™ and @ (ﬁ) are from C(R"\ {0}), we have T,, € H,; (R"). Moreover,

D°T, € H! M(R ) and x*T,, € H? HOCI(Rn) by Exercise 21.3.
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(3) Letnow m = —nin part (2) and in addition assume that [g, 1 ©(6)d6® = 0. Note
that T_,(x) ¢ L. _(R"). But we can define T, as a distribution from S’ by

loc

pv-Ton @) = | T-a()[@(x) = @(0)w(|x])ldx,

where ¢ € S(R") and y € S(R) with y(0) = 1. We assume that y is fixed. But
it is clear that this definition does not depend on y, because [g, 1 ©(0)d6 = 0.

Exercise 21.5. Prove that

(p-v.T_p, @) = lim T_,(x)@(x)dx,

e—0+ |x|>¢

where T_,, = |x| @ ( x ) , Jsr1 0(6)d6 = 0.

T+
Let us prove the following:

(1) p.v.T_, € H*;

2) p./v.i,, € Hj(R"), and moreover, it is bounded.
(3) p.v.T % : L*(R") — L*(R").

Proof. Part (1) is clear. Part (2) follows from

<cllollprn -

Hence pﬁn € L=(R") by duality.
Finally, if f € L*>(R"), then

Fpv.T_,xf)= (27‘[)%pﬁn -7,
which implies that

[p-v. Ty fll 2y < (27) 2 ||p.v. Ty

Il

This proves part (3). ]
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Remark 21.9. 1In fact, it follows from Calderén—Zigmund theory that
p-v.T_px: LP(R") — LP(R"), 1< p<oo.

Next we want to consider a more difficult case than the previous one. Define
1 —n
(0-v- 1 0) = [ 147000~ 0(0)(+Djds, @12)

where @ € S and y € S with y(0) = 1. But now we don’t have the condition
Jsn1 ©(6)d6 = 0 as above. Therefore, (21.2) must depend on the function y(|x|).
We will try to choose an appropriate function y. Applying the operator o), we get

(o2 (p.v. |xl|n) , @) = (p.v. ﬁ,)ﬁ”c%(p)
= [ b2 [0 (5) ~ 0] ax

=27 [ bl 7l9() ~ (O)w(Aly)ldy

=A7" [y o) — @0)w(ly[)ldy

Rl‘l
-2 W WAly]) — w(lyDldy
— <l_np.v. W, (P> +Rest,

where
Rest=—1""¢(0) /R YT W (A y]) = w(ly)]dy

(8, @) /Om 7"“”; LA a6

= —wA "8, 9) /ON Mdn

and @, = 12,’{—3) is the area of the unit sphere S"~!. Let us denote the last integral by
2
G(A),A > 0. Then

R R

We also have that G(1) = 0. We may therefore conclude that G(1) = —log A, which

implies that
Rest = w,A "log A (8, @),
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and so

o), (p.v. 1) =A"p.v. N + o, A "log A - §(x).
x| |

Taking the Fourier transform, we get

F (G;L (p.V.l>> =A" <p.v. L
e [

1 1 n
l—"G%ﬁ (p.v. |x|”> AT (p.v. |x|”> +(27) 2w, A M log A,

7 <p.V. xl|) (i) —z (p.v. |xl|> (&) + (27)  wnlog .

Let us put now A = |£|. Then

z (p.v. |xl|n) (&) = —(2n) S log |E| + 7 <p.v. |xl|> (é) .

Since p.v. ﬁ for such v is a radial homogeneous distribution, we must have that

F (p.v. 1)
x|

is also a radial homogeneous distribution. Therefore, .7 (p V. \XI”) (é‘) depends

Y

) +(27) "2 0, A" log A,

or

or

only on ‘@‘ = 1. So this term is a constant that depends on the choice of y. We

will choose our function y(]x|) so that this constant is zero. Then finally,

7 (p |1|) (&) = —(27) S onlog€].

Now let us consider T_,,, = |x| ™™, 0 < m < n. It is clear that |x| ™" € L|
the situation here is simpler. We have

(R™). Thus

loc

—m —Wl A m
() = (bl @) = [ [l

Lemma 21.1 implies that

i) e
x| = |&| 2/ —————dr=&] / P " 2 (p)dp.
Jo r 0 2
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The last integral converges if % < m < n. We may therefore write that

n—1

2

——
|x|7" = Com|E"T", <m<n.

In fact, this is true even for m such that 0 < Re(m) < n, which follows by analytic

continuation on . In order to calculate the constant C,, ,,,, let us apply this distribu-
. LIPS
tionto ¢ =e~ 2 . Since ¢ = ¢, we get

Ix? £
2

([ ™e727) = (Cuml ™" e 27).

The left-hand side is

P = pemel 2
/\x\ Me de:wn/ P leT T dr
R 0

:27"7’;7260,,/ 7 e tdr = 2" @, (”_2’">
0

Using this, the right-hand side becomes

‘5‘2 n—(n—m)-2
C"7m<|é ‘minveiT> = Cn,mz 2 U)nr (%) .

Therefore,
m—2 m n—m—2 n—m
Com2"T @, (5) - wnF( . )
which gives us
Cnm — ﬂfmr (n72m)
’ r(%)

Finally, we have

o " 1" n—m

|x|—m=22"" ( ) A ET. (21.3)

2
(%)
Definition 21.10. The Hilbert transform H f of f € S is defined by

Hf::]<p.v.)lc>)<f>7

T

ie.,
1
Hf(x) =~ lim fln)dr
T e—0+ /x> x—1
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Exercise 21.6. Prove that

M Hf 2@ = 12w

(2) Hilbert transform has an extension to functions from L?(R).

3) H*=—1I,ie,H '=—H.

4) (Hfi,Hf2);2=(f1,/2)2 for fy € LP and f> GLP',Where%—l-ﬁ =1,1<p<eoo.
(5) H:LP(R) - LP(R), 1 < p <o, ie.,

.

SC”fHLI’

1 /lx f(r)de

—t|>e X1 ||p

for ell € > 0, where ¢ does not depend on €.

The multidimensional analogue of the Hilbert transform is developed in the follow-
ing definition.
Definition 21.11. The functions
Xj R
R](x) = W, x7é0, J:1727...,l’l,

are called the Riesz kernels.

Remark 21.12. We can rewrite R j(x) in the form Rj(x) = [x| " ®;(x), where ;(x) =
X

ﬁ and conclude that

(1) fou1 @;(8)d6 =0;
) R;(Ax) = A7"R;(x), A >0.

These properties imply that we may define the Riesz transform by
Rixf=p.v.Rj*f,

*(R") is a homogeneous distri-
bution. Let us calculate the Fourier transform of the Riesz kernels. By homogeneity,
it suffices to consider || = 1. We have

because in our previous notation, Rj(x) =T_, € H*

— o e_i(xag)xj
Ri&) =pvRy(E) = ) [ S
. —i(x,&), .
— lim (2717)’7/ ¢ M
i e<hi<u ||

We split

e_i(x7§)xj e_i(x¢§)_x< e_i<xv§)x-
7dx=/ 7jdx+/ € N =T 4D
/8<Ix\<u T e<hl<1 x[rH L<f<p AT b
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For I} we will use integration by parts:

1 - )
I — —i(x&) Y 1-n
T /g<\x|<1e 8xj(|x| Jdx

efi(xé) efi(xv‘;:)x. efi(xvg)_xy
iy /e<\x\<1 e W=t " w=e "

—i(xg) .
- Cniéj/ S drt /I ‘ e_l<x’5>xjd0' -0, €—=0+.
x|=1

i<t !
But
; ) ; )
ilxE) _-7/ —i(x€) _-7/ :
xje do=i e do =i cos(|&|-x1)do
/|x\=1 ! 9&; =1 9&; Jix=1
i&; . .
:—|?| ‘ Hxl-51n(|<§|~x1)dG:—1<§j~Cl, |E] =1,

where we have used the fact that a rotation maps & to (|£],0,...,0). Similarly, we
may conclude that

efi(xa'é) 1—
/| 7dx:/u ccos(Ee) el e =G, ] = 1.
JxI<

<t [t
If we collect all of these things, we obtain
I — Gii&j, [E]=1

as € — 0+. For I, we will use the following technique:

e_i(xﬁé)x< a efi(xﬁé)
I 71@:'7/ -
2 NI lagj_ w1 T
. d 1
=1 "cos -x1)dx
5 [ 7 eos((E]m)

i§; 1 xsin(|Elx)

=—— dx = —i&; - const, =1, — oo,
E ot T S sI=1. u

Exercise 21.7. Prove the convergence of the last integral.

Collecting these integrals, we obtain that

p.V.Rj:iéj-Cn
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for |§| = 1. But we know from Exercise 21.3 that ﬁ € Hj(R™). We conclude

that m(é) \il Moreover, we have
R i Fc S 7
R]*fi(zn)zR/f |§|fﬂ

or

Rj*f=iC,.7 ! (éf'f) .

c VT
" 2020 ((n+1)/2)°

It is easy to see that

Corollary 21.13. [t is true that

Rj*Rjx = —Cp6%.

-

1

J

Proof. By the above results we have

n é -
2 F(Rj#R;*f) = zlc’ /&) =G FE).
G
Taking the inverse Fourier transform, we obtain the claim. ]

Remark 21.14. By Parseval’s equality we have

»=<[iev.

Rj*: L*(R") — L*(R"),

<c|

IRj ]2 = | R 7 L =Cllfle.

ie.,
and it follows from Calderén—Zigmund theory that

Rjx:LP(R") — LP(R"), 1< p<eo.

Let us now introduce the Riesz potential by

P (g0) = em iE () er=nes,

where by (21.3),
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Therefore, we have

Iflf(x) :Cn/ f(y)dy

e Jx—y[ =t
where

1 I'((n—1)/2)
"o ptn2

It is straightforward to verify that a%jl 1 = ¢j,R; and hence

J —1le_ I p.
ij] f—CnR]*f.

We would like to prove that
I"': L (R") — W (R")

for some s and ©. Since R;* is a bounded map from L*(R") to L*(R"), we may
conclude that 5

o 2y L 12(R1
ale LA(R") — LA(R"). (21.4)

Now let us assume for simplicity that n > 3. Let us try to prove that

IV L2 (RY) — L2(RY). (21.5)
Indeed, for f € L*(R"),
I7'f e L2(R")
if and only if
i S L®).

Let us assume now that ¢ > 1.

Lemma 20.17 implies that L2 (R") C L"(R") forall I <r<2and 6 >n (1 —1).
But for 6 > 1 we may find appropriate r such that r < n2+”2. We conclude that for
a function f € L%,(R") with o > 1 it follows from the Hausdorff—Young inequality
that f € L” (R") for some ' > 20 or 1> e L%(R”). This fact implies that for
|€] < 1 we have

16171 F(§) € Lie-

Indeed,
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J 4 ~
since % > %5 and (%) < 4. For |£| > 1 the function |£|~! f(&) belongs to L?(R").
This fact follows from the inequality |€|!|7(€)] < |f(£)] and from the positivity
of o (see Lemma 20.17). This proves (21.5) for o > 1.
If we combine (21.4) and (21.5), we obtain that
I L2RY) — Wy (RY), o> 1.
Let us consider now L (R") for o > 1. If f € L% (R"), then | f(x)| < C(1+x|)~°

and thus
(I+y})~°dy

! <C
I fx)| < |

This means that
IV L2(RY) — L2 (R™).

Interpolating this with (21.5), we can obtain the following result:
VLS (RY) — LS(RY), 2<s<o, o>1.
If we recall the fact that R : L*(R") — L*(R") for all 1 < s < oo, then we have

L RY S W (RY), 2<s<ow, o> 1.



Chapter 22
Fundamental Solution of the Helmholtz
Operator

Let us consider a linear partial differential operator of order m in the form

D)= Y aq(x)D* xeR"

la|<m

where o = (au, ..., 0) is a multi-index, D* = D' --- D%, and D; = }%
X J
In this chapter, €2 is a bounded domain in R”, or 2 = R".

Definition 22.1. A fundamental solution for L in € is a distribution E in x that
satisfies

LiE(xly) = 6(x—y)
in 2'(Q2) with parameter y € Q, i.e., (LiE,9) = ¢@(y) for ¢ € C5(Q).

We understand that (LE, @) is defined in distributional form

<LE7(p> - <EaL/(p>7

where L’ is the formal adjoint operator of L given by

Lf= 3 (~D)D%aq(x)f(x)).

jal<m

Here, L' must be in 2(€) for ¢ from 2(£2). This will be the case, for example,
for aq(x) € C=(Q).

Two fundamental solutions for L with the same parameter y differ by a solution
of the homogeneous equation Lu = 0. Unless boundary conditions are imposed,
the homogeneous equation will have many solutions, and the fundamental solution
will not be uniquely determined. In most problems there are grounds of symmetry
or causality for selecting the particular fundamental solution for the appropriate
physical behavior.
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We also observe that if L has constant coefficients, we can find the fundamental
solution in the form E(x|y) = E(x —y|0) := E(x —y). This fact follows from the
properties of the Fourier transform:

LxE/(x\*)’): z aaéo‘EE—\y): 2 aaéae_i(é'y)E/(;)
lot|<m loe| <m

—

= EI5(0) = 5(c—y),

ie.,
LE(x—y) =6(x—y).

Exercise 22.1. Let L be a differential operator with constant coefficients. Prove that
u = q* E = E x g solves the inhomogeneous equation

Lu=gq
inD'.

Remark 22.2. In many cases the fundamental solution is a function. We can there-
fore write u as an integral

ux) = | EG=y)q0)dy

Remark 22.3. In order for the convolution product E x ¢ (or g+ E) to be well defined,
we have to assume that, for example, g vanishes outside a finite sphere.

Remark 22.4. 1f L does not have constant coefficients, we can no longer appeal to
convolution products; instead, one can often show that

ulx) = [ EGxy)as)ay
Definition 22.5. We denote by ag(x, &) the main (or principal) symbol of L(x, D)

ap(x,&) = Y ag(x)*, &R

o[ =m

Assume that the a (x) are “smooth.” An operator L(x, D) is said to be elliptic in Q2
if for every x € Q and & € R"\{0} it follows that

a()(X,é) 7é 0.

Exercise 22.2. Let a4 (x) be real for |o| = m. Prove that the previous definition is
equivalent to
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(1) mis even,
(2) aop(x,&) > Ck|&E|™ (or —ap(x,&) > Ck|E|™), Ckx > 0, for every compact set K C
Qandforall £ e R" and x € K.

Let us consider the heat equation

d
—M:Au, t>0,xeR",
ot

M(X,O) = f(x), xeR”
in §'(R"). Take the Fourier transform with respect to x to obtain

d . ~
Eu(gvt) = _ézu(é’t)> t>0,

a(£,0) = f(8).

This initial value problem for an ordinary differential equation has the solution

o~

(&, =e P FE).

Hence
u(e,t) = F e P F(E) = @r)y 7 e ) s p = (1) 5 g,

where

; 1 I
P(x,1)= (27 *”/ e IEleilx8)ge = R
i =n | -y

This formula implies that

1 C o
M(XJ):W/WG o f(y)dy.

Definition 22.6. The function P(x,7) is the fundamental solution of the heat equa-
tion and satisfies

0
(az —A) P(x,1)=0, t>0,

Jlim P(x.1) £5(x).

It is also called the Gaussian kernel or heat kernel.

We can generalize this situation as follows. Let us consider an elliptic differential
operator
L(D)= Y agD”

lot|<m
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with constant coefficients. Assume that L(&) = ¥4 <y 4a§* > O for all & € R"\{0}.
If we consider Py (x,t) as a solution of

(;; +L(D)) Pr(x,1) =0, >0,

lim Py (x,7) £ o(x),

11—

then Py, (x,t) is the fundamental solution of % -+ L(D) and can be calculated by

P (x,1) = (2m) " / e LE)gilrE) g

n

Lemma 22.7. Let P (x,t) be as above. Then the function

F(x, 7L) = lim [ e *P.(x,0)ds
e—0+ J¢e

is a fundamental solution of the operator L(D) + A1, A > 0.

Proof. By the definitions of F and P, we have

(F(x,1),0) = lim ( / TP (x0)d, @) = lim [ e M(PL @)dr.
£

e—0+ e—0+Jg

Therefore,

(LD)+1)F.0) = lim [ e (LD)+ 1P p)ar

=

— tim [ e M(L(D)PL, @)di+ A / ‘(P @)dr
e—0+J¢

g

= lim e”“(—iPL,(p)dt—i—MF, )

e—0+ /¢ ot
= lim [_ “PL g —l/ “PL,o dt} +A(F, )
- E11%1+e>*’15<l>L(-,8),qo> =(0,9)
forall p € S. H

Exercise 22.3. Let us define a fundamental solution I'(x,?) of % +L(D) as a solu-

tion of
{(5, L) (x,1) = 8(x)8 (1),
I'(x,0)=0.
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Prove that -
F(x,)) = / e M (x,1)dr
0

is a fundamental solution of the operator L(D) + AI,A > 0.

2
Example 22.8. Let us consider L(D) = 3¥_, (%a%,) = —A. Then L(§) = |E]%,

and the fundamental solution F(x,A) of the operator L(D) + A = —A + A has the
form

F(x’l):/w ! neim'eiédtz%/mefll*%.t*%dt
0 () @t

n i \/IX 2 n n *° r2 n
= I 7 )Uji]\/ eiri( 4‘1‘) Tifd‘[ = 1 5 771/ e717E177d17
(4m)2 0 (4m)2 0

where r = \/A|x|. From our previous considerations we know that

T I

where .Z ! is the inverse Fourier transform. The function

Ly =, 2
Ky(r) =3 (%) /0 e W 1V

is called the Macdonald function of order v. So we have

1—2
_n X 2
F(x,A)=(2m) 2 <\|/?|T> K%_l(ﬂ|x|).
It is known that )
Ko(r) = Zem i i), r>0,

where H\(,l) is the Hankel function of first kind of order v.
Next we want to obtain estimates for F(x,A) for x € R", A > 0, and n > 1. Let

r2 n . 00
us consider the integral [;"e "% 7~ 2d7 in two parts I; + h = [} + [}

(1) If0<r<1,then

1 —_ ~7ﬁ n 1 7& n b n

4
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Since

as r — 0+, we have
1, n=1,
1 _
Ih| <cp{logy, n=2,
P >3

)

For I, we can simply argue that

2

o 2, 2 e ;
12:/ efynyyfidyge*T/ eVdy<e <1, r—0+.
1 1
(2) If r > 1, then

2
{r‘ze47 n=1723,4

b2 20 [Tzt
Ilg/ e Hy 2dy=cyur /rze 22 dz<eny P
0 r="e %", n>35,

T

where 0 < § < %. The last inequality follows from the fact that z2 ~2 < cge* for
5—2>0andalle >0 (z>1).

oo v
1

we perform the change of variable z :=y+ Z—i. Then z > r and z — +-oeo. Thus

o0 rZ o
/ efyf“*ydy:c/ et (H—Z)dz
J1 272

=c Zdz+c/

/ V212

:ce’+c(eZ 2—r? +/ ez\/zz—rzdz>
r r

=c (er +/ e V72— r2dz> <ce %"
r

Since

forall0 < 6 < 1.
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If we collect all these estimates, we obtain the following:

(1) If VA|x| < 1, then

L, 1,
n_ 1
|F(X,}L)|§Cn12 ! logma n=2,
(VAX)>™", n>3,
1 n=1

)
n_q1 _— 1
S C;Az le 5ﬂ\x\ log fT‘x" n= 27

(VAx))>", n>3.
(2) If VA|x| > 1, then

IF(x,A)| < cue 8VAR p> 1,

213

We will rewrite these estimates in a more appropriate form for all A > 0 and x €

R" as
1
—_— :l
N n=h
|F(x7)’)| Scneié\/ﬂx‘ ]+|]0g \/ﬁ,l\x\" n=2,

x>, n>3.

Remark 22.9. 1Tt is not too difficult to observe that F'(x, A1) is positive.

Example 22.10. Recall from Chapter 21 that the solution of the equation

(=1 —=A)u = f can be written in the form

1617 —1
where .
= p2Jua(p)dp
K_ — 2—n l / 2
() = e Jim [

In fact, K_; is a fundamental solution of the operator —1 — A. Let us consider the
more general operator —A — A for A > 0 or even for A € C. The operator —A — A4

is called the Helmholtz operator. Its fundamental solution E, (x, A1) satisfies

—AE, — AE, = 8(x).

We define v/A with nonnegative imaginary part, i.e., VA = a + i3, where > 0
and B =0 if and only if A € [0, +c). We require that E,, is radially symmetric. Then

for x # 0, E,, must solve the equation
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("N + A =0,

This equation can be reduced to one of Bessel type by making the substitution u =
wr!=2. A straightforward calculation shows that

(rw) — (1 - g>2¥+lrw =0,

or
/

w”+v:+(k—(1—g)2:2>w=o,

or

v//(r\/I)—&—V/E:}/IZ) —|—(1—(1—Z)2A 2) v(rvA) = w(r) =v(rv).

This is the Bessel equation of order 5 — 1. Its two linearly independent solutions
are the Bessel functions J%,l and Yg,l of the first and second kinds, respectively.
Therefore the general solution is of the form

w(r) = c()J%,](\/Ir) —‘rC/lY%,](\/)TV).

For us it is convenient to write it in terms of Hankel functions of the first and second
kinds as

w(r )—coHn 1(\F}’)-I-Cﬂ‘ln l(f”)

where
BN (2) = () +i% (), B (2) =0 (2) - i (2).

The corresponding general solution u is

u(r)y=r'"2 coH (\/>r)+c1H (fr)}

o . 2 .
If A ¢ [0, +o0), then v/A has positive imaginary part, and the solution H é 7) | (VAr)is

exponentially large at z = +oo, whereas H él_) ! (\/Ir) is exponentially small. Hence
2
we take

En(x, x)—corl—m [(VAr).
Exercise 22.4. Prove that

JdE,
lim
e—0+J|x|=¢ OF

() =1
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or P
E
lim 7w, =2 =
r—0 or

1,

where @, = |S"~!| is the area (measure) of the unit sphere $"~!.

For small values of r, we have the asymptotic expansions [23]

and

It can be proved using Exercise 22.4 that

ifva\T
Co—Zﬂ .

Thus for n >2 and A ¢ [0,+<0) we obtain
(VAT Lo
E,(x,A)=-| — H Alx]). 22.1
n(x7 ) 4 (277:)() n—2 (\/>“XD ( )
A direct calculation shows that for n = 1 we have

Ei(x,A) = ﬁefﬂ\x\

for all A # 0. The formula (22.1) is valid also for A € (0,+oo). This fact follows
from the definition:

n—2
. =\
E,(x,A) = lim E,(x,A +ig) L <“18> Hﬁl,)z(ﬂ/7L+i£|x|)
2

e—0+ - Z sir(?Jr 27‘6‘)6‘

n—2
i (VAT
=7 <2nx> H%(\/XM)'
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Remark 22.11. We conclude that

o 1 i (va\T
R :4<27r|x|> Hip VI,

for A > 0. A direct calculation shows that

_ K

5 n:1,
E,(x,0) = Z]Tzl‘)gp]Tp n=2,
b n>3.

(n—2)wy,’



Chapter 23
Estimates for the Laplacian and Hamiltonian

Let us recall Agmon’s (2,2)-estimate for the Laplacian [2]:
2 .-l ¢
—A — — < — .

where (—A —k?> —i0)~! is an integral operator with kernel E,,(x,k) from the previ-
ous chapter and § > % In fact, this estimate allows us to consider the Hamiltonian
with Lj? -potentials only (if we want to preserve (2,2)-estimates). But we would
like to consider the Hamiltonian with Ll’;c-potentials. We therefore need to prove
(p,q)-estimates. 1 1

We proved in Example 18.26 that the limit sl_i)%l_i_ e ‘= 7o €Xists in the sense

of tempered distributions and

1
x—10

:p.v.l—i—i77:5()c)7
x

i.e.,

1 , P 4
<x—iO’(p> 5i%1+/|x\>5 x +im(0)

In Example 18.8 we considered the simple layer

(T.0):= | al@)p(&)do,

where o is a hypersurface of dimension n— 1 in R" and a(£) is a density. These
examples can be extended as follows. If H : R" — R and |VH| # 0 at every point
where H(&) = 0, then we can define the distribution

H(E)—i0)" = lim —p

(H(G) ~10) e—0+ H(E)—ie
(© Springer International Publishing AG 2017 217
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in §'(R), and we can also prove that

o 1 .
(H(&)—-10) l:p.v.@—i—lnS(H(é):O),

where (H (&) = 0) is defined as follows:

6.0~ [ ooz, peSE®R).
H(E)=0

The equality H(&) = 0 defines an (n — 1)-dimensional hypersurface, and o is any

(n—1)-form such that dog A % = d& (in local coordinates).

Exercise 23.1. Prove that |
S(aH) = o O0(H)

for every positive differentiable function o.

Due to Exercise 23.1 we may conclude that 6 (H) = ﬁ5 (\VHTO if [VH| #0
for H=0.

Let us consider now H (&) := —|E|? +-k%,k > 0. Then H(E) =0 or |E| =k is a
sphere and VH (&) = —2& and |VH(E)| = 2k at every point on this sphere. If we
change variables, we then obtain

1
S(H), :/ do; — — k6)do.
@0 [ oteros =3 [ oko)
We know that (—A — k*> —i0) ! f can be represented as

(ca-R =07 = [ G(x=s)s0y.

n-2
where G (|x]) = § (ﬂ) ’ H,Sl,)Q (|k||x]). On the other hand, we can write
2

2m|x|

. ilr)
(A=K —i0)"f = FUF(-A-K=i0)"'f) = 2m) "% | M
in(27r)*% 6(H)f(<§)ei(x'€>d5

n 1 ~ .
— ) [ i(x,€)
=(2m) /Rnp-v- |§‘2_k2f(§)e dé + %k -

_n F(E)edE in / n ik(x,0)
—n) pv. ; k0)ci*0) dg
(2m) 2 p.v R [E]2—K2 2k(2m)2 S"*'f( Je
=(27) 2 p.v. J(§)e'r)ag in ek(0x-¥)q9.

Rn |é ‘2 — k2 + 2k(2ﬂ,‘)n Rn f(y)dy sn—1
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Our aim is to prove the following result.

Theorem 23.1. Letk>0and%Z%—ﬁz%ﬂfornzihmdl>%—p—_3f0r

n =72, where % + % = 1. Then there exists a constant C independent of k and f such
that

1(=A = =10) "l < K 7) 2 s,

Remark 23.2. In what follows we will use the notation G instead of (—A —k*—
i0)~!

Proof. First we prove that if the claim holds for k = 1, then it holds for every k£ > 0.
So let us assume that

1G1 £l gy < €I lnceny

Set Ts f := f(6x),8 > 0. It is clear that ||T5 f || 1p(rn) = 57 | f1|zr (mny- It is not dif-
ficult to show that G, = k2T;G, T% . Indeed, since

f(x—y)dEdy
Guf = (2m)” // |§|2 20

~ F(E2)dédy
GiT. f=(2 k .
rr—en [ [ WHO

we get

It follows that

~ flx—7)d&dy
T,GiT. f = (2
WGiTy f = (2m) // |§|2f1710
_ (2n) / / @M f(x — z)k"dzdn
» Jen ‘”‘2 —1-10

dzdn
2 —Hp 2/ / X Z) )
n‘ n n |T’|2 k2 —1i0

KGif =TGIT, f,

This proves that

which we use to get
1Ges = K2 IBGITL fll e =Kk P GiTy f|

21 21 1 % l,i/ _
<Pl =P () 1l =k g,
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It therefore suffices to prove this theorem for k = 1.
The rest of the proof makes use of the following lemmas.

Lemma 23.3. Ler o(x) € S(R"),0<e <1, and 6, 0(§) =" (%) Let us set

P(E) = p.v. (nl"‘l—l *agw> ©).

Then

Proof. For P; we have the following representation:

O —
P.=p.v. </ +/ +/ >£(§n)dn =h+hL+15h.
1—e<in<t+e  Jini<i—e  Jmi>14e) NP1

The integrals I, and I3 can be easily bounded by £~ !||w||,1, because |n| < 1 —¢

1 <1

implies that ‘Wﬁ‘ = ﬁ < é and 1| > 1+ ¢ implies that ‘m'%‘ =T e

By the definition of p.v. we have

L= lim/ 768(”(25_”)(117
6-0+J5<|1-nlj<e  [M|*—1

1-6 l+e -1
= lim / +/ >/ o:0(C —rf)———dodr.
5—>0+< 1-¢ 148 ) Jsn1 ¢ (6 )r2—1

Replacing r with 2 — r in the latter integral, we obtain

ORE),,

11 = lim 5
§—0+J1—e r—1
where
rnfl (2_},.)1171
P = [ oo -0~ ao - 2-n0) 2 .

If we observe that F(1,&) = 0, then we get by the mean value theorem (Lagrange
formulas) that

1-6 F(V,é) _ -9 F(raé)_F(lvg) JF
[l [ e <0, [Feg)
<& sup 8—F
l—g<r<i| OF




23 Estimates for the Laplacian and Hamiltonian 221

But
N -1
?TI: N (il) /SH Ge(5 —r0)d6 — :”-i-l g OV (Ge0(5 = r0))d6
7rn—1 !
_ <(23_)r> /§n—1 Gew(E— (2—1)0)d6
(2—r)!

- ﬁfS ., 0-V(oew(E—(2-1r)0))d6 =: 6 + 6, + 65 + 64.

By the proof of Lemma 23.4 below we get |8;| < cje~! and 6] < c3¢~!, where
the constants ¢; and c3 depend on @. The second integral, 8,, can be estimated as
(see Lemma 23.4)

! y / 0o, ia) (E—r0)dO < cre?
= r—+1 Jsn—1 JTE 8xj =2 '
The same estimate holds for 8;. Thus, Lemma 23.3 is proved. O

Lemma 23.4. Let us assume that f € L*(S""!) and o € S(R"). Then

<ce .
L=(R")

H/Sl o0 (5 —6)£(6)d6

Proof. We can reduce the proof to compactly supported ®, since C;° 5 5. Letus con-
sider a Cj; partition of unity in R” such that ¥7_o y;(§) = 1 or even X7 ; (%) =

1, where yy is supported in [£] < 1 and y; = y(27/&) for j=1,2,3,... with y
supported in the annulus 1/2 < €| < 2. We may therefore write

/snfl o0 (5 —6)£(0)d6 = %/Sl e"y; (é ; 6) ® (é ; 6) f(6)de.

For j =1,2,3,..., the function y; (5;9) ) (5;9) is supported in the annulus

€ €

2/=1 <|.| < 2/*!. Since o is rapidly decreasing, we have that in this annulus,

‘“’(ie)'g(lfgf')w

for all M € N. Hence

(2j+18)n71

_ jyn—1
[ e two (520 e <& e <oy (2L
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Taking M large enough, we see that the sum in j converges to Ce~!. To end the
proof of Lemma 23.4, notice that the term for j = 0 satisfies this inequality trivially.
O

Exercise 23.2. Prove that (—A) ™' : L3(R?) — L2 4(R?) for 6 > 1.

Let us return to the proof of Theorem 23.1. We can rewrite Gi f in the form

Glf CPV/ f ‘§|2 é Ilfa

where
nf=c| £(6)el®de.
Sll—

Let us take a partition of unity 37, w;(x) = 1 such that suppyy C {|x| < 1} and
suppy; C {2771 < |x| < 2/*1}, where y; = w(27/x) with a fixed function y € S.
We set ¥ := y;G| and K f := W;* f, where G is the kernel of the integral operator

G. Using the estimates of the Hankel function H ’<11_)2 (|x]) for |x| < 2, we obtain
En

W <Clx*™", n>3,

and
%[ < C([log|x[[+1), n=2.

Exercise 23.3 (Sobolev inequality). Let0 < a <n, 1 < p < g < e, and é =1l_ga

n
Prove that
/ f(y)dy
R" |)C _y|n—oz

Hint: For K := |x|7""% use the representation K = K| + K5, where

K? < Y O) < )
K — < nd k= ol <n
0, |x|>u, K, |x|>u.

<

<C|fller-
L4

From Sobolev’s inequality for o = 2 we may conclude that the operator Ky is
bounded from L”(R”) — LP (R") for the range % > l - i >0ifn> 3 and for

the range 1 > ; - P— > 0if n = 2. From Lemmas 23.3 and 23 4 with € = 55 we can
obtain that .
17 (¥l = 1(]E > =1 =10)" =yl < C-27.

This inequality leads to _
1Kjll 22 < C-27,
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because
IKifll2 = 117 (¥ N2 = CI¥ - Fllz < [l < C- 27| fl e

On the other hand, due to the estimate of the fundamental solution at infinity we can
. c n—1
obtain that |'¥;(x)| <C-27/"2 and

el
1Kl <C-27772

We have used here two facts:

and supp ¥j(x) C {x:2/7! < |x| < 2/*'}. Interpolating these estimates, we obtain
the self-dual estimates

Wl <)),

For convergence of this series we need the condition 2(1 —Ly_ % (% —1)<0,0r

’
% - ﬁ - +1 If we want to get the sharper inequality 1 b ? > nil , we have to use
Stein’s theorem on interpolation [37]. Thus, Theorem 23.1 is proved. O

It follows from Theorem 23.1 that if we consider the values of p from the interval

2n 2n+2
<p< >3
n—|—2_p_ n+3"’ =2

1<p<6/5, n=2,

then we have the self-dual estimate

~ C
||Gk||LI74>LP/ < 2 ,,(l,L)'
k|7 77

p/

But we would like to extend the estimates for @k for =5 <p<2,n>3, and
1 < p <2,n=2.1In order to do so, we use interpolation of Agmon’s estimate and
the latter estimate for p = 2”+2 . This process leads to the estimate

Gl Sy
- ‘k|17(n71)<%*%>

Where2"+2<p<2 n>2, and5> (n+1)<2i7%).
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Theorem 23.5. Assume that the potential q(x) belongs to Lg(R"), n > 2, with § <
p<ewandc=0for%<p<"andoc> 1—”+1for"+1 < p < oo, Thenfor
all k # 0, the limit R
G, := lim (H—k*—ig)™!
o' g )

2p 2p
exists in the uniform operator topology from L5 (R") to L”, (R") with the norm

2 2

estimate
G, £ e < Clk V£ 20,
L?

-0/2 0/2

for large k with p and & as above and with y =2 — 75 for 5 < p < ”H and y =
1——1f0r”+l < p <o

Proof. Let us prove first that the integral operator K with kernel
1
K(x,y) := g2 ()G (Ix=y1)q, (v),

where g (y) = lg(y )|2 sgng(y) maps from L2(R") to L2(R") with the same norm
estimate as in Theorem 23.5. Indeed if f € L>(R") and g € L5 (R"), then |q] Te
Ly (R") and therefore, f|q|Z € L" ph (R™). Applying Theorem 23.1, we obtain

1Ge(lal> 1)l 2 SCKTIA 20

—6/2 Ly

6/2
where ¥ is as in Theorem 23.5. Then by Holder’s inequality we have |g| 3 @k(q ! f) €

L?(R") as asserted.

Let us consider now the operator Gq. This operator satisfies the resolvent equa-
tion
Gq =Gy — quth

which follows easily from (H — kz)éq = 1. We denote by 61 and ér the integral op-

erators having kernels G} (|x — y|)g ! (v) and |g(x)| 2 G ( ), respectively. Then

one can show that

~ ~ ~ 2p

for large k. Since K : L> — L>, G, : L} — L? and G, : L> — L", , Theorem 23.5
2 2

is proved. O

The fundamental solution of the Helmholtz operator that was considered in the pre-
vious chapter can be effectively used for the following scattering problem: find
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HZ (R"),n > 2 that satisfies

—Au+tqu=~Ku, xeR", k>0 (23.2)

U=uy+Us, U= ik(x,9)7 0c S’hl

J
}E{‘or(" 1)/2 ((;t:c—ikuw) =0, r=lx.

The latter condition is called the Sommerfeld radiation condition at infinity. The
problem (23.2) is called the scattering problem.

Theorem 23.6. Assume that g € L'(R") NL5(R"), n/2 < p < oo, 6 > max{0,1 —
(n+1)/(2p)}, is real-valued. Then there exists a unique solution u of (23.2) such
that us. € L™ (R"), and this solution u necessarily satisfies the Lippmann—Schwinger
equation

u=uo~ [ GE(x=3)g0u0)dy. 233
Proof. Let us show first that there is a constant C > 0 such that

lim luse (v)[*do (v) < C. (23.4)
R—=eoJly|=R

Indeed, the Sommerfeld radiation condition at infinity and Green’s identity imply
that

2ik [ le0)Pao0) = [ ()b 4) — e ) () o )
[y[=R

yl=

[ ) B ely) = ey) )l )
bI=R "

+OU/R”’””[APR@$00+uw@»dG@)

(s (y) Autse (y) — use (y) Atie (y)]dy
[v[<R

+dn(4Rwam%dwfﬂ

= q(y)[sc (y)uo(y) — usc(y)to(y)]dy
[y[<R

O ) R

This equality leads to the inequality
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2% | |use(y)Pdo(y)
[y[=R

12
< 21lgll 1 gy lltsell = mny +0(1) </|yR ”sc(y)|2d0'(y)> ;o R— oo

This inequality clearly implies (23.4). The next observation is that G,’: clearly satis-
fies the Sommerfeld radiation condition at infinity. Fixing now x € R" and R > 0 suf-
ficiently large that x € Bg = {y: |y| < R} and applying Green’s identity to us(y) and
G, (]x—yl), we obtain (using the fact that on the sphere |y| = r we have dy, = %)

/ylzR[usc(Y)a&rG;jﬂxyD - G;(‘x*ﬂ)%usc(y)]dd(y)

= i)y G (1) = G (e 34+ ).

The usual procedure of allocation of the singularity of G,’: allows us to obtain

e (x) = — G (Jx—y)g(y)u(y)dy
JIyI<R

_ /‘;‘:R (Msc(y) <§r —ik) Gy (|x=y) = Gy (k=) (aar — ik) usc(y)> do ().

The integral over the sphere |y| = R can be estimated from above by

([ amorsos) " (], |G- r)
+([ 60 =s)Paot) ) - ( [ () ety 2do(y>> -

Since for fixed x and R — oo we have |G} (Jx—y|)| < C/R"~1)/? and since G; and
use both satisfy the radiation condition, we may estimate the latter sum from above
using (23.4) as

Co(1/R/2) (/deG(y)> 1/2

+ o ( [ do(y)) " o1/r02) ('/l'deo(w) -

But this sum tends to zero as R — <=. Thus we have
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wel) = = [ G (lr=ya()u(r)dy

So u from (23.2) necessarily satisfies the Lippmann—Schwinger equation (23.3). For
k > 0 sufficiently large we can prove the unique solvability of (23.3) (and (23.2) as
well) as follows. Theorem 23.5 allows us to rewrite equation (23.3) in the form

v =vo— K, (23.5)

1/2 1/2

where v = |g|'/?u, vo = |g|"/?ug, and K is as in Theorem 23.5. Since the conditions
on ¢ and u imply that v,vg € L?(R") and

|®

where Cy as in Theorem 23.5 and y=2—n/2 forn/2 < p < (n+1)/2 and y =

1—(n—1)/(12p) for (n+1)/2 < p < oo, we obtain for k > C(l)/y that there is a
unique solution v of (23.5), namely

Co
LZ(Rn)HLZ(Rn) kv’

V= i Eij.
Jj=0

Moreover, the estimate

2Cy
v =voll 2@y < =7~ Vol e

holds uniformly in k > (2Co)'/?. This is equivalent to the estimate

< 20 172
Lz(R” — k}/ LI(R” °

I/ 2ue (23.6)

For the values of k from the interval 0 < k < (C)'/7 we proceed as follows.

Exercise 23.4. Show that the integral operator E}; ogq for all k > 0 is a compact
operator in L (R"), where ¢ satisfies the conditions of Theorem 23.6.

This exercise implies that the integral operators K and 6; o g are also compact
in L2(R") and L= (RR"), respectively. Next, using Agmon’s estimate and Theorems
23.1 and 23.5, we conclude that for all k > O the operator (/}; =(-A—k*+g—i0)"!
exists in the appropriate operator topology (see Theorem 23.5), and therefore for the
solution u of (23.2) (or equivalently, (23.3)) the representation

o~

u=(I—-Gyoq)up (23.7)

holds. The Lippmann—Schwinger equation can be rewritten in the operator form
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use — Tuge = up, (23.8)

where g = — (6; oq)up € L*(R") and T is a compact operator in L*(R"). By Riesz
theory (see Chapter 34) we shall obtain the unique solvability of (23.8) if we are able
to show that / — T is injective. But injectivity follows immediately from (23.7). The
theorem is therefore completely proved. a

Remark 23.7. For k > 0 large enough, the unique solvability in Theorem 23.6 holds
for a complex-valued potential g.

Corollary 23.8. Let v be the outgoing solution of the inhomogeneous Schrodinger
equation
(H - kz)v = fa
v=(H -k —i0)"'f,

where f € S(R"). Then the following representation holds:

~

v(x) = Gi(f — 4Gy () ().

Moreover, for |x| — oo and fixed positive k,

ikl 17 1
v(x, k) = CneTAf(k, 0')+o = |
x| "2 x| "2

where 0’ = ‘i—‘ and the function Ay, called the scattering amplitude, is defined by

Ai8)i= [ OV (£(3) ~ g()Gy(£))dy

Proof. The first representatlon follows 1mmed1ately from the definition of G
Indeed, since v = G,f, we must have Gk f=v+ quv or v = Gk f— quv =
Gi(f —qGqf).

In order to prove the asymptotic behavior for v let us assume that g and f have
compact support, say in the ball {x: |x] < R}. We will use the following asymptotic

behavior of G} (|x]):
(1) klx| < 1:
@ Gf(x]) ~Clx]>™, n>3,

[
(b) G (|x]) ~ Clog(klx[), n=2.
(2) klx| > 1:
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Since k is fixed, [y| < R, and |x| — +oo, we may assume that k|x — y| > 1 for x large
enough. Therefore, as |x| — oo, we have

ootk / M=l (f — 4G, f)dy
JIyI<R

"7

1 ~
t[ o |- dGunay=n+n,
pI<R \ |x—y| =

It is clear that for I, the following is true:

1 . 1
L=o (anl ./‘ylgR(f(y) —q(y)Gqf(y))dy) =0 <|x|nzl> s fx] e,

because [ — qéq f is an integrable function. Next, let us note that

|x_y|_|x|:|x_y‘2_|x|2:y2_2(x7)7>:_ iy +0 l
e=y[+xl =yl + x| x|’ x|

as |x| — +eo. We can therefore rewrite the integral appearing in /; as follows:

/ k() ro( ) (f —4Gyf)dy
yI<R

(gl ~ 1 il ~
:/ e ~ik(0 *y)(f—quf)derO ()/ e~ ik(6 ,y)(f,ngf)dy
[y|<R [yI<R

]

k(0 y ~ 1
= Jyee® ‘k<9"‘>(quq.f)dy+0<x>7 ] = o=,
NS

where ' = ﬁ € S"~!. Thus, Corollary 23.8 is proved when ¢ and f have com-
pact support. The proof in the general case is much more difficult and is therefore
omitted. O

Remark 23.9. Hint for the general case: The integral over R"” might be divided into
two parts: |y| < |x|¢ and |y| > |x|¢, where € > 0 is chosen appropriately.

Lemma 23.10 (Optical lemma). For the function Ay(k, 0") the following equality

holds:
1

2 |
/S Ak, 0)1°d0" = — = ./R,, Im(fv)dx,

where C is the constant from the asymptotic representation of v = (H — k* —i0)~' f.

Proof Let p be a smooth real-valued function on [0, +ce) such that 0 < p <1 and
p(r)=1for0<r<1landp(r)=0 for r>2. We set p,(r) = p (% ). Multiplying
f by vp,(]x]), integrating over R”, and taking the imaginary parts leads to
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tm [ F@pu()PCode =Im [ (~Av)p((al)3e)ds

As m tends to infinity, the left-hand side converges to Im [, f(x)v(x)dx. To get the
desired limit for the right-hand side, we integrate by parts and obtain

tm [ (=A4v)pa(i)7 ,Im/ Vvpp(x)F(x)dx

=Im [(9/'Vv—ikV)V(x)Pm(\x\)+ikan(|x|)\V|2}dx
R’l
=1Im (W-Vv—ikv)i(x)p,/n(x)dx—i—k/ ol (X)) Pdx =: I, + L.
Jrn R

Since v = (H — k*> —i0) ! £, using the asymptotic representation we may conclude
that v satisfies the Sommerfeld radiation condition

d 1
V—lkv-o( _]), r= x|,
ar rz

at infinity. Hence I} — 0 as m — oo. By Corollary 23.8, the second term I, is equal
to

kn—’%
[ PP =k [ L)€y (5,0 P

1
+k/ , ()dx
Jo P | T
Zmrn 1

=CH 2 / As(k,0)>d6’ 7 oL (r

2m 1
+k/SHd6/m - o(rn 1>pm(r)dr

2m
—cw 2 [ 1A (k,0)de /m p! (dr+o(1)

=2 [ Ak 0)Pa0/[p(2)— p(1)] +o(1)
—czk”*Z/ Af(k, 0)PA0" +o(1), m e
N
Letting m — oo, we obtain
m [ f0)v(x)de = —C2" 2 / A7 (k.00
R” N

Thus, Lemma 23.10 is proved. a
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Exercise 23.5. Letn=2orn=23. Assume that g € L (R")NL'(R") with 1 < p < oo
if n=2and 3 < p <o if n = 3. Prove that the generalized eigenfunctions u(xjé),
that is, the solutions of the problem (23.2) with (75,75) = k?, are uniformly bounded
with respect to x € R" and |k| sufficiently large.

We will obtain very important corollaries from the optical lemma. Let A, (k) denote
the linear mapping that takes the inhomogeneity f to the corresponding scattering
amplitude

Agk) s fx) = Ak, 8).

Lemma 23.11. Ler the potential q(x) satisfy the conditions from Theorem 23.5.

Then Aq is a well defined bounded operator from L(’;J/'; (R") to L*>(S"~1) with the

operator norm estimate

C
||A H 2p_ < Yyn=2>
RN 277
Lo L k| 212

where p, 0, and y are as in Theorem 23.5.

Proof. By Lemma 23.10 and the definition of A, f we have that

1

5 . N2 ! __ I
|4q 11721y = /S Ar(k 8)F A0 = = 2

/nIm(f-V)dx
1

<7 2p
il A

I 2

(R” ) (R" )

0'/2

Further, since v = @q f, we obtain from Theorem 23.5 that

C _
HAqf”,Z}(gn—l) < W - |k| y||fH2 2
5 (R™)

Thus, Lemma 23.11 is proved. O

Let us denote by Ao (k) the operator A, (k) that corresponds to the potential g = 0,
ie.,

Aof(8) = [ MO p(y)ay.

It is not difficult to see that

A f(6") = As(k,6') /f (K, 0)dy,
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where u(-,k, ') is the solution of the Lippmann-Schwinger equation. Indeed, by
Corollary 23.8 we have

Arlk ) = [ & MO (1) = g0)G, (N = (1= )

= (fs(1=Gy(9)e ")) 2y = SO = Gi(a))(€*®")) (y)dy

= | f(y)u(yk,0")dy,
Rn

since 6(, is a self-adjoint operator.
Let us prove now that

u(y.k,0") := (I = Gy(q)) (€)) (y)

is the solution of the Lippmann—Schwinger equation. Indeed,

(H =)= (H— )M — (H = )Gy(g) - (X)) (v)
— (=4 — K2)eik(O')  geik(8'5) _ 4eik(8'5) —

since (—A — k2)e*(€">) = 0 and (H — kz)@q = 1. This means that this u(y,k, ') is
the solution of the equation (H — k?)u = 0.

Remark 23.12. Let us consider the Lippmann—Schwinger equation
u(x,k, ) = 0 —/ G{ (|x=yDa(y)u(y,k, 0)dy.
Rn

Then for fixed k > 0 and |x| — oo, the solution u(x,k,0) admits the asymptotic
representation

. ik[x| 22 1
u(x,k,0) = 9 4+ 6, <" Ak 0,0) +0 ( ,

"7 7

where 6’ = ﬁ‘ and the function A(k, ', 0) is called the scattering amplitude and has

the form
A(k,G’,G):/ e KO g(y)uly,k, 0)dy.

n

For k < 0 we set
A(k,0',0) =A(—k,0',0), u(x,k,0)=u(x,—k,0).

Proof. 1f (H —k*)u =0 and u = *(%9) 4y (x,k,0), then ug.(x,k, 0) satisfies the
equation
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(H —K)uge = — a0,

0,x)

We may therefore apply Corollary 23.8 with v := u. and f := —ge*(®*) to obtain

where

Asli8) = [ MO (—geH0) 4G, (g ) (3))dy

n

_ / e O () (M) — G, (g0 dy.

But we have proved that e*(¢) — (A}q(qeikw*') )(y) is a solution of the equation (H —
k?)u = 0. We conclude that

Ap(k,0") = — / e KO g(y)u(y,k, 0)dy =: —A(k, ', 6).
| g

This proves the remark. O

Now let @ (k) and @ (k) be the operators defined for f € L?>(S"~!) as

(@)@ =gl [ =0 p(0)d0 (23.9)

and

(@U)N)(x) = lqg)[* [ ulx.k0)f(6)de. (23.10)

Jsn—1

Lemma 23.13. The operators @y(k) and @ (k) are bounded from L*(S"~') to
L?(R") with the norm estimates

C
<
[o(k) I, |2 (k)| < =g k>0,
where v is as in Theorem 23.5.
Proof. Let us prove that
1
(Po(k)f)(x) = la(x)|> (Ao ) (x) (23.11)

and 1

(@(K).f)(x) = lg(x) |2 (Ag.f) (%), (23.12)
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where Aj and A are the adjoint operators for Ay and A, respectively. Indeed, if
feL*(S ") and g € L*(R"), then

[ (0)(40)(8)d0 = | f(6)d6 | e Og(y)dy
=/, g(y)dy /S AN
-/, ( /S ek f(B)dB) 20)dy.

This means that

Asfy) = [ €40 p(o)de.

sn—1

and (23.11) is immediate. Similarly one proves (23.12). Since (see Lemma 23.11)

Aoll, ||A 2 <
SO

we have that

1401, [144]l 2 <

The proof is finished by

Lo 3 .
1Lo (k) fllz2 ey = 1412 (Aol 2rey < 141l oy 140 2,

)

C 1
< TY.on2 : n—
— k%+% ”qHLI‘;(Rn)HfHLZ(S 1),

where we have made use of Holder’s inequality in the first estimate. It is clear that
the same is true for @ (k). O

Agmon’s estimate (23.1) can be applied to the magnetic Schrédinger operator. In
fact, in the work [2], Agmon proved a more general estimate than (23.1). Namely, it
was proved that for all g € H? 3(R") and [k| > 1,

1

2
I ||8HH35(RH)+ ||8||H15(Rn)+|k| H8||L2_5(1Rn) <Cl|(a+k )gHL%(Rn))

where 6 > 1/2 and H* 3(R"), s = 0,1,2, denotes the weighted Sobolev space (see

below for a precise definition). As a consequence of this estimate, for all f € L% (R™),
0 > 1/2, one has the estimates
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- B
||(_A _kz_lo) lf‘|L35<Rn) S m Hf”L(ZS(R")

I(=4 =& =i0) " fl 11 gy < BIF Nz g -

(23.13)

Here (—A — k* —i0) ! is the integral operator with kernel G; (|x —y|), see (22.1),
and the weighted Sobolev spaces W, - (R") (or Hg(R") if p = 2) are understood so
that f belongs to Wpl_’ o(R™) if and only if f and V f belong to the weighted Lebesgue
space L5 (R™) (see Example 18.17).

Since the integral operator (—A — k> —i0)~! is of convolution type, using duality
we can conclude that it maps Hy YR to L? s(R") with the norm estimate

[(—a—#& _io)flfHL%(Rn) <pB Hf||H6,1(R,,) |k >1, (23.14)

where Hy '(R") denotes the dual space of the Sobolev space H' s(IR") and the con-
stant 3 is the same as in (23.13).

We will consider now the scattering problem for the magnetic Schrodinger oper-
ator in R", n > 2, of the form

Hp = —(V+iW (x))* - +V (x)-, (23.15)
where the coefficients V_V(x) and V (x) are assumed to be real and are from the spaces

WeW o(RY), VELLRY, n<p<e, o>n/p, 1/p+1/p=1.
(23.16)
We are looking for the solutions to the equation Hyu = k*u, k # 0, with Hy, from
(23.15) in the form

u(x) = uo(x) +use (x), up(x) =e*0 g e -1
{ (%) = uo(x) +use(x),  uo(x) 2317

lim,_., r("=1)/2 (Lfgcr(") — ikusc(x)) =0, r=lx|
Using the same procedure as for the Schrodinger operator (see Theorem 23.6), we

conclude that the solution (23.17) necessarily satisfies the Lippmann—Schwinger
integral equation

u(x) =)+ [ Gf (x=y) VT ()~ g()ur))dy

where g = iVW + |V_f/|2 + V. This equation can be rewritten as the following integral
equation:
use (%) = o (x) + L (uge ) (x),  ip(x) = Li(uo) (x), (23.18)

with the integral operator L; defined as
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Lft) = [ G (x=yD@VITE)0) - g0 )d 3.19)

Lemma 23.14. Suppose that the conditions (23.16) are fulfilled. Then ugy belongs
to L* 1»(R"), and Ly from (23.19) maps L, 1 (R") into itself with & as (23.16).

Moreover, for |k| > 1 uniformly,

el ,,)>

241z ey < B (2] + o liligen ) I

loll2 oy < B (z\ i
(23.20)

where B is the same as in (23.13) and the constant C » 1S equal to

(1 T((p-n)/2\'"
C”_((2\/ﬁ)" r(p/2) ) |

Proof. Conditions (23.16) imply that 6/2 > 1/2 and

L5 (R") L2 (R").

It is therefore true that under these conditions the functions V, VW and |W\2 belong
to L2 /2( ") and W € LZ(R"). Using the first Agmon’s estimate (23.13), one can

easily obtain
~ B
||M0||L2_6/2(Rn) <o I ) +||‘]||Lf’/2(]R") -

Hence the first inequality in (23.20) is proved. Next, applying now (23.14), we ob-
tain that

12l Rn<ﬁ< VO, 1 gy 1 Rn>
/

2 ooy 10 )

1712 ey 19 e )

§[3<2 W

<p (2w

To estimate the second term ||qf| - (rn) We proceed using Holder’s inequality and
/

LG (R")

the Hausdorff—Young inequalities as follows:
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sy 60| 7 @)

laf N1 ey = ||,

12r/(p-2) (R")
7

where p > n, §(x) = (14 |x[2)°/2¢(x), f(x) = (1+|x[*) "/ f(x), and Cy is equal to

/ no oo 1/
“= <~/R (1+C)lcxz)l’/2>1 - (;\({f/)z)/o r<n2)/2(1+r)p/2dr) .

Combining this constant Cy with the latter inequality, we obtain C,, from this Lemma
and (23.20). ad

< Cy(27) "/Pqu < Co(2m) ™11 oy

L2P/(p+2) (Rr) — 12(RM)

We denote by o and 7 the following constants:

+Cpllall 2 @ - +lallz - 2321)

LZ(R") 2 (R
Theorem 23.15. Assume that the conditions (23.16) are satisfied and assume that
Bo < 1 with B and o from (23.13) and (23.21), respectively. Then the integral
equation (23.18) has a unique solution us. from the space L* o2 (R™), and uniformly

ink, |k| > 1, the following estimate holds:

By

||MSC||LEG/2(R") < 1 _ﬁa.

(23.22)

Proof. Lemma 23.14 says that L; maps in L? | 1 (R") and

HLkHina/z(RqﬂLgc/z(Rn) <Ba<l.

Since iy belongs to L - /Z(R”) with the norm estimate 7, the integral equation

(23.18) has a unique solution ug. from L*> - /Z(R") that can be obtained by the itera-
tions

=

use = (I— L) " (io) = X, L™ (uo).

j=0

The estimate (23.22) follows now from Lemma 23.14 and from the latter represen-
tation for u.. O

Corollary 23.16. If the constant o from (23.21) is small enough, then for fixed k,
k| > 1, us(x,k, 0) belongs to L(R") in x € R" and uniformly in 6 € S"~1.

Proof. For o small enough, 1y € L*(R") and L; maps in L”(R") with the norm
estimate
||Lk||L°°(R")—>L°°(R") < C(k)a. (2323)
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These two facts yield the proof. a

Lemma 23.17. Under the assumptions of Theorem 23.15, for fixed k > 1 and for
f € L=(R") the following asymptotic representation holds:

eik|x\k(n—3)/2 k(8" ) - 1
ka(.x) = CW /Rn € (2k9 w +€I)f()’)dy+0 ( |_x|(”1>/2> 9

(23.24)

as |x| — oo, where ' = x/|x| and

Czl e—i%(n-‘rl) .
2 2m)o P

Proof. In this proof we assume (for simplicity) that n > 3. Since f € L*(R") and w
vanishes at infinity, integration by parts leads to

Lif () = =2 [ V,GF (r=3DW0)F 0y = [ GF (r=3Da(r)f5)dy:

In view of this, one must study the behavior as |x| — o of the functions

N i k (n=2)/2 )
Ge =y =7 (27T|x—y|> H,” 5 o (Klx =)

and

VG (o) =k (T
T 14\ 2y 2

where Hf,l) denotes the Hankel function of the first kind of order v. The behavior
of the latter integrals can be studied by dividing them into two cases: |y| < |x|* and
[y| > |x|*, where a > 0 is a parameter that we can adjust to our liking. In the first
case we have for a < 1/2 that

x =yl = x| = (6",3) + Ol )

and (as a consequence of it) k|x — y| — oo for |x| — co. Thus, we use the behavior of
H\(,l) for large argument (see [23])

(1) B eiz 1
H(n—2)/2(z) - an +0 (Z3/2> s

DY 1
=0z +0 ()

(23.25)



23 Estimates for the Laplacian and Hamiltonian 239

as |z| — oo, where G, = \/%e’i%("’l), n > 2. Hence we obtain in this case that

- s

ey 1Cn e (n-3)/2 1
Gl =D = gapean oyt O\ pee
4

ey
Cyl Q’k e! [ )I k(n73)/2+0 (]) -

+ — =
Vka (|x y|) |X|(n+1)/2

Qm) 227 iy yn-1/2
Since for |y| < |x|* we have in addition that

—(n— —(n— —(n— a— XYy d a—
=y 0 = a0 (e, L o),

and

K=y _ iklx] k(6 y) 1
€ = € +O —_—
|x|172a )

it follows that the first part (|y| < |x|*) of Lif(x) is equal to

— eik‘xl k(o' . 1
- —ik(6".y) / v
Cn |x|(n71)/2 /MSM“G (2k9 W(y)+q(y))f(y)dy+0<|x|(n1)/2+12a) 3

where E'Vn = —W. We have used here the fact that the conditions (23.16)

guarantee that W and V belong to L (R™). This means that L; f is of the desired
form as |x| — oo in this case.

Turning now to Ly f, where |y| > |x|, we have two more possibilities: |x|* < |y| <
|x|/2 and |y| > |x|/2. In the first case we have that |x — y| > |x|/2. Using again the
asymptotic (23.25) we may estimate L; f from above by

C - 1
= % VOINAY | £l = 0 [ ————— ),
5 o VOV Oy =0 (it )

since W and V belong to L' (R"). For the case |y| > |x|/2 we have two subcases:
k|x —y| < 1 and k|x —y| > 1. For the first subcase we use the behavior of Hél) for

small argument, see [23],

HY () =z +o(z), z— 0+,

and obtain that
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Hence, L; f(x) in this subcase can be estimated from above by

/ W ()[1£()|dy / [V(y)||f(y)|dy
Kx—yl<Lyl>l/2  [x—yl! Kx—yl<Lly|>xl/2 X —y[n?

. dy
<l ([ s
<C|fll. (R") < L3(R) J|y|>|x|/2 |x—y[*=tyle
dy 1/p

WVl (/|y>x|/2 |x—y<"2>P'|y|"P'>

“c HW L2 (R ”V”Li’;(R") _ 1
< ||f||L°"(R") pr-Tro—n " |yjn=2to-n/p =0 W ’

since o > n/ p',n < p<oo, and n > 3. We have used here the estimates for the
convolution of the weak singularities (see, for example, Lemma 34.3).

For the second subcase we can use (23.25) and estimate this part of Ly f(x) from
above by

Cllfl,- / (IW|+|V])(1+y))°
LB Jigemyi> 1yl /2 [x— y[@0=D2(1+ [y[)o

. dy 1
< oo (TN D (Ton
< Cllfllpm e (Hw i H Vg )) ( o |x_y|<n1>p,/2yc,p,)

_ 1
=0 |- D)/2

as |x| — oo, using the estimates for convolution of weak singularities and conditions
(23.16). O

Since ugc(x,k,0) for fixed k > 1 is an L™-function in x, Lemma 23.17 yields the
asymptotic representation for u as

1 efi%(;ﬁ»]) eiklx| g (n=3)/2

) 1
_ alk(x,0) ;. © / -
u(x.k,0) =e ) (2m)(n=D/2 |x|(n=1)/2 Alk,0,6) +0 (|x|("1)/2>

as |x| — oo, where the function A(k, 0',0) is called the scattering amplitude for the
magnetic Schrodinger operator and it is defined as

A(k,0',0) = / e KO (2k0"W (v) + () u(y. k. 0)dy. (23.26)
Rn

Substituting u = ug + usc into (23.26) implies
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Ak 0,0) = [ e HODHOD k0 () +q(v)dy
R”
- /IR e MO (2K0'W (y) + q(y) usc (3. k, 0)dy
=: Ap(k, 9/,9)+R(k, 9',9). (23.27)

The function Ag(k,0’,0) is called the direct Born approximation. It can be easily
checked that

Ag(k,0',0) = 2k6".7 (W) (k(6 — 6')) + 7 (q)(k(6 — 0"))
=k(0+0)FW)(k(0—0))+F (W +V)(k(6—6"), (23.28)

where .7 denotes the usual n-dimensional Fourier transform.
The direct Born approximation allows us to obtain the approximation ug (x,k, 0)
for the solution u(x,k, ) of the equation Hy,u = k*u as

S (1) ikl (n3)/2

1 e
elk(x.0) 4 —
ug (x,k, 0) = ) 2m) =02 5| =D/2

Ap(k,0’,0) (23.29)
and secondly, to prove the following very practical statement.

Proposition 23.18. The Fourier transforms of |17V|2 +V and W can be evaluated as

_ 1
F(WE+V)(E) = 5 (As(k,0,0) + Ap(k, ~0,-0"))
. . 1
42— G261, 7 (W))(E) = 5 (A (k. 0", 0) — Ag (k, —6,-6")),
where & + 0, &| is any unit vector that is orthogonal to &, and k.0, 6 are defined

by

7+&L\/7§29/ _ gL\/igz

sothat E =k(0 —0') and k> < E?/4.
Proof. The result follows straightforwardly from (23.28). O

All these results, in particular the direct Born approximation, are valid also for the
Schridinger operator (W = 0) as well as the approximation for the backscattering
amplitude (see results below).

One may have interest in the particular case 8’ = —6. This case leads to the
so-called direct backscattering Born approximation, i.e.,

A(k,—0,0) ~ A} (k,—0,0) := .F (|W|*+V)(2k6). (23.30)
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But the approximation for the backscattering amplitude admits more terms than just
the Born backscattering approximation. Namely, the following theorem holds.

Theorem 23.19. Under the conditions of Theorem 23.15 the backscattering ampli-
tude A(k,—0,0) admits the following representation:

A(k,—0,6) = F(|W[* +V)(2k6) — (2;)}1 /R ?(q)(kenﬂ;ﬁ)k«i(c%(ke —n)dn
(24;()” / 0.7 (W )(kentn)lcvzjl(o )(k6 — n)dn+hmt(ke),

(23.31)

where q denotes the complex conjugate of q = iVW + \W\z 4V and where hyeg
belongs to L= (R") and

pay
1~ Ba’ (23.32)

Proof. The formulas (23.27) and (23.28) for the case 6’ = —6 show that we need
to investigate only

||hrest||Lm(]R”) <3

R(k,—0,0) = —2k0 | e*OIW (y)us(y,k,0)dy+ / 99 q(y)use (v, k, 8)dy.
Rn
(23.33)

But since usc = X7 L,{(uo), we see that (23.33) can be rewritten as

R(k,~0,0) = —2k0 | "W (y)Liug(y,k,0)dy
Rﬂ
+ i"“’”q(y)Lkuo(y,k,9)01y

—2k8/ ZLuo y,k,0)dy
=2

+ L e 03g(y) Z Liug(y,k, 0)dy =: R; +R,.
=

The definition of L;uq allows us to obtain
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Ri = 482 / / ek OIHIGE (|y — 2| O () OW (2)dydz
R JR?
w2k [ [ HOMIGE(y—2)6W (3)(42) — g(2))dndz

/n/n O Gy (y—2Da(y)q(z)dydz = I + L+ 1.

Using now the facts
1

3?(Gk+())(n) = m

and Z (Qy) = (2m)"F (@) = .F(y), we obtain that [;, j = 1,2,3, can be written
as

4k2 / 0.7 (W) (k6 +n)0.%Z (W)(k6 —n) q

"=y Je R0 m

L= (;‘;’;/ 0.7 (W )(kent%_(i‘)m(ke M 4.
11+(247i‘)n/n9</( )(k9n+ﬁ)](2{§0 Jko—m)

WLy T

Thus, the second terms in (23.31) are proved. It remains to estimate /g (01 R»).
Indeed, the definition of R, allows us to obtain (using integration by parts) that

Ra(k.~0,0) = = [ e*0q(y) 3, Luo(y.k.0)dy
=

+Zi/ e OIW (y) .V <2Liuo(y,k, 9)) dy.
R? j=2

Since

||Lk||Hlo-/2(Rn)_’L2,0-/2<Rn) < Baa

it follows using duality that R»(k,—6,0) can be estimated as

|R2(k7_9>6)|
< ||61HL2 (R ZL 4o v (ZLiu())
L2 (R =2 H gy (R")
Baﬁy BoBy _ ., B*ar
< < .
_||4HL§/2( [305 HW’ HL ,(R) 1-Ba _31—ﬁ0!




244 Part II:  Fourier Transform and Distributions

Thus, Theorem 23.19 is completely proved. a

Remark 23.20. This theorem (as well as Theorem 23.15) is a generalization of the
corresponding results for the Schrodinger operator. But the difference is that com-
pared with the Schrodinger operator, the magnetic Schrédinger operator is not a
“small” perturbation of the Laplacian. This is a reason for the smallness of norms in
Theorem 23.15. For the Schrodinger operator we do not need this requirement.

Remark 23.21 (One-dimensional case). There is one interesting remark that should
be made here. The asymptotic representations (see Theorem 23.15 of formulas
(23.24)) and (23.26) coincide with well known formulas in the one-dimensional
case. Moreover, the definition (23.26) of the scattering amplitude defines the reflec-
tion and transmission coefficients for the one-dimensional “magnetic” Schrédinger
operator.
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Chapter 24
Introduction

Despite the fact that this part is devoted to Hilbert spaces, it is assumed that the fol-
lowing concepts are known (they are necessary mainly for examples and exercises):

(1) the Lebesgue integral in a bounded domain € C R” and in R”;

(2) functions of bounded variation BV [a,b] on an interval [a,b] (see Part I for
details);

(3) the Stieltjes integral of continuous functions on [a, b];

(4) a complete normed space C¥ (2),k=0,1,2,...,0on a closed bounded domain
Q C R defined by

CHQ) = {f: 2 = C: | fllugy = max 3, [9°F(x)] < o=},

o <k

where o is an n-dimensional multi-index, i.e., ¢ = (o, ..., 0,), o; € NU{0},

. . |

j=L12,... nwith|a|=01+ 0+ -+ 0y and 9% f = P a‘?af
X

PRI
| ._.axyolﬂn

(5) a complete normed space L (Q) defined by

L7(Q) =A@ = C:|fll () = esssup [f ()] < oo}
(6) a complete normed space L' () for an open set  C R” defined by
LHQ)={f: 92 = C: ey = [ 17(0ldr <o=}:

(7) the generalized (in the L? sense) derivatives 9% f(x), o = (au, ..., 0, (see Part
II for details);
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(8) Lebesgue’s dominated convergence theorem: let 2 C R” be measurable and let
{fi(x)}7_, be a sequence of measurable functions converging to f(x) point-
wise in €; if there exists a function g(x) € L'(Q) such that |f;(x)| < g(x),
k=1,2,..., then f(x) € L'(Q) and

lim [ fiwde= [ flodx

(9) Fubini’s theorem on interchanging the order of integration: if f(x,y) is inte-
grable on X x Y, then

/XdX(/Yf(x,y)dy) :/Ydy (/Xf(x7y)dx> Z/Xxyf(xw)dxdy;

(10) the uniform boundedness principle in Hilbert space (Banach—Steinhaus the-
orem): let H be a Hilbert space; suppose that F is a collection of bounded
(continuous) linear operators in H; if for all x € H, then one has

sup [|Ax||y < oo,
A€F
whence
sup  [[Ax||y = sup [[Al|y_p < oo,
A€F

A€F,||x||=1

see Theorem 26.3.



Chapter 25
Inner Product Spaces and Hilbert Spaces

A collection of elements H is called a complex (real) vector space (linear space) if
the following axioms are satisfied:

(1) To every pair x,y € H there corresponds a vector x +y, called the sum, with the
following properties:

(@ x+y=y+ux

b)) x+(+z)=@&+y)+tz=x+y+z

(c) there exists a unique element O € H such that x4+ 0 = x;

(d) for every x € H there exists a unique element y; € H such that x+y; =0.
We set y; := —x.

(2) Forevery x € H and every A, u € C there corresponds a vector A - x such that

(@) A(ux) = (Ap)x = Apx;
(b) (A+u)x=Ax+ pux;
(©) A(x+y)=Ax+Ay;
d 1-x=ux.

Definition 25.1. For a linear space H, a mapping (-,-) : H x H — C is called an
inner product or a scalar product if for every x,y,z € H and A € C the following
conditions are satisfied:

(1) (x,x) > 0and (x,x) =0 if and only if x = 0;
@) (xy+z)= () +(x2);

() (Axy) = A(xy);

“4) (xvy) = (yax)'

A linear space equipped with an inner product is called an inner product space.

(© Springer International Publishing AG 2017 249
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An immediate consequence of this definition is that

(x,2) + 1 (y,2),
(x,),

(Ax+uy,z) =

A
(%, Ay) =4
for every x,y,z€ Hand A,u € C.

Example 25.2. In the complex Euclidean space H = C" the standard inner product
18 n
x,y) = ZXJYT' )
j=1

where x = (x1,...,x,) € C"and y = (yy,...,y,) € C".

Example 25.3. 1In the linear space Cla,b] of continuous complex-valued functions,

the formula ,
9= [ sekar

defines an inner product.

Definition 25.4. Suppose H is an inner product space. Then

(1) x € His orthogonal to y € H if (x,y) =0.

I, o=p
2) A system C H is orth Lif (xg,xg) = =<7 ’
(2) Asy {xa el orthonormal if (xe,xg) = 8¢ {07 o« 4B,

where I is some index set.
3) ||x|l := v/ (x,x) is called the length of x € H.

Exercise 25.1. Prove the Pythagorean theorem: If {x;}*_, k € N, is an orthonor-

mal system in an inner product space H, then

j=r

2

k k
2
N

for every x € H.

Exercise 25.2. Prove Bessel’s inequality: if {x;}*
tem, then

i1 k < o, is an orthonormal sys-

J 2
Z x,x)* < |2l
=

forevery x € H.
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Exercise 25.3. Prove the Cauchy—Bunyakovsky—Schwarz inequality:

o) < [xlliyll, xyeH.
Prove also that (-,-) is continuous as a map from H x H to C.

If H is an inner product space, then
x| := v/ (x,%)

has the following properties:

(1) ||x|| > O for every x € H and ||x|| = 0 if and only if x = 0.
(2) ||Ax|| = |A|||x|| for every x € H and A € C.
(3) Ilx+yl <|lx|| + |ly|| for every x,y € H. This is the triangle inequality.

The function ||-|| = y/(-,-) is thus a norm on H. It is called the norm induced by the
inner product.

Every inner product space H is a normed space under the induced norm. The
neighborhood of x € H is the open ball B,(x) = {y € H : |[x—y|| < r}. This system
of neighborhoods defines the norm topology on H such that the following conditions
are satisfied:

(1) Addition x4y is a continuous map H x H — H.
(2) Scalar multiplication A - x is a continuous map C x H — H.
(3) The inner product (x,y) : H x H — C is continuous.

Definition 25.5. (1) A sequence {x;}7_; C H is called a Cauchy sequence if for

every € > 0 there exists ng € N such that ka ijH < gfork,j>np.
(2) A sequence {xj};f’:l C H is said to be convergent if there exists x € H such that

for every € > 0 there exists ng € N such that Hx —Xj H < € whenever j > ng.
(3) An inner product space H is a complete space if every Cauchy sequence in H
converges.

Corollary 25.6. (1) Every convergent sequence is a Cauchy sequence.
(2) If{x;}7_| converges to x € H, then

tim x| = [lll-

Definition 25.7 (J. von Neumann, 1925). A Hilbert space is an inner product
space that is complete (with respect to its norm topology).

Exercise 25.4. Prove that in an inner product space the norm induced by this inner
product satisfies the parallelogram law

2 2 2 2
[y e =yl" = 2[x[I” + 2y ]I
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Exercise 25.5. Prove that if in a normed space H the parallelogram law holds, then
there is an inner product on H such that ||x||* = (x,x) and that this inner product is
defined by the polarization identity

1 2 2 . T .2
(e9) = 7 (3P = =3P +i e+ i) =i x = iv]?)
Exercise 25.6. Prove that on Cla, b] the norm

(KAl = max |f ()]

is not induced by an inner product.
Exercise 25.7. Give an example of an inner product space that is not complete.

Next we list some examples of Hilbert spaces.

(1) The Euclidean spaces R” and C”".
(2) The matrix space M, (C) consisting of n x n matrices whose elements are com-
plex numbers. For A, B € M,,(C) the inner product is given by

n
(A,B)= Y aybrj =Tr(AB"),
k,j=1

where B* = B' .

(3) The sequence space I>(C) defined by

lz(C) = {{Xj};-(’],xj eC: Z |Xj|2 < 00}.
j=1
The estimates
2 2 2 2 2012
iy <2(bg1P+1yF) s 1AxE = (A
and

1
il < 5 (I > +1y;1%)

imply that /2(C) is a linear space. Let us define the inner product by
(x,y) = Z Xjyj
j=1

and prove that />(C) is complete. Suppose that {x(k)};":1 € I>(C) is a Cauchy
sequence. Then for every € > 0O there exists ny € N such that
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5 oo
qu«) —xm H =3 ) a2 g2
j=1

for k,m > ng. This implies that

W —admi<e, =12,
or that {xgk) }©_, is a Cauchy sequence in C for every j =1,2,.... Since C is a

complete space, it follows that {x§k>};°=1 converges for every fixed j =1,2,...,
i.e., there exists x; € C such that

(k)

xj:gil?oxj .
This fact and
S )
Y |x§ —x; ?<e? €N,
j=1
imply that

m-—oo 7

L®mp e
lim Z |xj —x; |- = Z |xj —xj|"<e
J=1 J=1
for all k > ngy and [ € N. Therefore, the sequence
®)
s ::2|xj —xj\z, k > no,
j=1

is a monotonically increasing sequence that is bounded from above by €.
Hence this sequence has a limit with the same upper bound, i.e.,

- i
k . k
> = tim 3 i < €2,
from which we conclude that
ol [+ [ ] < ] +e

and x € I>(C).
The Lebesgue space L*>(), where © C R” is an open set. The space L?(Q)
consists of all Lebesgue measurable functions f that are square integrable, i.e.,

[ P < e
Q
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This space is a linear space with the inner product
(r.9)= [ s

and the Riesz—Fischer theorem reads as follows: L?(£2) is a Hilbert space.

(5) The Sobolev spaces Wy (£2) consisting of functions f € L?(£2) whose weak
or distributional derivatives % also belong to L*(£2) up to order |o| < k,
k=1,2,.... On the space W& (£2) the natural inner product is

(r)= % [ 0970

|| <k

Definition 25.8. Let H be an inner product space. For a linear subspace M C H the
orthogonal complement of M is defined as

Mt :={yeH:(yx)=0,forallxc M}.

Remark 25.9. Tt is clear that M is a linear subspace of H. Moreover, M N M+ =
{0}, since we always have 0 € M.

Definition 25.10. A closed subspace of a Hilbert space H is a linear subspace of H
that is closed (i.e., M = M) with respect to the induced norm.

Remark 25.11. The subspace M is closed if M is a subset of a Hilbert space.

Theorem 25.12 (Projection theorem). Suppose M is a closed subspace of a
Hilbert space H. Then every x € H has a unique representation as

xX=u-+tv,
where u € M and v € M+, or equivalently,
H=Mo®M".
Moreover, one has that
= inf ||[x—y|| = d(x,M).
vl yleMHx vl =:d(x,M)
Proof. Letx € H. Then
di=d(x,M) = inf lie—y]| < |r—u]

for all u € M. The definition of infimum implies that there exists a sequence
{u;}7-; C M such that
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d=1im |jx—u;||.
J—ee

The parallelogram law implies that

i = el = 1oty =) + (6= )| =2 [ x> +2 [ s P~ 4 - 22

Since (u; +ux)/2 € M, it follows that
oty — g ||* < 2 ||y —x||” + 2% — we* — 4d? — 2d* +2d% — 4d> = 0

as j,k — c. Hence {u /-}‘J’-"= 1 C M is a Cauchy sequence in the Hilbert space H. This
means that there exists # € H such that

u= limu;.

Jreo
But M = M implies that u € M. By construction one has that

d=1im ||x—u;|| = [[x—ul|.

Let us set v := x — u and show that v € M. For all y € M, y # 0, we introduce the

number
(1,y)

— Y
¥l

Since u — ay € M, we have

2 2 2 2 2112
d” < [lx = (u = oy)[|” = v+ ayl|” = VI + (v oy) + (ey,v) + e[|y

_ 2o ey )0y [ e [6)P

2 2 2 2 -
Iyl ¥l Iyl [yl

This inequality implies that (y,v) = 0, which means that v € M. In order to prove
uniqueness, assume that x = u; +v| = uy +vo, where uj,up € M and vi,v; € M+
It follows that

Uy — Uy =vy—vj eMnM*.

But M "M+ = {0}, so that u; = up and v| = v,. O

Remark 25.13. In the framework of this theorem we have that

2 2 2 2 2
el = Mlael= 1l VI = Gev), o (ull® = ().
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Corollary 25.14 (Riesz-Fréchet theorem). If T is a linear continuous functional
on the Hilbert space H, then there exists a unique h € H such that T (x) = (x,h) for
all x € H. Moreover, ||T||_c = ||h]]-

Proof. If T =0, then h = 0 will do. If T # 0, then there exists vog € H such that
T(vo) #0. Let

M:={uecH:T(u)=0}.

Then vy € M+, v # 0, and T (vp) # 0. Since T is linear and continuous, M is a
closed subspace. It follows from Theorem 25.12 that

H=M&M",

i.e., every x € H has a unique representation as x = u+v. Therefore, for every x € H,
we can define

Then T'(u) =0, i.e., u € M. Tt follows that

T(X) HV ||2_ T(x)

2
T(V()) - T(V()) ||V0H ’

(x,v0) = (u,vo) +

or

T() = L0 () = (x, T'(vo) vo> ,

= 2
[voll

which is of the desired form. The uniqueness of & can be seen as follows. If 7'(x) =

~ ~ ~112 ~
(x,h) = (x,h), then (x,h— ) = O for all x € H. In particular, hth — (h—h,

h—h) =0, i.e., h=h. It remains to prove the statement about the norm ||T|| Hoo =
|IT|). Firstly,
1T = sup [T(x)| = sup |(x,A)[ <|A].

[l <1 [l <1

On the other hand, T'(h/||h||) = ||A|| implies that || T'|| > ||A||. Thus ||T|| = ||%||. This
completes the proof. O

Corollary 25.15. If M is a linear subspace of a Hilbert space H, then
M = (Ml)L —M.

Proof. It is not difficult to check that M+ = (M) t Therefore,

1

M= (o))
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and Theorem 25.12 implies that

H=M&M)", H=(M) am-

The uniqueness of this representation guarantees that M- = M. O
Definition 25.16. Let A C H be a subset of an inner product space. The subset
k

spanA := {er:x: ?ijj,xjeA,lje(C}

j=1

is called the linear span of A.
Definition 25.17. Let H be a Hilbert space.
(1) A subset B C H is called a basis of H if B is linearly independent in H and

spanB=H,

i.e., for every x € H and every € > 0 there exist k € N and {cj}ljzl C C such
that

k
foijj <€, Xx;E€B.
Jj=1

(2) H is called separable if it has a countable or finite basis.
(3) An orthonormal system B = {x¢ }qea in H that is a basis is called an orthonor-
mal basis.

By Gram-Schmidt orthonormalization we may conclude that every separable
Hilbert space has an orthonormal basis.

Theorem 25.18 (Characterization of an orthonormal basis). Let B = {x;}7_,
be an orthonormal system in a separable Hilbert space H. Then the following state-
ments are equivalent:

(1) Bis maximal, i.e., it is not a proper subset of any other orthonormal system.
(2) For every x € H the condition (x,x;) =0, j=1,2,..., implies that x = 0.
(3) Every x € H has the Fourier expansion

x= ) (x,xj)xj,

™

1

J

ie.,

— 0, k—oo.

k
X — Z(x,xj)xj
j=1

This means that B is an orthonormal basis.
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(4) Every pair x,y € H satisfies the completeness relation

Mx

(xy) = >, (e, x;) (v,x)).

1

J

(5) Everyx € H satisfies Parseval’s equality

, 2
I¥* = X 1))
=1
Proof. (1)=(2) Suppose that there is z € H,z # 0 such that (z,x;) = 0 for all j =

1,2,.... Then
b= {n e }

is an orthonormal system in H. This fact implies that B is not maximal, which
contradicts (1) and proves (2).
(2)=-(3) Given x € H, we introduce the sequence

L0

-

(x,x)x;.
1

J

The Pythagorean theorem and Bessel’s inequality (Exercises 25.1 and 25.2) im-
ply that

HX<k)H2 = ﬁll(x,xj)lz < |lx)%.
£

It follows that

i )CXJ
j=1

converges. Therefore, for m < k,

as k,m — oo. Hence x*) is a Cauchy sequence in H. Thus there exists y € H such
that

y = Jim 5 = 3 (3, ))x;
j=1

Next, since the inner product is continuous, we deduce that
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: k
(y7xj) = khj}olo(x( )7xj) = (xvxj)

forall j =1,2,.... Therefore, (y —x,x;) =0 for all j =1,2,.... Part (2) implies
that y = x and part (3) follows.
(3)=(4) Letx,y € H. We know from part (3) that

=

(x, xj)xj, y= Z(y,xk)xk

1 k=1

™M

X =

J

The continuity of the inner product and the orthonormality of {x j};"zl allow us
to conclude that

™M

(06,x7) (3 %)

= Z 2 x,%;) (v, %) (xj,x%) =
j=lk=1

1

J

(4)=(5) Take y = x in part (4).
(5)=(1) Suppose that B is not maximal. Then we can add a unit vector z € H to it
that is orthogonal to B. Parseval’s equality gives then

, =
L=llz)* =X [(zx) P =
j=1

This contradiction proves the result. (I

Exercise 25.8. Let {x j};f’zl be an orthonormal system in an inner product space H.
Letx e H, {cj}lj?zl C C, and k € N. Prove that

k
X72ij]' .

J=1

<

k
Zxx}




Chapter 26
Symmetric Operators in Hilbert Spaces

Assume that H is a Hilbert space. A linear operator from H to H is a mapping
A:DA)CH—H,
where D(A) is a linear subspace of H and A satisfies the condition
A(Ax+ py) = AAx+ UAy

for all A,u € C and x,y € D(A). The space D(A) is called the domain of A. The
space
N(A) :={xeD(A): Ax=0}

is called the null space (or kernel) of A. The space
R(A):={ye€H:y=Axforsomexe D(A)}

is called the range of A. Both N(A) and R(A) are linear subspaces of H. We say that
A is bounded if there exists M > 0 such that

lAx| <M, xeD(A).
We say that A is densely defined if D(A) = H. In such a case, A can be extended
to Aex, which will be defined on the whole H with the same norm estimate, and we
may define
Al = inf{M : [JAx] < Mix] x € D(A)},

or equivalently,
1Al gy = sup [|Ax]].

[l =1
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Example 26.1 (Integral operator in L* ). Suppose that K (s, 1) € LX(2xQ),QCR",
Let us show that the integral operator K defined as

Ri6) = [ Ko, fer’(@)
Q
is bounded. Indeed,
2 _ ~ 24
@ /Q R f(s)Pds = /Q ‘ /Q K(s,1) f(1)de
= [ ()Pl as < [ 1RGN 77 as
= [, (L 0P [ 1r0Par ) as = 1K . e

where we have made use of the Cauchy—Bunyakovsky—Schwarz inequality. We
therefore have N
<

IR, = 1Kz

2
ds

|Rs

o 1K)

The norm

is called the Hilbert—Schmidt norm of K.

Example 26.2 (Schur test). Assume that p and ¢ are positive measurable functions
on 2 C R" and o and f are positive numbers such that

| 1K) Ip0)dy < aq(), - ac.in @

and .
/Q IK(x,y)|lg(x)dx < Bp(y), ae.inQ.

|*

Proof. For all f € L*(Q) we have

Then K is bounded and

<+ap.

212
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/Q </Q K (xy)] - If(y)ldy>2dx

2
- ( [ VRGP0 K(X’y)'|f<y>|dy> a

< [, ([ ixetpoa ) ([ EE2 102y o
<o | (f IKtplgwar) L2 <( )) dv<ap [ )P

by the Cauchy—Bunyakovsky—Schwarz inequality and Fubini’s theorem. (I

Exercise 26.1. Assume that o and 3 are positive constants such that
/ IK(x,y)|dy <o, ae.inQ
Q

and
[ IK@ylars B, ae.in0
Q

for some measurable function K (x,y) on Q x 2,02 C R". Show that the integral
operator K with kernel K is bounded in L?(2) for all 1 < p < e and

*

LP—LP p P

The following fundamental result can be used in the theory of bounded linear
operators (see [29]).

Theorem 26.3 (Uniform boundedness principle). Suppose that a sequence A, :
H — H of bounded linear operators satisfies the property (pointwise boundedness)

sup [|A,ully < C. (26.1)
n

Then there is a constant C > 0 such that

sup [Anl[y—.i < C.
n

Proof. Let us assume to the contrary that

sup [|Ap || g = +oo. (26.2)
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Then for each k > 1 there exist A, and u; € H such that
2
el =475 JJAmae] = 5 Anc [l [JAneael] > 2(Mir +K), - (26.3)

where Mo = 1 and My = sup,, ||A, (1 + - - - +u)||. Indeed, by (26.2) there exists A,
with ||A,, || > 24. The definition of the norm of a linear operator allows us to choose

uy such that |[u;]] =1 and ||A,,u1]| > %HA,,] |I. Setting u; = w7 /4 shows that all
conditions (26.3) are satisfied for k = 1 and with My = 1.

Assuming that uy,uz, ..., ux_1,An, ,An,,-..,An,_, have been defined, choose A,
such that

|An || = 3- 45 (M1 + k),

which is possible by hypothesis (26.2). With this choice of A, there exists u; such
that || || = 1 and || A, i || > % ||An, ||- Setting uy = iz /4%, we have again that ||uy || =
4% and

2 2
Anan| > 5475 || > 5 47345 Mo +K) = 2(Miy + ).
To complete the proof we put u := 3, ug, which is well defined in H. But then we
have

Ay 2 uj

j=k+1

oo

=
<lAnll X Nl < lanll 2 477 = 3 [1An [ el
j=k+1 j=k+1

By the triangle inequality and the definition of M we have

=

Ay Z uj

Jj=k+1

Angu]] = [|An | -

k—1
A 2 uj
i

1
> HAnkukH — M1 — B HA"kukH > k.

This contradiction with (26.1) proves the theorem. U

Remark 26.4. The uniform boundedness principle holds not only in Hilbert spaces
but also in Banach spaces (complete normed spaces). This fact follows straightfor-
wardly from the proof.

Corollary 26.5 (Banach-Steinhaus). Under the conditions of Theorem 26.3 it is
true that for pointwise convergence Ayu — Au, n — oo, for all u € H it is necessary
and sufficient that sup, ||A,||y_y < C and that Ayu — Au,n — o for all u € U,
where U is some dense subset of H.

Corollary 26.6 (Trigonometric Fourier series). There exists a continuous func-
tion whose Fourier partial sums S, f (x) do not remain uniformly bounded. For every
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X € [—m, 7] there exists a continuous function whose Fourier partial sums S, f (x) are
unbounded at x.

Proof. Let us consider on the Banach space C[—m, 7] of continuous and periodic
functions on the interval [—, 7] the linear operators

fr=Suf(x) = 2 Cn(f)einxv

n<N

where ¢, (f) are the trigonometric Fourier coefficients of f. Since we have the sharp
estimate

1 T
Iuf i < 55 | 1PN o=

where Dy(x) is the Dirichlet kernel (see Chapter 10), choosing the sequence
Jfu(x) := 0, (fo) defined by Fejér means with fy(x) = sgnDy(x), we obtain

T

2SN fn(0) = Jn(x)Dn (x)dx

_>/” Fo)Dy@ = [ |Dy(x)]dx = Slc;fN—i—O(l), N oo,

- -

as is stated in Exercise 10.3. Thus, the linear operators f — Sy f(x) are bounded (for
each fixed N) with operator norms

4logN

Iswll =25

+o(1).

Therefore, by the uniform boundedness principle, there exists a continuous function
satisfying the present corollary. ]

Exercise 26.2 (Hellinger-Toeplitz). Suppose that D(A) = H and
(Ax,y) = (x,Ay), x,y€H.
Prove that A is bounded.

Exercise 26.3. Suppose that f € L'(—r, ) is periodic. Prove that if for some x
there exists

Hmf@+w+f@—w
y—0 2

)

then Sy f(x) = o(logN) as N — oo.
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Example 26.7 (Differential operator in L?). Consider the differential operator

A=i—
ldt

of order 1 in L?(0, 1) with domain
D) = {f € C'0,1]: f(0) = f(1) = 0}.

First of all, we have that D(A) = 1? (0,1); see, e.g., Lemma 17.2. Moreover, inte-
gration by parts gives

1 - 1 - L
(4r.9)= [ i s = irgly— [ s = [ f0iga = (r.49)
for all f,g € D(A). Let us now consider the sequence
un(t) :==sin(nmt), n=1,2,....

Clearly, u, € D(A) and

L 1
17> :/0 [sin(ut) Par = 5.

But

1
Auy? ——/
H n||L2 0

Therefore, A is unbounded. This shows that D(A) = H is an essential assumption in
Exercise 26.2.

2

d 1 2
i£ sin(nnt)| dt = (nn)z/ |cos(nmr)[*dr = @ = (n7)? ||un |- -
0

Example 26.8 (Differential operator in L?). Consider the differential operator
2

od
@‘lea'i‘m

A= po
of order 2 in L2(0, 1) with domain
D(A) = {f €C[0,1]: f(0) = (1) = 0}

and with real nonzero constant coefficients pg, pi, and p,. The fact D(A) = [? and
integration by parts gives
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1 -1 1
(Af,g>=po/0 f”~§dt+ip1/0 f’-?dt+pz/0 fogdt
_ /71_ 1/-7’d . | ! -7’dt +
=po|f'8l, /Of g'dt| +ip1 | fglo /Of g p2(f.8)2
1 1
= —po /0 f-gdr—ipy /0 @i+ (f, pag)2
_ ST
=—po [fg’|(l) —'/0 f-g”dt] +(frip1g) 2 + (f, p28) 2
L
= 170/0 f-8"dt+(f,ip1&) 2+ (f, p28) 12 = (f,Ag) 2

for all f,g € D(A). Moreover, for the sequence u,(f) = sin(nrr) we have (for suffi-
ciently large n) that

[Au|72 = /01 |po(sin(nmt))” +ipy (sin(nmt)) + py sin(nme)|>dt
= /01 [(po(nm)? — po)*sin®(nmt) + (nm)? pi cos® (nmt)] dt
> /0 1 [(";”4 psin? (nmr) + (nm)?pl cos? (naut) | di
> (nn)zp%/o1 (sin?(nmt) + cos*(nmt) ) dt
= 2009} 5 = 2007 .

So A is unbounded, since
IAl72 2 > 2(nm)*p

for n — oo,

From now on we assume that D(A) = H, i.e., that A is densely defined in any case.

Definition 26.9. The graph I'(A) of a linear operator A in a Hilbert space H is
defined as
I'A):={(x;y) €H xH:x€D(A)andy = Ax}.

Remark 26.10. The graph I'(A) is a linear subspace of a Hilbert space H X H. The
inner product in H X H can be defined as

((ctsyn), (23v2)) o -= (X1,%2)m + (V15 32) 1

for all (x1;y1),(x2;2) € H X H.



268 Part III: Operator Theory and Integral Equations

Definition 26.11. The operator A is said to be closed if I'(A) = I'(A). We denote

this fact by A = A.

By definition, the criterion for closedness is that

x € D(A),
y = Ax.

Xp — X,

xXn € D(A),
j {
Ax, —y

The reader is asked to verify that it is also possible to use a seemingly weaker, but
equivalent, criterion:

xp € D(A),
S () x € D(A),
X, — X, =

w y:Axa
Axy —y

w . . .
where x;,, — x indicates weak convergence in the sense that

(Xn,y) = (x,3)
forally e H.

Remark 26.12. 1t is important from the point of view of applications (in particular,
for numerical procedures) that the closedness of an operator guarantees the conver-
gence of some process to the “correct” result.

Definition 26.13. Let A and A; be two linear operators in a Hilbert space H. The
operator A is called an extension of A (or A is a restriction of A1) if D(A) C D(A)
and Ax = Ajx for all x € D(A). We denote this fact by A C A and A = Aj[p ).

Definition 26.14. An operator A is called closable if A has an extension A; and
A1 = Aj. The closure of A, denoted by A, is the smallest closed extension of A if it

exists, i.e.,
A= (] A
ACAli
A=A,

Here, by A; 0747 we mean the operator whose domain is D(A; ﬂ;\vl ):=D(A;)N
D(A;) and
(Al ﬁAl)x =Aix=Ax, x¢€ D(A1 ﬂAl),

whenever A CA; =A; and A C A, =A;.

If A is closable, then I" (A) = I'(A).
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Definition 26.15. Consider the subspace
D* :={v € H : there exists h € H such that (Ax,v) = (x,h)for allx € D(A)}.

The operator A* with domain D(A*) := D* and mapping A*v = h is called the adjoint
operator of A.

Exercise 26.4. Prove that A* exists as a unique linear operator.

Remark 26.16. The adjoint operator is maximal among all linear operators B (in the
sense that B C A*) that satisfy

(Ax,y) = (x,By)
forall x € D(A) and y € D(B).

Example 26.17. Consider the operator
Af(x):=x"%f(x), a>0
in the Hilbert space H = L*(0,1). Let us define
D(A):={f€ L*(0,1) : f(x) = xu(x)g(x),g € L? for some n € N},
where

(x) = 0, 0<x<1/n,
=, I/n<x<l.

It is clear that D(A) = L%(0,1). For v € D(A*) we have

(A = [ e = [ o e = (1.A%)

We conclude that
DAY )={vel*:x *vel’}.

Let us show that A is not closed. To see this, we take the sequence

Fuln) = {xo‘, I/n<x<1,

0, 0<x<l/n.

Then f, € D(A) and
I, I/n<x<l,
0, 0<x<l1/n.
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If we assume that A = A, then

Jfa € D(A),

f — x% = {xa < D(A)’
n ) A0

Af,— 1 1 =Ax%*.

But x* ¢ D(A). This contradiction shows that A is not closed. It is not bounded
either, since o > 0.

Theorem 26.18. Let A be a linear and densely defined operator. Then
(1) A* = A%, B
(2) A'is closable if and only if D(A*) = H. In this case A** := (A*)" = A,
(3) If A is closable, then (A)* =A"

Proof. (1) Letus define in H x H the linear and bounded operator V as the mapping
Vi(u;v) — (v —u).

It has the property V2 = —I. The equality (Au,v) = (u,A*v) for u € D(A) and
v € D(A*) can be rewritten as

(V(”;Au)7 (V;A*v))HxH =0.

This implies that I" (A*) LVI'(A) and I" (A*) LVI'(A), which in turn means that
.\l
I'(A*) C (VF (A)) . Let us check that the criterion for closedness holds, i.e.,

Vi —V,

n € D(AY),
v € D(AY) {v € D(AY),
=
. y=A*v.
Avy —y
Indeed, for all u € D(A) we have

(Au,vy) — (Au,v).

On the other hand,
(Au,vy) = (u,A%vy) — (u,y).

Hence (Au,v) = (u,y). Thus v € D(A*) and y = A*v. This proves (1).
(2) Assume D(A*) = H. Then A** exists and due to part (1) we may conclude that

[(A") C VT (A) .
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Then
VI(A) C T(A*)*,

It follows that
[(A)C(-VI(A)",

since V2 = —I. Here
—VI(A*) ={(—A"u;u),u € D(A*)}.
Thus
(VI (A))" ={(erze2)},
so that
(_A*uael)H + (uve2)H = 07
or

(A*u,e1)g = (u,e2)p.

Therefore, e; € D(A™*) and A**e; = e,. This shows that (ej;ez) € I'(A*™) and
hence
(=VI(A"))* c ['(A*).

Therefore,
r(A)cra~),

which means that A C A™*, and sinceﬁA** is closed, A is closable and A C A**.
Let us show that in this case, in fact, A = A**. Indeed, if u € D(A**), then

(v, A" u) = (A*v,u), veD(A"),

or
(u,A™) = (A"u,v), veDAY),

or
(Au,v) = (A""u,v), veD(A").

Since D(A*) = H, we obtain Au = A**u on D(A**). It follows that A** C A and

furthermore A** C A. Hence A = A**.

This proves (2) in one direction. Let us assume now that A is closable (i.e., A

exists and is minimal among all closed extensions) but D(A*) # H. Then there

exists ug 7 0 such that ug L D(A*). So ug LD(A*) also. Then

(up;0) L(v;A™v), v e D(A").
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It follows that
(ug,v) = (0,A"),

(A*,0) = (v,up).

In part (1) it is shown that I'(A) L (—=VI'(A*)). Then
r(A)L(=vI(A"))

or

r(A)L(=VI(AY)
since A exists. Since also (0;ug) L(—VI'(A*)) then (0;ug) € I'(A) ie. 0 =
A(0) = ugp # 0. This contradiction proves (2).
(3) Since A is closable, (1) and (2) imply

This completes the proof. (]
Example 26.19. Consider the Hilbert space H = L*(IR) and the operator

Au(x) = (u, fo)uo(x),

where ug #Z 0, uy € I? (R), is fixed and fy # 0 is an arbitrary but fixed constant. We
consider A on the domain

D(A) = {u e L*(R): /R|fou(x)|dx < oo} =L*(R)NLY(R).

It is known that LZ2(R)NL!(R) = L?*(R). Thus A is densely defined. Let v be an
element of D(A*). Then

(Auvv) = ((Lt,f())u(),v) = (M,fo)(uo,v) = (u,(uo,v)fo) = (u’ (V,uo)fo) .

It means that
A*v = (vup) fo-

But (v,u) fo must belong to L>(IR). Since (v,ug)fy is a constant and fy # 0, it fol-
lows that (v, up) must be equal to 0. Thus

1o LD(A"),

which implies that
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1y LD(A").

Since ugy # 0, we have D(A*) # H. Thus A* exists but is not densely defined. So A
is not closable.

Exercise 26.5. Assume that A is closable. Prove that D(A) can be obtained as the
closure of D(A) by the norm

(1aal + a?) "

Theorem 26.20 (Closed graph theorem). IfA : H — H is a linear operator whose
graph T'(A) is closed in H x H, then A is bounded.

Proof. As a closed subspace of the Hilbert space H x H, the graph I"(A) is a Hilbert
space (see Exercise 26.5). Let us define the projection mappings P; and P, as fol-
lows:

P :T'(A)—H, P(u,v)=u,
P:T'(A)—H, Py(u,v)=w.

Since A is linear, both P and P, are linear. Moreover, P is injective and surjective
and P, and P, are continuous, since

1Pt (v = Maellpr < Meell g + [Vl
P2 ()l = [l < Nl g+ AVl -

Hence P; is a bijective continuous (bounded) linear map of I'(A) onto H and has a
continuous (bounded) inverse, since it is open; see [5]. But at the same time,

Au=Py(P1) " (u), u€H,

and therefore as a superposition of two bounded linear operators, A is also
bounded. (]

Definition 26.21. An operator A : H — H with D(A) = H is called

(1) symmetric if A C A*;
(2) self-adjoint if A = A", B B
(3) essentially self-adjoint if (A) A

Remark 26.22. A symmetric operator is always closable, and its closure is also
symmetric. Indeed, if A C A*, then D(A) C D(A*). Hence

H=D(A)CD(A*) CH
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implies that D(A*) = H. Therefore, A is closable. Since A is the smallest closed
extension of A, we have
ACACA = (4)",

i.e., A is also symmetric.

Some properties of a symmetric operator A are as follows:

() ACA=A" C A%,

(2) A=A =A™ CA"if A is closed,

(3) A=A =A* = A*if A is self-adjoint,

(4) A CA=A* =A*if A is essentially self-adjoint.
Example 26.23. Consider the operator

d2

A=z

in the Hilbert space H = L?(0, 1) with domain

D(A) = {f €C*[0,1]: f(0) = f(1) = f'(0) = f'(1) = 0}.
It is clear that D(A) = L*(0,1) and A is not closed. Moreover, integration by parts
gives

(Af7g)L2 = (f:Ag)Lz

for every f € D(A) and g € W(0,1). That is, A is symmetric such that A C A* and
D(A*) = W$(0,1). As we know, A* = A* always. Now we will show that A is the

same differential operator of order 2 with D(A) = W%(O7 1), where W%(O, 1) denotes
the closure of D(A) with respect to the norm of the Sobolev space W5 (0, 1). Indeed,
for every f € D(A) we have

IAFIZ + 117 < N£115z
and
1
171z = VAL + A5 + [ 17 Pa
= IAfllz2 + 17172 - / ST < AR+ 3 1R

This means that

IASIZ + 1122 = 111z -

Exercise 26.5 gives now that
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D(A) = W2(0,1).
So we have finally
D(A) € D(A) = W3(0,1) = D(A™) € W2(0,1).
The closure A is symmetric but not self-adjoint, since
W2(0,1) = D(A) # D(A") = D(A*) = W2(0,1).

Theorem 26.24 (J. von Neumann). Assume that A C A*.

(1) If D(A) =H, then A = A* and A is bounded.
(2) IfR(A)=H, then A = A* and A~V exists and is bounded.
(3) IfA~" exists, then A = A* if and only if A~" = (A’l)*.

275

Proof. (1) Since A C A*, we have H = D(A) C D(A*) C H and hence D(A) =
D(A*) = H. Thus A = A*, and the Hellinger—Toeplitz theorem (Exercise 26.2)

says that A is bounded.

(2), (3) Let us assume that uy € D(A) and Aug = 0. Then for all v € D(A) we obtain

that
0= (Auo,v) = (M(),Av).

This means that uy_LH and therefore uy = 0. It follows that A~! exists and
D(A™") =R(A) = H. Hence (A~")" exists. Let us prove that (4*) " exists
too and (A*) ! = (A_l)*. Indeed, if u € D(A) and v € D ((A_l)*), then

(u,v) = (A~ Au,v) = (Au, (A")*v).
This equality implies that
(A~ ve D)

and
A* (A_l) y=n.

Similarly, if u € D(A™!) and v € D(A*), then
(u,v) = (AA™ u,v) = (AT, A")

and therefore

avep((a))

and

(26.4)



276 Part III: Operator Theory and Integral Equations
(A av=v. (26.5)

It follows from (26.4) and (26.5) that (A*) ™" exists and (A*) ' = (A~")".
The boundedness of A~! follows from part (1).

Exercise 26.6. Let A and B be injective operators. Prove that if A C B, then A~ C
B!

Since A C A*, we have by Exercise 26.6 that

i.e., A7! is also symmetric. But D(A~!') = H. We conclude that H = D(A™") C
D((A™")") € H and hence D(A™") =D ((A™")") = H. Thus A" is self-adjoint
and bounded (Hellinger—Toeplitz theorem; see Exercise 26.2). Finally,

if and only if A = A*.
This completes the proof. O

Theorem 26.25 (Basic criterion of self-adjointness). [fA C A*, then the following
statements are equivalent:

(1) A=A
(2) A=A and N(A* +iI) = {0}.
(3) R(A+il) = H.

Proof. (1)=(2) Since A = A*, it follows that A is closed. Suppose that uy €
N(A* —il),i.e., up € D(A*) = D(A) and Aug = iug. Then

i(uo,up) = (iug, uo) = (Aug,uo) = (uo,Aup) = (uo,iug) = —i(uo,up).

This implies that uy = 0, i.e., N(A* —il) = {0}. The proof of N(A* +il) = {0}
is left to the reader.

(2)=(3) Since A = A and N(A* +iI) = {0}, it follows, for example, that
the equation A*u = —iu has only the trivial solution # = 0. This implies that
R(A —1iI) = H. For otherwise, there exists uy # 0 such that ug L R(A —il). This
means that for all u € D(A) we have

((A—iDu,up) =0
and therefore ug € D(A* +il) and (A* +il)up = 0, or A*ug = —iug,up # 0. This

contradiction proves that R(A —il) = H. Next, since A is closed, I'(A) is also
closed, and due to the fact that A is symmetric, we have
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1A = in)ul® = (A = iD)u, (A~ il)u)
= [l Aul® =i, Au) +i(Au,u) + ual|* = [ Aul® + [Jul|

for u € D(A). It follows that if (A —il)u, — vo, then Au, and u, are conver-
gent, i.e., Au, — V), un — ug, and u, € D(A). The closedness of A implies that
uy € D(A) and v = Aug, ie., (A —il)u, — Aujy —iuy = vo. This means that
R(A—iI) is aclosed set, i.e., R(A —il) = R(A—il) = H. The proof of R(A+il) =
H is left to the reader.

(3)= (1) Assume that R(A+il) = H. Since A C A*, it suffices to show that
D(A*) C D(A). For every u € D(A*) we have (A* —il)u € H. Part (3) implies
that there exists vo € D(A) such that

(A—il)vog = (A" —il)u.
It is clear that u — vy € D(A*) (since A C A*) and

(A" =i (u—vo) = (A" —iHu— (A" —il)vo = (A" —iDu— (A —il)vy
= (A—iI)VO— (A—iI)V() =0.
Hence u — vy € N(A* —iI).

Exercise 26.7. Let A be a linear and densely defined operator in the Hilbert space
H. Prove that

H=N(A")®R(A).
By this exercise we know that
H =N(A* —il) ®R(A +il).
But in our case R(A+1il) = H. Hence N(A* —il) = {0} and therefore u = vy. Thus

D(A) = D(A®).
This concludes the proof. O

Example 26.26. Assume that an operator A is symmetric and closed in a Hilbert
space H. Consider the operator A*A on the domain

D(A"A) = {f € D(A) : Af € D(A")}.

This operator is self-adjoint. Indeed, since (A*A)* = A*A™ = A*A = A*A, we have
that A*A is symmetric. At the same time, for all f € D(A), we have

(A*AL,f) = (Af,A™f) = (Af,Af) = |AflF;-

This fact leads to R(A*A +1I) = H, since A*A £l is invertible in this case. Thus,
Theorem 26.25 gives us that A*A is self-adjoint. The same is true for the operator
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AA* on the domain
D(AA")={feD(A"): A" f e D(A)}.

It is clear that in general,
AA* £ A*A.

If equality holds here, the operator A is said to be normal.

d
Exercise 26.8. Let H=L*(0,1) and A := i

(1) Prove that A is closed and symmetric on the domain
D(A) ={f € L*(0,1): f' € L*(0,1), £(0) = f(1) = 0} = W}(0, 1).
(2) Prove that A is self-adjoint on the domain

D(A) = {fe L2(0,1) : f € L2(0, 1), £(0) = f(1)el?, y R}.



Chapter 27
John von Neumann’s Spectral Theorem

Definition 27.1. A bounded linear operator P on a Hilbert space H that is self-
adjoint and idempotent, i.e., P> = P, is called an orthogonal projection operator or a
projector.

Proposition 27.2. Let P be a projector. Then

(1) |P|=1ifP#0.

(2) P is a projector if and only if P* := I — P is a projector.

(3) H=R(P)®R(P"), Plgpy =1, and Plgp.)=0.

(4) There is a one-to-one correspondence between projectors on H and closed lin-
ear subspaces of H. More precisely, if M C H is a closed linear subspace, then
there exists a projector Py : H — M, and conversely, if P: H — H is a projector,
then R(P) is a closed linear subspace.

(5) If{e j}ljy:] ,N < oo is an orthonormal system, then

N
Pyx:= Z(x,ej)ej, xX€EH,

Jj=1

is a projector.

Proof. (1) Since P = P* and P = P?, we have P = P*P. Hence ||P|| = ||P*P|. But
|P*P|| = ||P||*. Indeed,

2
[Pl < [P 1P]] < [|1P]

and
IP|[* = sup [|Px|* = sup (Px,Px)
[Ixll=1 [Ixl=1
= sup (P*"Px,x) < sup ||[P*Px|| =||P*P|.
[Ixll=1 [Ixll=1
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Therefore, ||P|| = ||P||%, or ||[P|| = 1, if P #0.
(2) Since P is linear and bounded, the same is true about / — P. Moreover,

(I-P)"=I—-P"=I—P

and
(I-P?}=(I-P)(I-P)=I-2P+P*=I—P.

(3) It follows immediately from / = P + P+ that every x € H is of the form u +v,
where u € R(P) and v € R(P1). Let us prove that R(P) = (R(PL))L. First
assume that w € (R(PL))L, i.e., (w,(I — P)x) =0 for all x € H. This is equiva-

lent to
(w,x) = (w,Px) = (Pw,x), x€H,

or Pw = w. Hence w € R(P), and so we have proved that (R(PL))L C R(P).
For the opposite embedding we let w € R(P). Then there exists x,, € H such
that w = Px,,. If z € R(P*), then z = P*x, = (I — P)x; for some x, € H. Thus

(w,2) = (Pxy, (I = P)x;) = (Pxy, X;) — (Pxy, Px;) = 0,

since P is a projector. Therefore, w € (R(Pi))L, and we may conclude that
R(P) = (R(PL))L. This fact allows us to conclude that R(P) = R(P) and H =
R(P) @ R(P*). Moreover, it is easy to check from the definition that P| ree) =1
and Plppry =0.

(4) If M C H is a closed subspace, then Theorem 25.12 implies that x =u+v € H,
where u € M and v € M. In that case, let us define Py : H — M as

PM)C =Uu.

It is clear that P}x = Pyu = u = Pyx, i.e., Py = Py. Moreover, if y € H, then
y=uy+vi,u; € M,v; € M+ and

(Pux,y) = (u,ur +v1) = (u,u1) = (u+v,ur) = (u+v,Puy) = (x,Puy),
i.e., Pyy = Py. Hence Py is a projector. If P is a projector, then we know from

part (3) that M := R(P) is a closed subspace of H.
(5) Let us assume that N = . Define M as

M = {er:x:ZCjep 2|Cj|2<°°}'

Jj=1 j=1
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Then M is a closed subspace of H. If we define a linear operator Py as
Pyx:= Z(x,ej)ej, xX€H,
j=1
then by Bessel’s inequality we obtain that Pyyx € M and
[[Pyx]| < Jlx]] -

This means that Py is a bounded linear operator into M. But Pye; = ¢; and thus
PAZ,,x = Pyx for all x € H. Next, for all x,y € H we have

8

Pany <z Ivy> = Z(xvej) (ejay z yaej
—1 j=1

(o _

i.e., Py; = Py. The case of finite N requires no convergence questions and is left
to the reader.
This completes the proof. ]

Ms

(y’ej) ) = (x7PM)’)7

1

Definition 27.3. A bounded linear operator A on a Hilbert space H is said to be
smaller than or equal to a bounded operator B on H if

(Ax,x) < (Bx,x), x€H.

We denote this fact by A < B. The operator A is nonnegative if A > 0; A is positive,
denoted by A > 0, if A > ¢/ for some co > 0.

Remark 27.4. In the framework of this definition, (Ax,x) and (Bx,x) must be real
forallx c H.

Proposition 27.5. For two projectors P and Q the following statements are equiv-
alent:

(1) P<Q.

(2) ||Px|| < ||Qx|| forall x € H.
(3) R(P) CR(Q).

(4) P=PQ=OP.

Proof. (1) = (2) Follows directly from (Px,x) = (P2x,x) = (Px, Px) = ||Px|*.

(3) = (4) Assume R(P) C R(Q). Then QPx = Px or QP = P. Conversely, if OP =P,
then clearly R(P) C R(Q). Finally, P = QP = P* = (QP)" = P*Q* = PQ.
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(2) = (4) If (4) holds, then Px = PQx and ||Px|| = ||PQx|| < ||Qx]| for all x € H.
Conversely, if ||Px|| < ||Qx|, then Px = QPx + Q- Px implies that

2
1Pl = oPxi + | @ Px| " < oPx

Hence
LR
ot =0,
i.e., Q1 Px =0 forall x € H. Hence P = QP = PQ.
This completes the proof. ]

Exercise 27.1. Let {Pj}j-":l be a sequence of projectors with P; < P;,; for each
j=1,2,.... Prove that lim, .., P := P exists and that P is a projector.

Definition 27.6. A linear map A : H — H with the property
[Ax]] = llxll,  xeH,

is called an isometry.

Exercise 27.2. Prove that

(1) Ais anisometry if and only if A*A = 1.
(2) Every isometry A has an inverse A~ : R(A) — H and A~! = A* |R(4)-
(3) If A is an isometry, then AA* is a projector on R(A).

Definition 27.7. A surjective isometry U : H — H is called a unitary operator.

Remark 27.8. 1t follows that U is unitary if and only if it is surjective and U*U =
UU* =1, ie., (Ux,Uy) = (x,y) forall x,y € H.

Definition 27.9. Let H be a Hilbert space. The family of operators {Ej }7___ is
called a spectral family if the following conditions are satisfied:

(1) E, is a projector for all A € R.
(2) Ej <Eyforall A < pu.
(3) {E,} is right continuous with respect to the strong operator topology, i.e.,

lim ||Exx— Ex|| =0
s—t+

forall x € H.
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(4) {E)} is normalized as follows:

lim [|E;x[[=0, lim ||Ezx|| = [x]|
A——oo A—+oo

for all x € H. The latter condition can also be formulated as

lim ||E;x—x| =0.
A—+oo
Remark 27.10. 1t follows from the previous definition and Proposition 27.5 that

E)Ey = Enin{a -

Proposition 27.11. For every fixed x,y € H, (E;x,y) is a function of bounded vari-
ation with respect to A € R.

Proof. Let us define
E(o,B]:=Eg —Eq, a<p.

Then E (o, 3] is a projector. Indeed,
E(o,B]* = Ej — E;, = Eg — Eq = E(ct, B,
i.e., E(o, B] is self-adjoint. It is also idempotent due to
(E(ct,B])* = (Eg — Eq)(Ep — Eq) = Ej — EqEp — EgEq + Eg,
=Ep—Eq—Eq+Eq=E(a,B).
Another property is that
E(o1,BilxLE(a,Bly, x,yeH

if B < aor B < . To see this for B; < o we calculate

(E(oty, Bi]x, E(o, Bly) = (Eﬁlx—Ealx,Eﬁy—an)
= (Ep,x.Epy) — (Ecyx.Epy) — (Ep X, Eqy) + (Eoy X, Eqy)
= (vaﬁly) - (x7EO£|y) - (X,Eﬁly) =+ (vaOC]y) =0.

Let now
Ao <A < < Ay
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n n

2 (Ezxy) = (B x| = X [(E(Aj-1, A7lx,y) |

j=1 j=1

‘(E(),j 1,2,])( E()Lj 1, l] )’

Il
M=

~.
Il
-

IA
T M=

IIE -1 A [[E (At 25y

n 1/2 n 1/2
(, 1||E<aj1,aj1x||2) (zlum,»l,myuz)
Jj= —

n n
ZE 1A 2 Aj-1,2
J=1 Jj=1

Anly

= 1E (A0, Anlx|[ 1| E (A0, Anly[| < [lx[l 1]

~.
Il

IN

Here we have made use of orthogonality, normalization, and the
Cauchy—Bunyakovsky—Schwarz inequality. (]

By Proposition 27.11 we can define a Stieltjes integral. Indeed, for every continuous
function f(A) we may conclude the equality of limits

tim 3 705 (-1, Agke) = tim <Zf A A y>
=

where /'Lj* €At A, o=24 <A <--- <A, =B,and A = max <<, |Aj_1 — 4]
exists, and by definition this limit is

B
/a FO)A(Ezxy), xyeH.

It can be shown that this is equivalent to the existence of the limit in H

hme /la ]7

which we denote by

| /a ¥ HA)dEx.

Thus
[ rsaeien = ([ riagiey). wven

o
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For the spectral representation of self-adjoint operators one needs integrals not only
over finite intervals but also over the whole line, which is naturally defined as the
limit
oo . B
| _raaEy) = tim [" @y = ([ r)dEy
e B—soo

if it exists. Deriving first some basic properties of the integral just defined, one can
check that

oo B
| e By = [ r0d(Exy)

= lim f( ) (Elxay)v x,y € H.

o— —oo

Theorem 27.12. Let {E; }5___ be a spectral family on a Hilbert space H and let
f be a real-valued continuous function on the line. Define

{er / E,lxx)<oo}

(or D := {x EH: [T, f(l)dE,lxexists}). Let us define on this domain an operator
A as

me:/:ﬂma@%w,xeDmyzbyeH

(orAx = ["_ f(A)dE,x,x € D(A)). Then A is self-adjoint and satisfies
E(e,IA C AE(,B], a<p.

Proof. 1t can be shown that the integral

| _foExy)

exists forx € D and y € H. Thus (Ax,y) is well defined. Let v be an element of H and
let € > 0. Then by normalization, there exist o < —R and 8 > R with R sufficiently
large such that

[v—E(ct,Blv|| = ||v—Egv+Eav|| < ||(I—Eg)v|| + |Eav] < €.
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On the other hand,

oo

| I PAEE @l E(eBlv) = [ IF(A)PA(EE @ Bly)

J —oo

= LZ ‘f(x)|2d(E)LEﬁV7V) —/:):o |f()t’)|2d(ElEaV,V)

B o
= [ 1f0PaEw = [ 170)PdEmY)

J —oo

B
= [ 1r@)PdEy) <

These two facts mean that E (o, B]v € D and D = H. Since f(A) = f(1), it follows
that A is symmetric. Indeed,

oo B
(avy) = [ fAExy) = lim [ f3)a(Esxy)

ﬁ—mo
B
— lim [ f(A)d(x.Epy) = hm( /f dEM)
Booo” B—so0

In order to prove that A = A*, it remains to show that D(A*) C D(A). Letu € D(A*).
Then

(E(ot, Blz,A"u) = (AE(et, Bz, u) / FON(Egz,u)

for all z € H. This equality implies that

(z,A"u) = lim f d(Eyz,u) / f(A)d(Epz,u)

a%m

- / £ B = [ :f(/l)d(Ew,Z) = (Au,2) = (z.Au),

where the integral exists because (z,A*u) exists. Hence u € D(A) and A*u = Au. For
the second claim we first calculate
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E(o BlAx = (Ep — Ea) Ax = (Ep —Ea) | f(R)dEsx
= [ FOaE Egr— [ FA)dE Eux
B a
= [ rags— [ ra)aEs
B -
- /a FA)Ex = [ F(A)AE; (Eg — Eq)x
=A(Eg—Eq)x=AE(a,Bx

for all x € D(A). Since the left-hand side is defined on D(A) and the right-hand side
on all of H, the latter is an extension of the former. |

Exercise 27.3. Let A be as in Theorem 27.12. Prove that
4wl = [ 1£()PA(ER )

if u € D(A).

Exercise 27.4. Let H = L>(R) and Au(t) = tu(t), t € R. Define D(A) on which
A = A" and evaluate the spectral family {E; }5_

—oo"

Theorem 27.13 (John von Neumann’s spectral theorem). Every self-adjoint
operator A on a Hilbert space H has a unique spectral representation, i.e., there
is a unique spectral family {Ej }7___ such that

Ax = / T AdErx, x€D(A)
(i.e., (Ax,y) = [ Ad(E,x,y),x € D(A),y € H), where D(A) is defined as
D(A) = {x E€EH: /w A2d(Ejx,x) < oo}.

Proof. First we assume that this theorem holds when A is bounded, that is, that there
is a unique spectral family {F} }j;__., such that

Au:/ udFyu, u€H,

since D(A) = H in this case. But F, = 0 for u < m and F,, = I for u > M, where

m= inf (Ax,x), M = sup (Ax,x).

[lx[l=1 [lx[|=1
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The spectral representation therefore can be written in the form
M
Au :/ udFyu, ucH.
m

Let us consider now an unbounded operator that is semibounded from below, i.e.,
(Au,u) > mo(u,u), u€ D(A)

with some constant mg. We assume without loss of generality that (Au,u) > (u,u).
This condition implies that A~! exists, it is defined over all of H, and HA’l H <1.
Indeed, A~! exists and is bounded because Au = 0 if and only if u = 0. The norm
estimate follows from

(v,A"ly) > ||A71v||27 ve DA™,

Since A~! is bounded, D(A~!) is a closed subspace in H. The self-adjointness of A
means that A~! = (A_l)*. Therefore, A~ is closed and D(A~Y)=H, ie, Al
densely defined. Therefore, D(A~!) = H and R(A) = H. Since

0< (A vy < |v|?, veH,
we may conclude in this case that m > 0, M < 1, and
1
A’lv:/ udFyv, veH,
0

where {F, } is the spectral family of A~!. Let us note that F; = I and F = 0, which
follows from the spectral theorem for bounded operators and from the fact that
A~y =0 if and only if v = 0. Next, let us define the operator Be, € > 0, as

LS|
Bgu::/ —dFuu, uecD(A).
e M

For every v € H we have

BgAlv:/:;dF#(A') /deu (/ ldev)
:/81 %d (/Ol/ld(FuF;Lv)> :/E it (/8 7LdF;Lv> :/gl %udFuv

1
:/ dFyv=Fyv—Fev=v—Fv.
€
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Since every spectral family is right continuous, it follows that

lim BzA" v =
e—0+

exists. For every u € D(A) we have similarly

A™ 1Bguf/ WdFy (Beu) / ud </ dF,lu> =u—Feu,

and hence
lim A”Bgu =u
£—0+

exists. These two equalities mean that

. o 1\l -
g = )

exists and the spectral representation

11
A= / —dF, = hI(I)l EdFu
£—0+

holds. If we define E; =1—F1, 1 <A < o, then
7

A:f/ —dE. _/ AdE; .

Exercise 27.5. Prove that this {E; } is a spectral family which is left-continuous.

The domain D(A) can be characterized as

D(A) = {ueH;/lmﬂd(EMu) <oo} - {ueH:/Ol %d(Fumu) <oo}.

This proves the theorem for self-adjoint operators that are semibounded from below.
For bounded operators we will only sketch the proof.

Step 1. If A= A" and A is bounded, then we can define
pv(A) ==aol + @A+ -+ ayA, NeN,

where aj € R for j =0,1,...,N. Then py(A) is also self-adjoint and bounded
with

[pn(A)]| < sup [pw(1)].
<Al
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Step 2. For every continuous real-valued function f on [m,M], where m and M are
as above, we can define f(A) as an approximation by py(A), i.e., we can prove
that for every € > 0 there exists py(A) such that

I f(A)—pn(A)| <e.

Step 3.  For every u,v € H let us define the functional L as

L(f) = (f(A)u,v).
Then
IL(O] = [(fA)uv)| < ([ FA) Nl (V]

that is, L(f) is a bounded linear functional on C[m, M].

Step 4. (Riesz’s theorem) A continuous positive linear functional L on C[a, b] can
be represented in the form

1= [ rwave),

where v is a measure that satisfies the conditions

(1) L(f)>0for f>0;
2)  |IL(f)] < v(K)||fllg, where K C [a,b] is compact and

I£1lg = max] f (x)].

Step 5. It follows from Step 4 that

M

(Au,v) :/ Adv(Asu,v).
m

Step 6. It is possible to prove that v(A;u,v) is a self-adjoint sesquilinear form,

from which we conclude that there exists a self-adjoint and bounded operator E,
such that

v(A;u,v) = (Epu,v).

This operator is idempotent, and we may define £, =0 for A <mand E; =1
for A > M. Thus {E; }5___, is the required spectral family, and the theorem is
proved. See [4] for an alternative proof of this theorem. (]

Let A: H — H be a self-adjoint operator in a Hilbert space H. Then by von
Neumann’s spectral theorem we can write

Au:/ AdEju, u€D(A).
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For every continuous function f we can define

D= {u cH: /:o F ) PA(Eyu, ) < m}.

This set is a linear subspace of H. For every u € Dy and v € H let us define the linear
functional

Lv) = / FA)A(Equ,v) = ( / f(/l)dEw,v> .
This functional is continuous because it is bounded. Indeed,

oo 2 oo
L < [ sae| WP = [ )R 1P = clw)

By the Riesz—Fréchet theorem this functional can be expressed in the form of an
inner product, i.e., there exists z € H such that

/:fu)d(EWv") =(zv), veEH.

We set
z2:=f(A)u, uc Dy,

ie.,

(@) = [ FRAE ).

Remark 27.14. Since in general f is not real-valued, f(A) is not a self-adjoint oper-
ator in general.

Example 27.15. Consider

A—i

)=

A ER,

and a self-adjoint operator A with spectral family £, . Define

= —i

The operator Uy is called the Cayley transform of A. Since |f(A)| = 1, we have
Df = D(UA) = H and
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il B
Vsl = [ 1FPAEr ) = lim [ d(Epun)

B
= lim ((Egu,u) — (Equ,u)) = Jim. (”Eﬁ”HZ _ ||Eau||2) = |ul?
- -

by normalization of {Ej }. Hence U, is an isometry. There is a one-to-one corre-
spondence between self-adjoint operators and their Cayley transforms. Indeed,

Uy = (A—il)(A+il)~!

is equivalent to

[—Us=2i(A+il)~ 1,
[+Us =2A(A+iD)7!,

or
A=i(I+Uy)(I-Uy)™ "

Example 27.16. Consider

1
f(A)= , AeRzeC,Imz#0.

Define |

Rb:(Afdy4:iK 74

The operator R, is called the resolvent of A. Since

1 1
A—z|~ |Img]

for all € R, we have that R, is bounded and defined on the whole of H.

Example 27.17. Suppose that K (x,y) € L*(Q x Q). Define an integral operator on
L*(Q) as

AP = [ K@) f()ay

Then
A0 = [ KOs ()

and therefore
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As we know from Example 26.26, A*A is self-adjoint on L?(€). This fact can also
be checked directly, since

/ K(y,2)K(y,x)dy = / K(y,x)K(y,z)dy.
Q Q

Von Neumann’s spectral theorem gives us for this operator and for all s > O that

s IAl7> ;2 s
(A*A) = /0 AdE;,

since A*A is positive and bounded by HA||,2uz_> 2

Exercise 27.6. Let A = A* with spectral family E,. Let u € D(f(A)) and v €
D(g(A)). Prove that

oo

(P gay) = [ FRgIdEu.y).

J —oo

Exercise 27.7. Let A = A* with spectral family Ej. Let u € D(f(A)). Prove that
f(A)u e D(g(A)) if and only if u € D((gf)(A)) and that

g

(e A= [ g(A)f(R)dEsu.

J —oo

Remark 27.18. 1t follows from Exercise 27.7 that

(8/)(A) = (F8)(A)

on the domain D ((£)(A)) D ((gf)(A)).



Chapter 28
Spectra of Self-Adjoint Operators

Definition 28.1. Given a linear operator A on a Hilbert space H with domain D(A),
D(A) = H, the set

p(A)={zeC:(A- zI) ! exists as a bounded operator fromHtoD(A) }

is called the resolvent set of A. Its complement

o(A)=C\p(4)
is called the spectrum of A.

Theorem 28.2.

(1) If A = A then the resolvent set is open and the resolvent operator R, :=
(A —zI)~" is an analytic function from p(A) to B(H;H), the set of all linear
bounded operators in H. Furthermore, the resolvent identity

RZ—R§:(Z—§)R1R5, Z,éEP(A)

holds and R, = (R;)>.
(2) IfA=A* then z € p(A) if and only if there exists C, > 0 such that

1(A = 2D)ul| = C u]

forallu € D(A).

Proof. (1) Assume that zg € p(A). Then R, is a bounded linear operator from H to
D(A) and thus r:= ||R;, H_l > 0. Let us define for |z —zo| < r the operator

Gzo = (Z - ZO)RZ()'

(© Springer International Publishing AG 2017 295
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Then G is bounded with ||GZO H < 1. Hence it defines the operator

(I_GZO)71

I
M
o

because this Neumann series converges. But for |z — z9| < r we have
A—zl=(A—zl)(I-Gy),

or
(A—z) ' =(I—Gy) 'Ry,

Hence R, exists with D(R;) = H and is bounded. It remains to show that R(R;) C
D(A). For x € H we know that

yi=(A—z) 'xeH.

We claim that y € D(A). Indeed,

=

_ _ ; i1
y=A—z)x= (I—-Gy) 1RZO)c: Z(z—zo)/ (RZO)JJr X
j=0

n

= ’}glolo Y (z— 20)’ (RZO)]-+l X.
j=0

It follows from this representation that R, = (A —zI)~! is an analytic function
from p(A) to B(H;H). Next we define

sax = Y (2 —20)’ (RZO)Hlx.
=0

It is clear that s,x € D(A) and that lim,,_,. s,x = y. Moreover,

lim (A — zl)s,x = x.

n—oo

Writing y, := s,x we conclude from the criterion for closedness that

€ D(A),
Yn =), = x—(A— 1)
(A—2l)y — x = a)y.

Hence y = (A —zI)~'x € D(A), and therefore p(A) is open. The resolvent iden-
tity is proved by a straightforward calculation:
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R.—Re = R(A— EDRe — Ru(A )Rz = Ru[(A— 1) — (A~ <I)] R
=(z— é)RzRé .

Finally, the limit
. RZ - Ré . 2
lim = limR.R: = (R;)

=& 7T— 7—E&

exists, and hence R, = (RZ)2 exists, which proves this part.
Assume that A = A*. If z € p(A), then by definition R, maps from H to D(A).
Hence there exists M, > 0 such that
[Rov[| <M lv||, veH.
Since u = R,(A —zl)u for all u € D(A), we get
[[ull < M [[(A—zD)ull, u <€ D(A).

This is equivalent to
1
JA—ahyall > o, e D(A).
Z

Conversely, if there exists C, > 0 such that

(A —zl)ul| = C:[lull, u < D(A),
then (A —zI)~! is bounded. Since A is self-adjoint, (A —zI)~! is defined over all
of H. Indeed, if R(A —zI) # H, then there exists vo # 0 such that vy LR(A —zI).
This means that

(vo,(A—zhu) =0, ue€ D(A),

or
(Au,vo) = (zu,vo),

or
(u,A*vo) = (u,2v0).

Thus vy € D(A*) and A*vy = Zvg. Since A = A*, it follows that vy € D(A) and
Avg = Zvg, Or

(A—=zl)vy =0.
It is easy to check that ||(A —z1)ul|* = || (A — zI)ul|* for all u € D(A). Therefore,

(A =z2hwol| = [[(A —z)wol| = Cc[lvol|-
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Hence vo =0 and D ((A—zI)~") = R(A —zI) = H. This means that z € p(A).
([
Corollary 28.3. IfA=A" then 6(A) #0,0(A) = oc(A) and o(A) CR.
Proof. If z= o +if € C with Imz = 8 # 0, then

1A = 2)x||* = (A = al)x—iBx])® = [[(A = aD)x||* + B |1x[1* = 1B 1>

This implies (see part (2) of Theorem 28.2) that z € p(A), which means that
o(A) C R. Since A = A* and is therefore closed, the spectrum G (A) is closed as
the complement of an open set (see part (1) of Theorem 28.2).

It remains to prove that o(A) # 0. Assume to the contrary that 6(A) = @. Then
the resolvent R, is an entire analytic function. Let us prove that ||R.|| is uniformly
bounded with respect to z € C. We introduce the functional

() = (Rexy), x| =1,y€H.

Then T;(y) is a linear functional on the Hilbert space H. Moreover, since R; is
bounded for every (fixed) z € C, it follows that

T < IR Y < TR Y] = Ce Iyl -

Therefore, T(y) is continuous, i.e., {7,z € C} is a pointwise bounded family of
continuous linear functionals. By the Banach-Steinhaus theorem (or the uniform
boundedness principle) we conclude that

sup||T:|| = co < ee.
zeC

‘We therefore have

-0 = [(Rex,y)| < collyll, ¥l =1,2€C,

which implies that ||R.x|| < ¢, i.e., |[R;|| < ¢o. By Liouville’s theorem we may
conclude now that R; is constant with respect to z. But by von Neumann’s spectral

theorem,
el |
A
— oo —2Z

where {E; } is the spectral family of A = A*. Due to the estimate

1
R, || <——
IR < ey

we may conclude that ||R;|| — 0 as |Imz| — . Hence R, = 0. This contradiction
completes the proof. O
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Exercise 28.1. Consider A = & defined in L2(0, 1) with domain
D(A) = {u €W, (0,1) :u(1) = 0}.

Show that A # A* and o (A) = 0.

Exercise 28.2. [Weyl’s criterion] Let A = A*. Prove that A € o(A) if and only if
there exists x,, € D(A), ||x,|| = 1, such that

lim [|(A — A0)x,]| = 0.
Nn—ro0

Definition 28.4. Let us assume that A = A. The point spectrum c,(A) of A is the
set of eigenvalues of A, i.e.,

Gy(A) = {A € 6(A) : N(A— AI) £ {0}}.

This means that (A — A7)~! does not exist, i.e., there exists a nontrivial u € D(A)
such that Au = Au. The complement 6 (A) \ 6 (A) is called the continuous spectrum
0c(A). The discrete spectrum is the set

04(A) = {4 € 6,(A) : dimN(A — AI) < eeand A is isolated inc (A) } .
The set Oegs (A) := 0(A) \ 04(A) is called the essential spectrum of A.

In the framework of this definition, the complex plane can be divided into regions
according to
C=p(A)ua(4),

5(4) = Gy(A) Uai(A),

and
G(A) = Gd(A) U Oess (A)7

with all the unions disjoint.

Remark 28.5. If A = A*, then

(1) A € o.(A) means that (A — A1)~ ! exists but is not bounded.
(@)

Oess (A) = 0. (A)
U {eigenvalues of infinite multiplicity and their accumulation points}

U {accumulation points of 04(A)}.

Exercise 28.3. Let A =A" and 11,1, € 6,(A). Prove that if A; # A, then
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N(A—MI)LN(A — A1),

Exercise 28.4. Let {¢;}7_; be an orthonormal basis in H and let {s;}7_; C C be
some sequence. Introduce the set

D= {xEH: Y 15712 (x,¢;)]? <0<:}.
Jj=1

Define

Ax= Y sj(x,ej)e;, x€D.
=1

Prove that A = A and that 6(A) = {s;: j = ...}. Prove also that

xej

—ZI 2

forallz€ p(A) andx € D.

Exercise 28.5. Prove that the spectrum o(U) of a unitary operator U lies on the
unit circle in C.

Theorem 28.6. Let A = A* and let {E) },cr be its spectral family. Then

(1) peo(A)ifandonly if Eye — Ey—¢ # 0 for every € > 0.
(2) peop(A)ifand only if Ey —E, o # 0. Here Eyy_¢ := limg_o1 Ey_¢ in the
sense of the strong operator topology.

Proof. (1) Suppose that u € 6(A) but there exists € > O such that E;; y¢ —E, ¢ =0.
Then by the spectral theorem we obtain for every x € D(A) that

A-pnel = [ G-ppdEey = [ 3 -pPaEe)

p—e e
> 82/ d(Ejx,x) = € {/ + } d(Ejx,x)
[A—u|>e —oo u+e

2 2
— & (Eu-ex2) + 41> = (Busex, )| = €2 P

This inequality means (see part (2) of Theorem 28.2) that u ¢ o(A) but u €
p(A). This contradiction proves (1) in one direction. Conversely, if

P, ::ElH»%_EIJ*%#O

for all n € N, then there is a sequence {x,},_, such that x, € R(P,), i..,
Xn = Pyxp, i.e., x, € D(A) and ||x,|| = 1. For this sequence it is true that
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A=l = [ (= pPd(Ex P, i)
= (A - ,u)zd(E;an,xn)
[A—u|<1/n

1 /e 1 5 1
< ﬁ[wd(Elxnvxn):nﬁ|‘xn|| :;_)0

as n — oo. Hence, this sequence satisfies Weyl’s criterion (see Exercise 28.2)
and therefore u € o(A).

(2) Suppose i € R is an eigenvalue of A. Then there exists xo € D(A), xo # 0, such
that

0= (4=uDxl’= [ (2—pPd(Eo0).
In particular, for all n € N large enough and € > 0 we have that

n n
0= A - u)zd(E,lxo,xo) > e’ d(Ej x0,x0) = 82((En —Eu+g)x07x0)
u+e u+e
2
= (B~ B

Thus we may conclude that
0=Exo—Ej1exo.

Similarly we can get that
0=E_;xo0—Ey_¢exo.

Letting n — oo and € — 0, we obtain

X0 = Euxo, 0= E/J_oxo.

Hence
Xo = (Ey 7E'u,())x0

and therefore
Ey—E _o#0.

Conversely, define the projector
P = Eu - Eﬂf().

If P £ 0, then there exists y € H, y # 0, such that y = Py (e.g., any y € R(P) #
{0} will do). For A > p it follows that
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Eyy=E)Py=E Eyy—EyEy oy =Py =y.
For A < u we have that
E,y=EyEyy—E Eyoy=E;y—E;y=0.

Hence

oo
oo

la—unylP = [ (= wPaEry) = /“ "2~ )2, () = .

Therefore, Ay = uy and y € D(A), y # 0, i.e., i is an eigenvalue of A, or

U e op(A).
(]

Remark 28.7. The statements of Theorem 28.6 can be reformulated as follows:

(1) € op(A)ifandonlyif E, —E,_o#0.
(2) ueoe(A)ifandonlyif E, —E,_o=0.

Definition 28.8. Let H and H| be two Hilbert spaces. A bounded linear operator
K : H — H, is called compact or completely continuous if it maps bounded sets in
H into precompact sets in Hj, i.e., for every bounded sequence {x,}, , C H the
sequence {Kx,}_; C H; contains a convergent subsequence.

If K : H— H, is compact, then the following statements hold.

(1) K maps every weakly convergent sequence in H into a norm convergent
sequence in H;. This condition is also sufficient.

(2) If H = H, is separable, then every compact operator is a norm limit of a
sequence of operators of finite rank (i.e., operators with finite-dimensional
ranges).

(3) The norm limit of a sequence of compact operators is compact.

Let us prove (2). Let K be a compact operator. Since H is separable, it has an
orthonormal basis {e j}‘;?:l. Consider forn =1,2,... the projector

™

Pux:= ) (x,ej)ej, x€H.

1

J

Then P, < P,1; and ||(I — P,)x|| — 0 as n — oo. Define

dy:= sup |[K(I—P)x||=||[K(I—PB)] -

[lxl=1

Since R(I — P,) D R(I — P,11) (see Proposition 27.5), it follows that {d,};_, is a
monotonically decreasing sequence of positive numbers. Hence the limit
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limd,:=d>0

n—oo

exists. Let us choose y, € R(I — P,), |lya|| = 1, such that
d
I~ Pyl = Kol > 2.

Then

|(0n,%)| = (I = Ba)yn, X)| = [y, (I = Ba)X)| < |lyull [[(1 = Po)x[| — O

as n — oo for all x € H. This means that y, — 0. The compactness of K implies that
Ky, — 0. Thus d = 0. Therefore,

dy = ||K — KP,|| — 0.

Since P, is of finite rank, so is KP,, i.e., K is a norm limit of finite-rank operators.

Lemma 28.9. Suppose A = A* is compact. Then at least one of the two numbers
+||A]| is an eigenvalue of A.

Proof. Since
”AH: sup (Axax)‘v

|
[lxl=1
there exists a sequence x,, with ||x,|| = 1 such that

|All = ’}LH}J(Axnvxn)L

In fact, we can assume that lim,,_,..(Ax,,x,) exists and equals, say, a. Otherwise, we
would take a subsequence of {x,}. Since A = A*, it follows that a is real and ||A]| =
|a|. Due to the fact that every bounded set of a Hilbert space is weakly relatively
compact (the unit ball in our case), we can choose a subsequence of {x, }, say {xx, },
that converges weakly, i.e., x, . x. The compactness of A implies that Axy, — Y.
Next we observe that

||A.Xk” 7G.an ||2 - ||Axkn Hz *Za(A.an,an) +a2 S ||A||2 - Za(Axkn"xkn) +a2

=2a* —2a(Axy,,x;,) — 2a° —2a* =0

n?

as n — oo, Hence

Axy, — axy, — 0,
Xk, — X,
A-xk,, -, =

W Ax = ax.
Xk, — X
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Since ||xy, || = 1, we have ||x|| = 1 also. Hence x # 0, and a is an eigenvalue of A. [J

Remark 28.10. 1t is not difficult to show that the statement of Lemma 28.9 remains
true if A is just bounded and self-adjoint.

Theorem 28.11 (Riesz—Schauder). Suppose A = A* is compact. Then

(1) A has a sequence of real eigenvalues Aj # 0 that can be enumerated in such a
way that
Ml >[ha] > > A >

(2) If there are infinitely many eigenvalues, then lim;_.,A; = 0 and 0 is the only
accumulation point of {A;}.

(3) The multiplicity of A; is finite.

(4) Ifejis the normalized eigenvector for A;, then {e j};f’zl is an orthonormal system
and

=

Ax= Aj(x.ej)e; =

Jj=1 J

™

(Ax,ej)ej, x€H.
1

This means that {e;}7_, is an orthonormal basis of R(A).
(5) o(A) ={0,A1,A2,...,4;,...}, while 0 is not necessarily an eigenvalue of A.

Proof. Lemma 28.9 gives the existence of an eigenvalue A; € R with |[A;| = ||A]|
and a normalized eigenvector e;. Introduce H; = eli. Then H; is a closed subspace
of H, and A maps H; into itself. Indeed,

(Ax,e1) = (x,Ae;) = (x,A1e1) = A1 (x,e1) =0

for every x € Hj. The restriction of the inner product of H to H; makes H; a Hilbert
space (since H, is closed), and the restriction of A to H, denoted by A; = A Hy is
again a self-adjoint compact operator that maps in Hj. Clearly, its norm is bounded
by the norm of A4, i.e., [|[A1]| < ||A||. Applying Lemma 28.9 to A; on H;, we get
an eigenvalue A, with |A;| = ||A;|| and a normalized eigenvector ey with ez Le;. It
is clear that || < |A;]. Next introduce the closed subspace Hy = (span{ej,e2})*.
Again, A leaves H, invariant, and thus A, := A | Hy = Al w, is a self-adjoint compact
operator in H,. Applying Lemma 28.9 to A, on H,, we obtain A3 with |A3| = ||Az]|
and a normalized eigenvector ez with e3_Le; and e3_Lej. This process in an infinite-
dimensional Hilbert space leads us to the sequence {A;}7_; such that |41 < [4;]
and corresponding normalized eigenvectors. Since |A;| > 0 and the sequence is
monotonically decreasing, there is a limit

hm M’J‘ =T
J*)oo

Clearly r > 0. Let us prove that r =0.If r > 0, then |Aj| > r>0foreach j=1,2,...,
or
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Hence the sequence of vectors

is bounded, and therefore there is a weakly convergent subsequence y;, 2 y. The
compactness of A implies the strong convergence of Ay; = e;,. But for k # m we
have He e Cm H = /2. This contradiction proves (1) and (2).

Exercise 28.6. Prove that if H is an infinite-dimensional Hilbert space, then the
identity operator / is not compact, and the inverse of a compact operator (if it exists)
is unbounded.

Exercise 28.7. Prove part (3) of Theorem 28.11.
Consider now the projector

n
Pux:= Y (x,ej)ej, x€H.
j=1

Then I — P, is a projector onto (span{ey,...,e,})" = H, and hence
JA( = Bo)x|| < [|All g, 1(7 = Po)x]| < [Anga | [|x]| — 0

as n — oo. Since
n

APx = 2 x,ej)Ae; = 2), x,ej)e
j=1

and
[A(I = Py)x|| = [[Ax —APx|| — 0, n— o,

we have

Ax = Z )‘j(x’ ej)eja
j=1
and part (4) follows. Finally, Exercise 28.4 gives immediately that
O-(A) = {0711,12,-..,11',. . }

This completes the proof. O

Corollary 28.12 (Hilbert—-Schmidt theorem). An orthonormal system of eigen-
vectors {e j};f’:] of a compact self-adjoint operator A in a Hilbert space H is an
orthonormal basis if and only if N(A) = {0}.
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Proof. Recall from Exercise 26.7 that

H=N(A")©R(A) = N(A) S R(A).

If N(A) = {0}, then H = R(A). This means that for every x € H and & > 0 there
exists ye € R(A) such that
[lx—yell <&/2.

But by the Riesz—Schauder theorem,
Ye = Axe = Zl x57e]

Hence

[[x—yell = il < €/2.

)
St

Making use of the Pythagorean theorem, Bessel’s inequality, and Exercise 25.8
yields

n

Z i(xe,ej)e

n
erj

=

Z i(xe,ej)ej+ 2 Aj(xe,ej)e;

Jj=1 Jj=n+1

Z Aj(xe,ej)ej

Jj=n+1

. 1/2
<g/2+< Y |zj|2|<xs7ej>|2>

Jj=n+1

<gf2+

. 1/2
<e/2+ Ay ( > |<xs,e,~>|2>

j=n+1
< €/24 [An| |lxel < €

for n sufficiently large. This means that {e j}?:l is a basis of H, and moreover, it is
an orthonormal basis.

Conversely, if {e;}7_, is complete in H, then R(A) = H (Riesz—Schauder) and
therefore N(A) = {0}. O

Remark 28.13. The condition N(A) = {0} means that A~! exists and H must be
separable in this case.

Proposition 28.14 (Riesz). If A is a compact operator on H and 1 € C, then the
null space of I — UA is a finite-dimensional subspace.
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Proof. The null space N(I — tA) is a closed subspace of H, since I — [1A is bounded.
Indeed, for each sequence f,, — f and f, — UAf, = 0 we have that f — uAf =0,
since A is continuous.

The operator A is compact on H and therefore also compact from N(/ — A) onto
N(I —pA), since N(I — uA) is closed. Hence, for every f € N(I — uA) we have

If = (I—pA)f+nASf = UAf,

and I is compact on N(I — pA). Thus N(I — pA) is finite-dimensional. O

Theorem 28.15 (Riesz’s lemma). If A is a compact operator on H and | € C, then
R(I—uA) is closed in H.

Proof. If u =0, then R(I — pA) = H. If u # 0, then we assume without loss of
generality that 4 = 1. Let f € R(I—A), f # 0. Then there exists a sequence {g,} C
H such that
f=lim (1= A)g,.
We will prove that f € R(I — A), i.e., there exists g € H such that f = (I —A)g.
Since f # 0, we can assume by the decomposition H = N(I — A) & N(I — A)* that
gn € N(I—A)* and g, # 0 forall n € N.
Suppose that g, is bounded. Then there is a subsequence {g, } such that

w

8ky — &
The compactness of A implies that
Agr, — h=Ag.

Next,
8k, = (I —A)gy, +Agk, — f+h.

Hence g = f+Ag,ie., f=(—A)g.
Suppose that g, is not bounded. Then we can assume without loss of generality
that ||g,|| — oe. Let us introduce a new sequence

&
Uy 1= .
l1gnll
Since ||uy|| = 1, there exists a subsequence u;, — u. The compactness of A gives

Auy, — Au. Since (I —A)g, — f, we have

1
(I—A)uk” = 7(1—A)gkn — 0.
18k |

This means again that
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Ui, = (I_A)Mkn +Auy, — Au

and u = Au, i.e., u € N(I—A). But g, € N(I —A)*. Hence w, € N(I —A)* and
further u € N(I — A)*, because N(I —A)™ is closed. Since ||uy,| = 1, we have
||lu|| = 1. Therefore, u # 0, while

ue N(I—-A)NN(I—A)*"
This contradiction shows that unbounded g, cannot occur. O

We are now ready to derive the following fundamental result of Riesz theory.

Theorem 28.16 (Riesz). Let A : H — H be a compact linear operator on a Hilbert
space H. Then for every u € C the operator I — lUA is injective (i.e., (I — uA)™!
exists) if and only if it is surjective (i.e., R(I — UA) = H). Moreover, in this case the
inverse operator (I — uA)~' : H — H is bounded.

Proof. If (I — uA)~" exists, then (I — @A*)~! exists too and therefore N(I — TA*) =
0. Then Riesz’s lemma (Theorem 28.15) and Exercise 26.7 imply H = R(I — uA),
i.e., I — UA is surjective.

Conversely, if I — 1A is surjective, then N(I — TA*) =0, i.e., | — TA™ is injective
and so is I — UA.

It remains to show that (I — uA)~! is bounded on H if I — uA is injective. Assume
that (I — uA)~! is not bounded. Then there exists a sequence f, € H with || f,|| = 1
such that

[(1=pA) " ful| > .

Define X
. f” . (I_.UA)i fn
Sn =T o T s
11— uA) =" fall 1= pA) = fall
Then g, — 0 as n — oo and ||@,|| = 1. Since A is compact, we can select a subse-

quence ¢, such that Agy, — ¢ as k,, — . But

On — UAQ, = gy,

and we observe that ¢y, — (¢ and @ € N(I—uA). Hence ¢ =0, and this contradicts
[@n]| = 1. U

Theorem 28.17 (Fredholm alternative). Suppose A = A* is compact. For given
g € H either the equation

(I-pA)f=g

has the unique solution (u~" ¢ o(A)), in which case f = (I —uA)~'g, orelseu' €
6(A), and this equation has a solution if and only if g € R(I — UA), i.e., gLN(I —
UA). In this case, the general solution of the equation is of the form f = fo + u,
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where fy is a particular solution and u € N(I — UA) (u is the general solution of
the corresponding homogeneous equation), and the set of all solutions is a finite-
dimensional affine subspace of H.

Proof. Riesz’s lemma (Theorem 28.15) gives
R(I —pA) = N(I—TA)*.
If u=!' ¢ o(A), then (1) ! ¢ o(A) also. Thus
R(I—pA) =N(I—TA)r = {0}t =H.

Since A = A*, this means that (I — ,uA)’l exists, and the unique solution is f =
(I—pA) g

If u=' € 6(A), then R(I — nA) is a proper subspace of H, and the equation (I —
UA)f = g has a solution if and only if g € R(I — nA). Since the equation is linear,
every solution is of the form

f=fotu ueN({I-—pA),

and the dimension of N(7 — pA) is finite. O

Exercise 28.8. Let A = A* be compact and injective. Prove that 6,(A) = 04(A) =
0(A)\ {0} and 0 € Oess (A).

Exercise 28.9. Consider the Hilbert space H = [>(C) and

X2 Xn
A ) =0x1,=,...,—,...
(-x17x27 s Xny ) ( 3 X1, 27 5 n 3 )
for (x1,x2,...,Xn,...) € [>(C). Show that A is compact and has no eigenvalues

(moreover, 6(A) = {0}) and is not self-adjoint.

Exercise 28.10. Consider the Hilbert space H = L*(R) and

(AN) =11 (@),

Show that the equation Af = f has no nontrivial solutions and that (I —A)~! does
not exist. This means that the Fredholm alternative does not hold for a noncompact
but self-adjoint operator.

Exercise 28.11. Let H = L*(IR") and let
Af@) = [ K@) 70,

where K (x,y) € L*>(R" x R") is such that K(x,y) = K(,x). Prove that A = A* and
that A is compact.
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Theorem 28.18 (Weyl). If A = A*, then A € Ouss (A) if and only if there exists an
orthonormal system {x,}_, such that

(A= AD)x,|| — 0

as n — oo,

Proof. We will provide only a partial proof. See [5] for a full proof. Suppose that
A € Oess (A). If A is an eigenvalue of infinite multiplicity, then there is an infinite
orthonormal system of eigenvectors {x, }_,, because dim(E; —E; ()H = oo in this
case. Since (A — Al)x, =0, it is clear that

(A—AD)x, — 0.

Next, suppose that A is an accumulation point of o(A). This means that A € 6(A)
and
A =1lim A,

n—o0

where A, # Ay, n # m, and A, € 6(A). Hence for each n = 1,2,... we have that

E)L,,+e *El,ﬁs 7£ 0

for all € > 0. Therefore, there exists a sequence r, — 0 such that

E)Ln"'rn - E)Ln_rn 7& 0.

We can therefore find a normalized vector x, € R(E;, ,, — Ej, _,, ). Since A, # A,
for n # m, we can find {x,};_, as an orthonormal system. By the spectral theorem
we have

Hm_znﬁw:/wm—uﬁam%aw
B Lm(l — 1) d(Eu(Ej 1, = Ep, -, )%ns %)
)L)H’rn
= (A — ) d(Epxn, xn)

An—"n

< max A— 2/md Eyx,,x
_An*rngﬂgln“v’rn( ‘Ll) —o ( o n)

=  max (A-p)?—0, n—oo
M—=ra<U<Ay+ry

This completes the proof. O

Theorem 28.19 (Weyl). Let A and B be two self-adjoint operators in a Hilbert
space. If there is z € p(A) N p(B) such that
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T:=(A—z) ' —(B—zl)!
is a compact operator, then Ogss (A) = Oess (B).

Proof. We show first that Gess (A) C Oess (B). Take any A € Ocss (A). Then there is
an orthonormal system {x,}_, such that

[(A=ADx,|| =0, n— oo
Define the sequence y, as
yni=A—z)x, = (A—ADx, + (A —2)x,.

Due to Bessel’s inequality, every orthonormal system in the Hilbert space converges
weakly to 0. Hence y, 2 0. We also have

A —z] 50

[1yall = (A =zl {lxull = [I(A = AD)xa|| = |4 — 2] = [[(A = A0)xa | >
for all n > ng > 1. Next we take the identity
(B—z) ' —(A=2)yn=~Ty,— (A —2) (A= AD)x,.
Since T is compact and y, — 0, we deduce that

[(B—2)' (A —2)]y. —0.

Introduce
Zy = (B—zl)’ly,,.
Then
w—(A—=2) "y —0,
or

yu+(z—2A)z, — 0.

|A—2|

This fact and ||y, || > 5= imply that ||z,|| > A

4 for all n > ny > 1. But
(B=Azy=(B—zl)zn+ (2= A)za =Yn+ (2= A)zx — 0.

Due to ||z,]| > @ > 0, the sequence {z,};._; can be chosen as an orthonormal
system. Thus A € Gess (B). This proves that Gess (A) C Oess (B). Finally, since —T
is compact too, we can interchange the roles of A and B and obtain the opposite
embedding. (]



Chapter 29
Quadratic Forms. Friedrichs Extension.

Definition 29.1. Let D be a linear subspace of a Hilbert space H. A function Q :
D x D — C s called a quadratic form if

(1) Q(oux) + 0px2,y) = 0 Q(x1,y) + 020(x2,y),
(2) O(x, Biy1 + Boy2) = B1O(x,y1) + B20(x,y2),

for all oy, 0, 1,8 € C and x1,x2,x,y1,y2,y € D. The space D(Q) := D is called
the domain of Q. Then Q is

(1) densely defined it D(Q) = H.

(2) symmetric if Q(x,y) = Q(y,x).

(3) semibounded from below if there exists A € R such that Q(x,x) > —A ||x||* for
allx € D(Q).

(4) closed (and semibounded) if D(Q) is complete with respect to the norm

Ixllg == \/Q(m) + (A1) X
(5) bounded (continuous) if there exists M > 0 such that
10(x,y)[ < M|lx][[|y]
for all x,y € D(Q).
Exercise 29.1. Prove that [|-[| ; is a norm and that
(x,9)0 = Q(x,y) + (A +1)(x,y)

is an inner product.
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Theorem 29.2. Let Q be a densely defined, closed, semibounded, and symmetric
quadratic form in a Hilbert space H such that

Ox,x) = =2 x>, x€D(Q).

Then there exists a unique self-adjoint operator A defined by the quadratic form Q
as

O(x,y) = (Ax,y), x€D(A),y € D(Q)
that is semibounded from below, i.e.,
(Ax,x) > —A|x]*, x€D(A),
and D(A) C D(Q).

Proof. Let us introduce an inner product on D(Q) by

(xay)Q = Q(x,y) + ()‘ + 1)()6,)1), X,y € D(Q)

(see Exercise 29.1). Since Q is closed, D(Q) = D(Q) is a closed subspace of H with
respect to the norm |-[|,. This means that D(Q) with this inner product defines a
new Hilbert space Hyp. Itis clear also that

Ixllg > [Ix]
for all x € Hg. Thus, for fixed x € H,
L(y):=(»x), y€Hp
defines a continuous (bounded) linear functional on the Hilbert space Hp. Applying

the Riesz—Fréchet theorem to Hp, we obtain an element x* € Hy (x* € D(Q)) such
that

3, x) =L(y) = (»x")o-

It is clear that the map
H>x—x"€Hy

defines a linear operator J such that
J:H—Hp, Jx=x"

Hence
(y,x)=(y,1x)Q, XGH»)’GHQ-
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Next we prove that J is self-adjoint and that it has an inverse operator J~!. For all
x,y € H we have

(]yax) = (‘va']x)Q = (‘vajy)Q = (‘]xvy) = (y»‘]x)'

Hence J = J*. It is bounded by the Hellinger—Toeplitz theorem (Exercise 26.2).
Suppose that Jx = 0. Then

(3x) = (nJx)g =0

for every y € D(Q). Since D(Q) = H, the last equality implies that x = 0, and there-
fore N(J) = {0} and J~! exists. Moreover,

H=N(J)&R(J*) =R()

and R(J) C Hyg. Now we can define a linear operator A on the domain D(A) = R(J)
as
Ax:=J'x—(A+1)x, AeR.

It is clear that A is densely defined and A = A* (J~! is self-adjoint, since J is). If
now x € D(A) and y € D(Q) = Hy, then

Q(x,y) = (x,¥)o — (A +1)(x,y) = (Vx,y) = (A +1)(x,) = (Ax,).

The semiboundedness of A from below follows from that of Q. It remains to prove
that this representation for A is unique. Assume that we have two such representa-
tions, A| and A. Then for every x € D(A;)ND(A;) and y € D(Q) we have that

O(x,y) = (A1x,y) = (Asx,y).

It follows that
(A1 —A2)x,y) =0.

Since D(Q) = H, we must have Ajx = Apx. This completes the proof. O

Corollary 29.3. Under the same assumptions as in Theorem 29.2, there exists

VA+ Al that is self-adjoint on D(vA+ AI) = D(Q) = Hgp. Moreover,

O(x,y)+A(x,y) = (\/A+7LIx, \/A+7LIy)

Sorall x,y € D(Q).

Proof. Since A+ Al is self-adjoint and nonnegative, there exists a spectral family
{Eu}j—o such that

A+M=/ udE,.
0
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We can therefore define the operator

VA+A :=/0 VHAE,,

which is also self-adjoint and nonnegative. Then

Q(x,y) +A(x,y) = (A+ADx,y) = (VA+Alx, <\/A+M>* y)

for all x € D(A) and y € D(Q). This fact means that x € D(vVA+AI) and y €
D((\/A +AI)*). But vA + A[ is self-adjoint, and therefore,

D(VA+AI) = D((\/A—&—AI)*) — D(Q) = Hp.

This completes the proof. (]

Theorem 29.4 (Friedrichs extension). Let A be a nonnegative symmetric linear
operator in a Hilbert space H. Then there exists a self-adjoint extension Ag of A
that is the smallest among all nonnegative self-adjoint extensions of A in the sense
that its corresponding quadratic form has the smallest domain. This extension A is
called the Friedrichs extension of A.

Proof Let A be a nonnegative symmetric operator with D(A) = H. Its associated
quadratic form

Q(x,y) == (Ax,y), x,y€D(Q)=D(A),

is densely defined, nonnegative, and symmetric. Let us define a new inner product

(xvy)Q = Q(X,)’) + (x,y), X,y € D(Q)

Then D(Q) becomes an inner product space. This inner product space has a com-
pletion Hyp with respect to the norm

lellg == \/ @(x.x) + [l

Moreover, the quadratic form Q(x,y) has an extension Qj (x,y) to this Hilbert space
Hyg defined by

01 (x,y) = r}ijI}oQ(xnvyn)

whenever x o limy, o Xy, y o limy,—co Y, X, yn € D(Q) and these limits exist. The
quadratic form Q) is densely defined, closed, nonnegative, and symmetric. There-
fore, Theorem 29.2, applied to O, gives a unique nonnegative self-adjoint operator
Af such that
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Q1(x,y) = (Arx,y), x€D(Ar) C Hg,y € D(Q1) = Hp.

Since for x,y € D(A) one has

(Ax7y) = Q(x>y) =0i1(x,y) = (Avay)7

it follows that Af is a self-adjoint extension of A.

It remains to prove that Ap is the smallest nonnegative self-adjoint extension of
A. Suppose that B > 0, B = B*, is such that A C B. The associated quadratic form
Op(x,y) := (Bx,y) is an extension of Q = Q4. Hence

0D 0=0.

This completes the proof. (]



Chapter 30
Elliptic Differential Operators

Let ©2 be adomain in R”, i.e., an open and connected set. We introduce the following
notation:

(1) x=(x1,...,%,) € Q;
(2) x| =/xF+- -+
(3) a=(ou,...,0) is a multi-index, i.e., a; € No = NU{0}:
() o] = o+ + o,
(b) a>pifo; > p;forall j=1,2,...,n,
(C) a+ﬂ:(al+ﬁl7"'aan+ﬁn)9
@ a—B=(ar—Pi,...,0,— ) if o > B,
(e) x* :)c‘f‘1 - x% with 00 = 1,
) o!=0oq!---o,! with0! = 1;

d n
@) 9; =5 and 9% = 9" --- 9.
Definition 30.1. An elliptic partial differential operator A(x,d) of order m on € is
an operator of the form
A(x,0) = 2 ag(x)0%,
loe| <m

where aq (x) € C~(2), whose principal symbol

a(v,§)= Y, ag(x)&% &eR”

la=m

is invertible for all x € Q and & € R"\ {0}, that is, a(x,&) # 0 for all x € Q and
& eR"\ {0}.

Assumption 30.2. We assume that a,(x) are real for |ot| = m.
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Under Assumption 30.2 either a(x,&) > 0 or a(x,&) < 0 for all x € Q and & €
R"\ {0}. Without loss of generality we assume that a(x,&) > 0. Assumption 30.2
implies also that m is even and that for every compact set K C € there exists Cx > 0
such that

a(x,§) > CklE|", x€Q,EeR".

Assumption 30.3. We assume that A(x,d) is formally self-adjoint, i.e.,

Ax,d)=A'(x,d):= Y (-1)"9%(ag(x)).

lot|<m

Exercise 30.1. Prove that A(x,d) = A’(x, d) if and only if

ag(x) = z (,1)|ﬁ\cgaﬁ—am’

a<p
[B|<m
where B
Cl=—F—"—.
B al(B—a)!

Hint: Make use of the generalized Leibniz formula

2%(fe)= Y Cha*Prolyg.

B<a

Assumption 30.4. We assume that A(x, d) has a divergence form

Axa)= Y (=1)9%anp(x)0P),
jof={BT<m)2

where a,p = ag,, and this value is real for all o and . We assume also the gener-
alized ellipticity condition

Ja

where v > 0 is called the constant of ellipticity.

awp @z v [T (0%, fECT(Q),

|or|=|B]=m/2 Qoj=m/2

Remark 30.5. If the coefficients a,g of A(x,d) are constants, then this generalized
ellipticity condition reads

z aaﬁéa-&-ﬁz‘/ Z 6205.

|ox[=[B[=m/2 o] =m /2
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Exercise 30.2. Prove that
Y, & =g,
|at|=m/2
ie.,
cgm< Y, &<l

|at|=m/2

where ¢ and C are some constants.

Example 30.6. Let us consider

n
A()C,(?):—E‘%Z:—A7 xeQCR"
j=1

in H = L?(Q) and prove that A C A* with
DA)=Cy(Q2) = {f € C”(Q) :suppf = {x: f(x) # 0}is compact inQ}.

Let u,v € C5(£2). Then

(Au,v);2 = —]nz‘l/g (a}u) vdx
- 21 [ ai(@umax+ 21 [ @) (3 a

__ /a (Ve (Vi V)2 = (Vr, V),

where d 2 is the boundary of Q and n, is the unit outward normal vector at x € Q.
Here we have made use of the divergence theorem. In a similar fashion we obtain

(Vu,Vv)p ==Y, /Q ua}vdx: (u,—AV) ;2 = (u,Av) 2.
j=1
Hence A C A* and A is closable.
Example 30.7. Recall from Example 30.6 that
(—Au,v)2 = (Vu,Vv) 2, u,veCy(Q).

Hence
2 oo
(—Au,u)p2 = |Vullp2 < lull;2 |Aull2,  ueCF(L2).
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Therefore,
2 2 2 2
eellyz = lluallpz + [1Vullz2 + [[Aulz2
2 2
< ullz2 + llull 2 [|Aull 2 + ([ Aul[z2
32 3 2 _ 3,0
< 2 e+ 3 e = 2 .
where [|-||, is a norm that corresponds to the operator A = —A as follows:
2 2 2
[ally = Nullz2 + [ =Aullz2 -

It is also clear that ||u||, < ||uHW22 Combining these inequalities gives

2
=z < g < el

for all u € C5(£2). A completion of C7(£2) with respect to these norms leads us to
the statement

Thus A = —A on D(A) = W3(Q). Let us determine D(A*) in this case. By the
definition of D(A*) we have

D((—A)*) = {v € L*(Q) : there exists V" € L*(£2) such that
(—Au,v) = (u,v*)forallu € Cy(Q2)}.

If we assume that v € W3 (€2), then this is equivalent to
(u,(=4)"v) = (u,V"),
ie., (—A)v=v* and D((—A)*) = W#(Q). Finally, for Q C R" with Q # R" we
obtain that B B
ACACA*=(A)

and A # A and A # (A)*, that is, the closure of A does not lead us to a self-adjoint
operator.

Remark 30.8. If Q = R", then W3(R") = W2(IR") and therefore
A=A"=(A)".

Hence the closure of A is self-adjoint in that case, i.e., A is essentially self-adjoint.
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Example 30.9. Consider again A = —A on D(A) = C;’(2) with Q # R”. Since
(~Au,u)z = [Vl >0,
it follows that —A is nonnegative with lower bound A = 0. Therefore,
O(u,v) := (Vu,Vv),2

is a densely defined nonnegative quadratic form with D(Q) = D(A) = C5(L2). A
new inner product is defined as

(u,v)g = (Vu,Vv) 2 + (u,v) 2

and , )
ey = Nl -

If we apply now the procedure from Theorem 29.4, then we obtain the existence of
Q1 = Q with respect to the norm |[-|| 5, which will also be nonnegative and closed

with D(Q;) = W1(£2). The next step is to obtain the Friedrichs extension A as
Ap=J""-1

with D(Ap) = R(J) C W}(£). A more careful examination of Theorem 29.2 leads
us to the fact

D(Ar) = WH(Q) N D(A") = WH(2) nW3(Q).
Remark 30.10. In general, for a symmetric operator we have
D(Ap) ={u€Hp:AucH},
which is equivalent to
D(Ar)={ucHp:uecD(A")}.

Exercise 30.3. Let H = L*(Q) and A(x,D) = —A + g(x), where g(x) = ¢(x) and
q(x) € L*(Q). Define A, A*, and Af.

Exercise 30.4. Let H = L>(Q) and
A(x,0) = —(V+IW(x))* +q(x),

where W is an n-dimensional real-valued vector from W.1(Q) and g is a real-valued
function from L™(£2). Define A, A*, and Ag.
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Consider now a bounded domain £ C R” and an elliptic operator A(x,d) in £ of
the form
Axd)= ¥ (~1)9%agp(x)P),
|o=|B|<m/2

where a5 (x) = agq(x) are real. Assume that there exists Cp > 0 such that

m
|aaﬁ(x)|§C07 |(X|,‘ﬁ|<§7

for all x € Q. Assume also that A(x, d) is elliptic, that is,

/Q ¥ aaﬁ(x)a“faﬁ?dxzv/g 3 10%Rdy, v >0.

|oe|=[Bl=m/2 |ot|=m/2

Theorem 30.11 (Garding’s inequality). Suppose that A(x,d) is as above. Then
for every € > 0 there is C¢ > 0 such that

(Af. D) 2 (V=) I s g = Ce I Iy

forall f € C5(Q).
Proof. Let f € Cy(£2). Then integration by parts yields
A= % (=D [ 9%(aup ()9 )7
lo|=|Bl<m/2 @

= Z Aop (x)a?fﬂﬁfdx
|0¢ﬁ|m/2/'q

+ Y / (g (x)0%fIP fdx
|a|=[Bl<m/2”
>v ¥ [jonrPar-co X [ 10%A11oP rlax
o[ =m/27 €2 |a|=|Bl<m/2”
>v Y /|8°‘f|2dx—(Co+v) D /\aaf\de
o] <m/27 €2 la|<m/27 €

2 2
= VU gy = Co V) s g

Next we make use of the following lemma.

Lemma 30.12. Forall € >0and 0 < 8 <m/2 there is C¢(8) > 0 such that
(LG22 < e(1+[EP)" +Ce()

forall &£ € R".
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Proof. Lete >0and 0 <& <m/2.If (1+|&|?)® > L, then

(1+1EM) 0 <e.

Hence
(14 [EP)">70 <e(1+ €)™,

i.e., the claim holds for every positive constant Ce(8). For (1+ |E[?)% < % we can

obtain
m/2—8

(14|28 < (1) )

€

This proves the claim. ]

Applying this lemma with 6 = 1 to the norm of the Sobolev spaces Wzk, we conclude
that

2 2 2
Wy gy < EIF Gz ) + Cer /1112
for all &; > 0. Hence

2
A )z =V ||f|\W2m/2<Q

2
> VI

—(Co+ VNP
(Cot V) 11,

2
— (Gt Ve fllyme g

) ()

=(v—g¢) Hf||2WZ»n/z(Q) —Ce |l fl72(0 -

This proves the theorem. (]
Corollary 30.13. There exists a self-adjoint Friedrichs extension Ag of A with do-
main D(Ag) = Wi'*(Q) W (Q).

Proof. 1t follows from Garding’s inequality that

(Af, 2@ = —Celfli2@).  fEDA).

This means that A, := A+ u/ is positive for 4 > Ce, and therefore Theorem 29.4
gives us the existence of

(Au)s = (Ar)y = A+

with domain

2 m/2

D(Af) = D((Ap)) = W3'"(2) N D(AY),

where W?/ 2(!2) is the domain of the corresponding closed quadratic form (see The-
orem 29.4). If Q is bounded with smooth boundary d€2, then it can be proved that
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D(A™) =W, (Q).
This concludes the proof. (]

Garding’s inequality has two more consequences. Firstly,

|

(AF)ufHLz =Gl fllz, Co>0,

so that
(Ap), ' L*(Q) - L*(Q).
Secondly,
AR f Ny 2 ) = Collflymgy - Co>0,
so that

(Ar)p ! 2(Q) — Wi (Q).

Corollary 30.14. The spectrum o (Ar) = {2;}7_, is the sequence of eigenvalues
of finite multiplicity with only one accumulation point at +oo. In short, 6(Ag) =
04(Ar). The corresponding orthonormal system {y; =1 of eigenfunctions forms
an orthonormal basis and

ApfE 2 A

j=1
forall f € D(Ap).
Proof. We begin with a lemma.

Lemma 30.15. The embedding
2 m/2 2
W, (Q) = L7(Q)

is compact.

Proof. It is enough to show that for every {¢y}7_, C W;"/ *(Q) with 1@l mn <1
2

there exists {¢;, }7_, that is a Cauchy sequence in L?(£2). Since € is bounded, we

have

19:(8)] < lloell2 19212,

i.e., the Fourier transform @ (&) (see Chapter 16) is uniformly bounded. Thus there
exists (ﬁj\k (&) that converges pointwise in R”. Next, using Parseval’s equality and the
definition of the Sobolev spaces H*(IR") (see Chapter 20), we have
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loi—0ill7: = [, 19(6) 77 (&)

=[G &) —en&)aE+ [ 1g(E) — o (E)Pae

§l<r I§[>r
<[, 1#©) -l
1

e o 16L&~ g Pag

= ‘5|<r|@(5)—@;(5)\2d5+(1+r )" @ — (PJmHWm/z
=L +Db.

The first term /; tends to O as k,m — oo by the Lebesgue dominated convergence
theorem for every fixed » > 0. The second term converges to 0 as » — oo because

||(ij_‘ij||W2m/2 <2 -
Lemma 30.15 gives us that
(Au)s ' 12(Q) — 12(Q)

is a compact operator. Applying the Riesz—Schauder and Hilbert—Schmidt theorems,
we get the following statements:

~1 . .
(1) o((Ay)g ) ={0, 11,12, } with 1 > pjy 1 > 0and j — 0 as j — oo,
(2) u; is of finite multiplicity.

3) (A”);] y; = ujy;, where {y; % is an orthonormal system.
(4) {w;}7, forms an orthonormal basis in L*(Q).

Since Apy; = A;y; with A; = .- — 1, we conclude that
o(Ar) = {4}, A S A1, A) — oo

Moreover, A; has finite multiplicity and the y; are the corresponding eigenfunctions.
We have also the following representation:

(Au)l?lf:z]uj(f,%)w FelX(Q).
£

Exercise 30.5. Prove that

Arf = 2 A(F,w) v
=1
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for all f € D(AF).

The corollary is proved. O
In some applications it is quite useful to deal with semigroups of operators. We
consider these semigroups in Hilbert spaces. This approach allows us to characterize
the domains of operators (when they are not bounded); see, e.g., [3].
Let A be a nonnegative self-adjoint operator in a Hilbert space H. By the spectral
theorem we can characterize D(A) as follows: f € D(A) if and only if

| a2 ) <o
and we define a new norm

1 lpeay = 1Al + 1AL N -

Definition 30.16. Let {G(¢)},~0 be a family of bounded linear operators from H to

H. This family is called an equi-bounded strongly continuous semigroup if

(1) G(t+s)f=G(t)(G(s)f) fors,t >0and f € H,

Q@) 1G)fllg <M| flly fort >0and f € H with M > 0 that does not depend on ¢
of f,

(3) limy_oy |G(6)f — £l =0 for f € H.

Remark 30.17. 'We can complete this definition by G(0) :=I.

Definition 30.18. The infinitesimal generator A of the semigroup {G(7)};~0 is de-

fined by the formula

G(t)—-1
R

lim

t—0

A=
with domain D(A) consisting of all f € H such that

lim G(t)—1
t—0 t

f

exists in H.
Remark 30.19. 1In the sense of the previous definition we write G'(0) = A.

Example 30.20. Let H = L*>(R"). Let (&) be an infinitely differentiable positive
function on R" \ {0} that is positively homogeneous of order m > 0, i.e., ®(t&§) =
[7|"@(&). Let us define the family {G(#) };~o by the formula

Gi)f =F (e Ff), felPR).

It is clear that G(t) : L*(R") — L?(R"). Moreover,
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ey

G(t+s)f =F (e 190 7 f)
1

(@)

160112 = |7 e @7 )

— He*fw@)yf

B RS PR

3

160 f=fllz = |7 @ 7~ 7 1)

sl

—0
12

ast — (0 by the Lebesgue dominated convergence theorem. Also by this theorem
we have that

_ —to(§) _
limM =lim.Z7 ! <“§f) =7 Yw&)Ff)=Af.

t—0 1t t—0 1
The domain of A is
DA)={feL?: |0(&)Z[|, <=}

For example, if (&) = |E|™, then A = —(—A)"/? and D(A) = W}*(R").

Example 30.21. Let A=A" > 0. Define
G(t):=e" = / " dE; .
0

Then
(D

G(t+S) :/ CI(H_S)AdE‘)L :/ GIM'GISAC].E')L
0 0
~ ItA “ Is
=/ e dE/e“dE =G(1)G(s);
|| e [, = Gae)

@)
IIG(t)fH2=/ [ PELS, 1) = 1%
0

3)
1G()f — £ = /0 % 1PA(E,f,f) =0, 10,



330 Part III: Operator Theory and Integral Equations

and
G F— oo It?L_l 00
M:/ ¢ dE;Lf—>I/ AdE;f=IAf, t— 0,
t 0 t 0
and
lim MJuIAf =0.
t—0 t H

These examples reveal a one-to-one correspondence between the infinitesimal gen-
erators of semigroups and self-adjoint operators in Hilbert space.



Chapter 31
Spectral Functions

Let us consider a bounded domain 2 C R" and an elliptic differential operator
A(x,d) in Q of the form

Axd)= ¥ (-1)9%agp(x)d").

|ot[=[B[<m/2

where a,g = ag,, are real, in C*(£2), and bounded for all o and 3. We assume that

Jo

As was proved above, there exists at least one self-adjoint extension of A with
D(A) = Cy(£2), namely, the Friedrichs extension A with

15 (x) 9% £P Fdx > v/g 3 10%fPdy, v 0.

lo|=|Bl=m/2 o] =m/2

D(Ar) = W3(Q) nW3' ().

Let us consider an arbitrary self-adjoint extension A of A. Without loss of generality
we assume that A > 0. Therefore, A has the spectral representation

X:/ AdE;
0

with domain
D (X) - {f c1X(Q): /Om/lzd(E,lf,f) < oo}.

In general, we have no formula for D (;\\) like that for the Friedrichs extension Ag.
But we can say that
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[o} o~
W2(Q)C D (A) .

Indeed, since aqp € C(£2) and a,p is bounded, A(x,d) can be rewritten in the

usual form
A(x,0) = Z ay(x)ay

lv|<m

with bounded coefficients. Hence

IAfl2@) S ¢ X 107 Fllz@) =<l flwpa) -

[YI<m

This proves the embedding.

But even in this general case, one can obtain more significant results than just
the previous embedding into the domain of the operator. The basis for these results
is the following classical theorem of L. Gérding, which is given here without proof
(see, e.g., [14, 15]). In this theorem it is assumed that A is an arbitrary (semibounded
from below) self-adjoint extension of an elliptic differential operator A(x,D) with
smooth and bounded coefficients.

Theorem 31.1 (Garding). If A = A " then E; is an integral operator in L*(Q)
such that

Erf() = [ 6002 f ().

where 0(x,y, ) is called the spectral function and has the properties

(1) 8(x.3.2) =003, 2),
(2) _
6r32) = [ 0(r.2.2)0(zx )

and

9(x,x,/1):/Q|e(x,z,x)|2dzzo,

(3) k
sup ||6(x7'a)~)||L2(Q) SCl), s
x€£)

where Q1 = Q; C Q. k € Nwithk > 7 and c1 = c(£2y).
Remark 31.2. It was proved by L. Hérmander that in fact,

0(x,x,A) < c A"
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Corollary 31.3. Letzcp (Z) Then (;\\ —zI)~ ! is an integral operator whose ker-

nel G(x,y,z) is called the Green’s function corresponding to A and that has the
properties

(1)
i dle(x yaz’)

G(xa%Z) :/0 17727

(2) G(x,y,2) = G(y,x,2).

Proof. Since z € p (X), von Neumann’s spectral theorem gives us

A—z)'f= /w(x —z)"dE, f.
JO

Next, by Theorem 31.1 we get

A—z) f/ _2) ld,1</9xy, )

= [, ([ =0 00w0)) s = [ Gt 01

where G(x,y,z) is as in (1). Since

_ [7dO(x,y,A) _ [=dO(y,x,A) _
G(xvyaz)_/o 2{_? _/0 /,L—? _G(yvxvz)a

(2) is also proved. O

Exercise 31.1. Prove that 6(x,x,A) is a monotonically increasing function with
respect to A and

(1) 6(x,3,4)]* < 6(x,x,4)60(y,y, 1),
@) |ELf(x)] < 0(x,x, )2 fll 20

Exercise 31.2. Prove that
|E3 f(x) = Euf ()| < |Eaf = Eufl| 2 10 (e, ) = 0x,x, )12

forall A > 0and u > 0.

Exercise 31.3. Let us assume that n < m. Prove that

> 0(x,y,A)dA
G(x,y,z) :/(; ((ly—Z;Z

and that G(-,y,7) € L*(Q).
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In the case of the Friedrichs extension for a bounded domain, the spectral func-
tion 0(x,y,A) and the Green’s function have a special form. We know from Corol-
lary 7.14 that the spectrum o (AF) is the sequence {4;}7_, of eigenvalues with only
one accumulation point at +oo, and the corresponding orthonormal system {y;}7_,

forms an orthonormal basis in L?(£) such that
Arf =X 2(f vy inL%
Jj=1
This fact implies that

Ef= % Gwvi= 3 [ 10w

Aj<A Aj<A

= [ | 2 wiowD) | soir= [ 0 arsoa

7Lj<)L

i.e., the spectral function 0 (x,y, A1) has the following form:

x)% Z "I/j

Aj<h

Hence (see Corollary 31.3) the Green’s function has the form

G(x,y,z) =

If we assume now that n < m, then we obtain that the Green’s function G(x,y,z)
is uniformly bounded in (x,y) € Q x Q. Let us assume for simplicity that z = iz,
and Ar > I. Then applying Hérmander’s estimate (see Remark 31.2) for the spectral
function, we obtain

o Vilvio)l _ § i () [w; ()]
Gy < Y —F==r=), Y, e
=ty A k=02k <A <ok+ \/@
1
2

Zzzkﬂ 7| 2 v > wo)P

2k§lj<2k+| 2k§lj.<2k+l

=

oo 2k+1)n/m
< Z Q%)

Since n < m, this series converges for all z5.



Chapter 32
The Schrodinger Operator

There are certain physical problems that are connected with the reconstruction of
the quantum-mechanical potential in the Schrédinger operator H = —A + ¢(x). This
operator is defined in R". Here and throughout we assume that ¢ is real-valued.

First of all we have to define H as a self-adjoint operator in L?(R"). Our basic
assumption is that the potential ¢(x) belongs to LP(R") for 5 < p < oo and has the
following special behavior at infinity:

lg(x)| < clx[H, |x[ > R,

with some t > 0 and R > O sufficiently large. The parameter u will be specified
later, depending on the situation. We would like to construct the self-adjoint ex-
tension of this operator by Friedrichs’s method, because formally our operator is
defined now only for smooth functions, say for functions from C7’ (R"). In order to
construct such an extension let us consider the Hilbert space H; defined as follows:

Hy = {f € (R"): Vf(x) € PR and [ [g(2)]1f(x) P < oo}

The inner product in H; is defined by

(.9 = (VA Ve + [ )7 g+ po(f,8)e

with Ly > 0 sufficiently large and fixed.

Lemma 32.1. Assume that f € W, (R") and q € LP(R") for 5 <p<e,n>2 Then
for every 0 < € < 1 there exists ce > 0 such that

(@ff)12] < €NV g + e 1 F 12y

(© Springer International Publishing AG 2017 335
V. Serov, Fourier Series, Fourier Transform and Their Applications

to Mathematical Physics, Applied Mathematical Sciences 197,

DOI 10.1007/978-3-319-65262-7_32



336 Part III: Operator Theory and Integral Equations

Proof. If p = oo, then

|@ﬁﬁﬂéﬂ@¢@WﬁW@émewwﬂéw>
< €[V Iz + 4l = ey I 172 gy -

If 5 < p < oo, then we estimate

@rnels [ @ls@Pas [ @l

2
SAMMM@WUMM+MMWW,

Let us consider the integral appearing in the last estimate. For n > 3 it follows from
Holder’s inequality that

de ( gd)C) !
./Iq(x)\>A @l fx)Fdr < ~/|ci(x)\>A )
<A3-r)i (/ s |q(x)|1’dx> €1 Hf||€v21(JR")

2
< ClA HqHLp R" ||f||W21(]R") :

=
7N
—
=
ESava
S
=
K
0l
&
N———

To obtain the last inequality we used the fact that § < p < e and a well known
[1, 3] embedding: W21 (R") C anTn2 (R™), n > 3, with the norm estimate
1 gy < V1 g -

Collecting these estimates, we obtain

2 2
(@f: )] < Al IIqHLp ) [/ g oy AN 22 gy

2
= A [l 19 e + (A4 0 oy ) 11

The claim follows now from the last inequality, since A'=% can be chosen suffi-
ciently small for 5 < p < o, O

Exercise 32.1. Prove Lemma 32.1 for n = 2.

Exercise 32.2. Let us assume that g(x) satisfies the conditions

(1) |q| <ecilx]™,]x] <1, and
2) gl < calx|77,|x| > 1.

Find the conditions on y; and 7> that ensure the statement of Lemma 32.1.
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Remark 32.2. Lemma 32.1 holds for every potential ¢ € LP(R") + L=(R") for
p>5,n>2

Using Lemma 32.1, we obtain
117, = IV F 172y + B0 I £ 1172 en) + (af )2
> |V £ 72y + Ho L1 Z2 ey — € IV F 172y — ce 1122 n)
=(1—-¢g) ||Vf||i2(R") + (Mo — ce) Hf||i2(Rn)-

We choose here 0 < € < 1 and tp > c¢. On the other hand,

I£117, < L+ &) IVAlZ2 g + (1o +ce) | £1172 ) -

These two inequalities mean that the new Hilbert space H; is equivalent to the space
W21 (R™) up to equivalent norms. Thus we may conclude that for every f € H; our
operator is well defined by

2
(fs (H + ko) f) 2y = 1 W1, -
Moreover, since H + L is positive, we must have

171, = [+ o) [

L2(R7)’

and the following statements hold:

(1) the domain of (H + /.L())% is W, (R");
(2) D(H+ po) = D(H) C Wy (R");
(3) D(H)={f e W) (R"): Hf € L*(R")}.

Remark 32.3. (H+ uo)f = (H —l—uo)% (H—i—,uo)%f is equivalent to
1
D(H) = {f € Wy (R") : g:= (H + o) f € W, (R")}.

Remark 32.4. Let us consider this extension procedure from another point of view.
The inequality

(f7 (H+'u0)f)L2 > (1 78) ||Vf||1%2(Rn) + (,UO 7C£) ||f||i2(]R”)

allows us to conclude that
() (f.(H+10)f)z2 > ¢ | £]|72 g and
@ (f,(H+10)f)2 > ¢ |l e

for every f € Cy(R"). This means that there exists (H + o) ~" that is also defined
for g € Cy’(R") and satisfies the inequality
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(1 H H+ o)~ gHLz ey < l/ 1l z2(mny Or even
-1 .
) ||(H+ o)~ gHW; Ry < & Hg||W I (gn)» Where Wy (R") is the dual space of
Wy (R™).

. By 2, S
Since (H + o)~ is a bounded operator and Ci (R") = L*(R") and C7(R") =
W, '(R"), we can extend (H + o)~ as a bounded operator onto L?(IR") in the first
case and onto W2_1 (R™) in the second. The extension for the differential operator is
H+ o= ((H+po)~") " and D(H + o) = R((H + o)~ ') in both cases. It is also
clear that H + o and (H + o)~ are self-adjoint operators.

Lemma 32.5. Let us assume that g € LP(R") for 2 < p < e ifn=2,3 and q €
LP(R") for 5 < p <o ifn>4. Then
W3 (R") C D(H).

Proof. Since H= —A +qand D(H) = {f € W) (R") : Hf € L*(R")}, it is enough
to show for the required embedding that for f € W3 (R") it follows that ¢ f € L*(R").
If p = o, then

0P < oy 1 e <

for every f € W2 (R"), n > 2.
For finite p let us consider first the case n = 2,3. Since W(R") C C(R") N
L= (R") (Sobolev embedding), we must have

g f]*dx = lgf|*dx+ lqf|*dx
R lg|<A lg|>A

<& [ 1fPar+ e [ lal’la e
lql<A lg|>A
< A 1172y + C 1 2y A7 Il ey < o=

We will apply the following embeddings:
FEWZ(RY) CLP(RY), p<oo.
fEWR(R") C LiZa(R"), ifn>>5.

Therefore, on applying Holder’s inequality we obtain

[ JarPac= [ arPacs [ jasPas
q q

4
n n 2n_ n
<A+ ([ laitax)" ([ iias)
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4
n_o\4 n 2
< gy +CAE I ([ faar) 1R e <
g[>A 2

if n > 5 and

e

/R4|‘Zf|2d’€§</R4q|pdx) </ f|pdx) -

ifn=4for2<p<eandp' <eo. O
Exercise 32.3. Prove this lemma for ¢ € LP(R") +L*(R"), 5 < p < o, if n >4 and
for g € L>(R") + L*(R") if n = 2,3.

Remark 32.6. For n > 5 we may consider g € L2 (R").

Lemma 32.7. Let us assume that g € L"(R"), n > 3. Then
D(H) = W(R").

Proof. The embedding W3 (R") C D(H) was proved in Lemma 32.5. Let us now
assume that f € D(H), ie., f € W) (R") and Hf € L*(R"). Note that for
g:= Hf € L? we have the following representation:

—f=(=A+1)"g—1)f-(-A+1)""g
=(=A+1)"Ngf) = (-A+1)Tg—(-Aa+1)7'f.

It is therefore enough to show that ¢f € L?>(R"). We use the same arguments as
in Lemmas 32.1 and 32.5. So it suffices to show that ¢f € L*>(R") for every f €

W, (R"). From the embedding W, (R") C L2 (R") for n > 3 we have by Holder’s
inequality

L la@Plr@Par= [ lg@PirePacs [ jaoPlfwPar
n lg|<A

lg|>A
—2

2 n=2
2 2 n " 2n "
S A Hf”Lz(]R”) + (/q|>A ‘q| dx) </q>A ‘f|n*2 dx) < oo,

Thus the lemma is proved. O

Exercise 32.4. Describe the domain of H for the case 5 < p <n,n > 3. Hint: Prove
that D(H) C WZ(R") + W2(R") with some s = s(p).

Let us consider now the Laplacian Hy = —A in R", n > 1. Since (—Af, f);2 =
Vs ||12_2(R") > 0 for every f € W, (R"), it follows that Hp is a nonnegative opera-

tor. Moreover, Hy = H; with domain D(Hy) = W7 (R"), and this operator has the
spectral representation
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Hyf = / AdE, f.
0

It follows that o(Hp) C [0,4-e0), but in fact, 6(Hp) = [0,4<c) and even o(Hp) =
0c(Hp) = OCess (Hp) = [0,420). In order to understand this fact it is enough to ob-
serve that for every A € [0, +0) the homogeneous equation (Hy — A)u = 0 has a
solution of the form u(x,k) = e!®¥), where (k,k) = A and k € R”. These solutions
u(x, k) are called generalized eigenfunctions, but u(x,k) ¢ L*(R"). These solutions
are bounded and correspond to the continuous spectrum of Hy. Consequently, u(x, 75)
are not eigenfunctions, but generalized eigenfunctions. If we consider the solutions
of the equation (Hy — A)u = 0 for A < 0, then these solutions will be exponentially
increasing at the infinity. This implies that A < 0 does not belong to & (Hy).
For the spectral representation of Hy we have two forms:

(1) the Neumann spectral representation
~Af= [ AdEuf. fEWRRY);
0

(2) the scattering theory representation

~

~Af =7 (EPR =) [ 1EPSEIAE [ e ()ay,

Exercise 32.5. Determine the connection between these two representations.

There are some important remarks to be made about the resolvent (—A —z)~!
for z ¢ [0,+<0). A consequence of the spectral theorem is that

(_A—Z)il :/Ow(k—z)ildEx, ZEC\[O’+°°)a

and for such z the operator (—A —z)~! is a bounded operator in L?(R"). Moreover,

with respect to z ¢ [0, 4-<o), the operator (—A —z)~! as an operator-valued function
is a holomorphic function. This fact follows immediately from

(—a—2)7"). = /Ow(z —2)2dE, = (—A—2) 2.

The last integral converges as well as the previous one (even better). Now we are in
a position to formulate a theorem about the spectrum of H = —A +gq.

Theorem 32.8. Assume that q € LP(R"), § < p < oo, n > 2, and q(x) — 0 as

|x| — H-oo. Then

(1) O-C(H) o (O>+°°);

(2) op(H) C [—co,0] is of finite multiplicity with its only accumulation point at {0}
with co such that —A +q > —cy.
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In order to prove this theorem we will prove two lemmas.

Lemma 32.9. Assume that the potential q(x) satisfies the assumptions of Theorem
32.8. Assume in addition that q(x) € L*(R") for n = 2,3. Then

(A —z)log: [*(R") — L*(R")
is a compact operator for z ¢ [0,+o0).

Proof. Due to our assumptions on the potential g(x), it can be represented as the
sum g(x) = q1(x) + ¢2(x), where ¢; € LP(]x| < R) with the same p and ¢, — 0
as |x| — . We may assume (without loss of generality) that ¢, is supported in
{x €R": |x| > R} and that it is a continuous function. Let us consider first the cases
n=23.1f f € [*(R"), then ¢ f € L'(|x| < R) and (—A —2) "' (q1f) € W}(R")
(by the Fourier transform). By the embedding theorem for Sobolev spaces (see, e.g.,
[1, 3]) we have that

(A —2) N quf) e WAR") C W) 2 (R, n=2,3,
with the norm estimate

=A=' @D g < A= @] 21
2
<cl(=a=2)" @z < cllgr Il e
<cllg HL2(|x|<R) ||fHL2(\x|<R)7

or
H(*A *Z)_l °q1 ||L2(\x|<R)HL2(R") <cllq ||L2 )

where ¢ may depend only on z.
In the case n >4 and ¢ € L?(|x| <R), p > 5, we may obtain by Holder’s inequal-
ity that

2
af el (M <R), s>-"

for f € L>(R"), and therefore, (—A —z)~!(q1 f) € W2(R"). Again by the embedding
theorem for Sobolev spaces we have

(—a—2) (g ews "6 @

2n

) with the norm estimate

for some s >

-1
=4 =97 a1l 2 cpy-r2qgey < clarllirguen
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In order to prove that (—A —z)~!

follows:

ogq1 is a compact operator we approximate it as
A= (=A—=2)"oq, Aj:= @A,
where @;(x) € C5 (R"),|@;(x)| < C and
Y

The reason is that (—A —z)~! o g is actually an integral operator with kernel
K.(x —y) that tends to O as |x| — e uniformly with respect to |y| < R (note that
qi is supported in |y| < R). We therefore can approximate this kernel K, by the
functions ¢@; € C;’(R"). But A; is a compact operator for each j = 1,2,..., because
the embedding

W (|x| <R) € L*(]x| < R)

is compact for positive o. This implies that A is also a compact operator.
Next we consider ¢;. Since for f(x) € L>(R") we know that (—A —z)~'f €
W2(R"), we conclude that g>(—A —z) ! f € L*(|x| > R). In fact,

q2 - sz(R”) HL2(|x| >R)

is a compact embedding. In order to establish this fact let us consider again ¢;(x) €

Cy(R"),|@j(x)| < cand ¢; — g2 as j — oo. We can state this because 7= C. That
is why we required such behavior of ¢(x) at infinity (¢ — 0 as |x| — +eo). If we set
A:=q(-A—z)"'and A, := @;(—A —z)~, then we obtain

||A_Aj||L2HL2 < sup|p; —qa| H(_A _Z)ilHLzﬂLz
y (32.1)
<csup|@; —qa| — 0, j — oo,
X

But we know that chomp - Lgomp is a compact embedding. This implies (together

with (32.1)) that A is a compact operator. Since
(A=) ogr = (q2(—A—-2)7 "),

the Lemma is proved. O

Lemma 32.10. Ler Q be an open and connected set in C. Let A(z) be a compact,
operator-valued, and holomorphic function in Q and in L*(R"). If (I +A(zo)) ™"
exists for some zo € Q, then (I+A(z))~" exists in all of Q except for finitely many
points from Q with the only possible accumulation points on dQ.

Proof. We will prove this lemma only for our concrete operator A(z) := (—A —
z) " 'q(x) (see [22] for a full proof). Lemma 32.9 shows us that A(z) is a compact
operator for z ¢ [0, +0). The remarks about R, = (—A —z)~! show us that A(z) is a
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holomorphic function in C \ [0, 4+-0). Also we can prove that (I + (—A —z)~'g)™!
exists for all z € C\ R and for real z < —cy, where —A + ¢ > —cp. Indeed, if z € C
with Imz # 0, then (I + (—A —z)"'q)u =0, or (—A —z2)u = —qu, or (Au,u) +
z(u,u) = (qu,u). This implies for z, Imz 74 0, that (u, u) = 0if and only if u = 0. In
the real case z < —c, the equality (I+ (—A —z)~'q)u = 0 implies

((—A+q)u,u) —z(u,u) = 0.

It follows that
(—co—2) Jull72 <0

and thus u = 0. These remarks show us that in C\ [0, +o°) our operator / 4 (—A —
z)~!g may be noninvertible only on [—cj,0).

Let us consider an open and connected set Q in C\ [0, +eo) such that [—cp,0) C
Q; see Figure 32.1.

It is easily seen that there exists zg € Q such that (I + (—A —z9) '¢) ' exists
also. It is not difficult to show that there exists § > 0 such that (14 (—A —z)~'¢) ™!
exists in Ug(zo). Indeed, let us choose 6 > 0 such that

-1 \—-1

1
A(zo)ll 22 < -
P T+ A o) Mz

[A(z) — (32.2)

for all z such that |z—zo| < &. Then
(I+A(2) " = (I +A(z)) ' (1+B)""
where B := (A(z) —A(z0))(I +A(z0))~'. But ||B|| < 1 due to (32.2), and then
(I+B) '=I-B+B*+ -+ (—1)"B"+---
exists in the strong topology from L? to L?>. We may therefore conclude that I +A(z)
may be noninvertible only for finitely many points in Q. This fact follows from
the holomorphicity of A(z) with respect to z by analogy with the theorem about

the zeros of a holomorphic function in complex analysis. Moreover, since A(z) is a
compact operator, it follows by Fredholm’s alternative that Ker(/ 4+ A(z)) has finite

] Rez
¢ 4

Fig. 32.1 The set Q.
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dimension. We conclude that (I +(—A —z)~'g)~! does not exist at only a finite
numbers of points (at most) on [—cg, —¢| for all € > 0, and these points are of finite
multiplicity. This completes the proof. O

Let us return to the proof of Theorem 32.8.

Proof (Proof of Theorem. 32.8). Let 1 be a positive number and t +co > 0 (H >
—col). Let us consider for such u the second resolvent equation

(H+p) "= Ho+p) ' —(H+u) ogo(Ho+ )™,

where Hy = —A and H = —A + g(x). It follows from Lemma 32.9 that g o (Hy +
w)~! is a compact operator in L?>(R"). This means that (H 4+ )~ is a compact
perturbation of (Hy+ i) ~'. Hence, by Theorem 28.18 above we have

Gess((H+/~1)_1) = O'eSS((H0+/~L)_1)-

But Gess (Ho+ 1) ~') = [0, 1] = 6c((Ho + )~ "), from which we conclude that

1
T U
Ocss (H+‘U) = ['u’+00}

Outside of this set we have only points of the discrete spectrum with one possible
accumulation point at u. This statement is a simple corollary of Lemma 32.10.
Moreover, these points of the discrete spectrum are located on [t — g, it) and are of
finite multiplicity. Hence the discrete spectrum o4(H ) of H belongs to [—cp,0) with
only one possible accumulation point at {0}. And (0, +oo) is the continuous part of
G6(H). There is only one problem. Weyl’s theorem states that the operators H and
Hp do not have the same spectrum but the same essential spectrum. Thus on (0, 4-oo)
there can be eigenvalues of infinite multiplicity (see the definition of G ). In order
to eliminate such a possibility and to prove that 0 € o.(H) and o4(H) is finite, let
us assume additionally that our potential ¢(x) has a special behavior at infinity:

()l < clx| ™, [x] = oo,
where 1 > 2. In that case we can prove that on the interval [—c,0) the operator H
has at most finitely many points of the discrete spectrum. And we prove also that
0€o.(H).
Assume to the contrary that H contains infinitely many points of the discrete
spectrum or that one of them has infinite multiplicity. This means that in D(H) there
exists an infinite-dimensional space of functions {u} that satisfy the equation

(—A+q)u=Au, —co <A <0.

It follows that

L (V)P +q* 0lP)ae < [ g )]uo) P,
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where ¢* and ¢~ are the positive and negative parts of the potential g(x),
respectively. Let us consider an infinite sequence of functions {u(x)} that are
orthogonal with respect to the inner product [p. g~ (x)u(x)v(x)dx. This sequence
is uniformly bounded in the metric [g.(|Vu|? + |g||u|?)dx, and hence in the metric
Jgn (|Vu|* + |u|?)dx. But for every eigenfunction u(x) of the operator H with eigen-
value A € [—co,0] the following inequality holds (see [9]):

I <eldl [ o)lay

where ¢ does not depend on x. It follows from this inequality that

(1) A =0is not an eigenvalue;
(2) this orthogonal sequence is uniformly bounded in every fixed ball.

Lemma 32.11. Denote by U the set of functions u(x) € D(H) that are uniformly
bounded in every fixed ball in R". Then U is a precompact set in the metric

[ laluPax
JR"

if it is a bounded set in the metric

/R (IVul? + |u[?)dx.

Proof. Let {ux(x)}7_, C U be an arbitrary sequence that is bounded in the second
metric. Then for u(x) := uy(x) — u,, (x) we have for r sufficiently large that

)P

Jixf>r - |x[H /\x|3r,\q<x>|SA

+f () )P = fo +1y + 1o
[x|<rlg(x)[>A

[, la) ) Pax < e ) (o) P

For n > 3 (for n = 2 the proof needs some changes) and u > 2 we get
Iy < et / x 2 ()P < er?H / Vu(x)Pdx, u € W) (R").
[x|>r R
Due to the uniform boundedness of U in every ball, we conclude that
h<ef lg(x)ldx — 0
[x[<rlg(x)[>A

as A — o uniformly on U with fixed r. Since the embedding W, C L? for every
ball is compact, the boundedness of the sequence in the second metric implies the
precompactness in L? for every ball. We therefore have
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I <A lu(x)|?dx — 0, m,k — oo

[x|<r

with r and A fixed. On passing to the limit, these inequalities for Iy, /1, and I, show
that

[ a0l P — 0, ok — o
Rn

Thus the lemma is proved. |

Let us return to the proof of (1). By Lemma 32.11 we obtain that our sequence
(which is orthogonal with respect to the inner product [p. g~ (x)u(x)v(x)dx) is a
Cauchy sequence in the first metric. But this fact contradicts its orthogonality. Thus
(1) is proved.

(2) Let us discuss (briefly) the situation with a positive eigenvalue on the contin-
uous spectrum. If we consider the homogeneous equation

[+ (—A -k —i0)"'g]f =0, &*>0,

in the space ¢ (R™), then by Green’s formula one can show (see [20] or [21]) that the

solution f(x) of this equation behaves at infinity as 0(|x|’%). We thus conclude
[21] that f(x) = 0 outside some ball in R”. By the unique continuation principle for
the Schrodinger operator it follows that f = 0 in the whole of R”. a

Let us consider now the spectral representation of the Schrodinger operator H =
—A + g(x), with g(x) as in Theorem 32.8 with the behavior O(|x|™#), u > 2, at
infinity (compare with the spectral representation that follows from von Neumann’s
spectral theorem, Theorem 27.13, for the self-adjoint operator —A 4 ¢ in L?(R")).
For all f € D(H), we have

M
Hf(x)=(2rn)™" g kzu(x, k)dk/Rn FOuly,k)dy+ D> Ajfjuj(x),
=1

where u(x, k) are the solutions of the equation Hu = k?u, u j(x) are the orthonormal
eigenfunctions corresponding to the negative eigenvalues A ;, taking into account the
multiplicity of A; and f; = (f,u;)2gn). The functions u(x, k) are called generalized
eigenfunctions. When g = 0, the generalized eigenfunctions have the form u(x, 75) =

ei(x*z). This follows by means of the Fourier transform. Indeed,

(—A—k*)u=0

if and only if
(1EP—K*)ia=0,
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or
i=Y ca8 (&),
o
since
&7
if and only if =
E—k=0
Hence

=20a9_1(5(°‘>(§ —0))
o

_ zcaei(x,z)y—l ch 1xk
o

But u(x, k) must be bounded, and so u(x,k) = cgei(x‘%). We choose ¢, = 1. If we have
the Schrodinger operator H = —A + g with ¢ # 0, then it is natural to look for the

scattering solutions of Hu = ku of the form u(x,k) = ™% 4y (x,k). Due to this
representation, we have

(~4 )P ) = —qu,

or
(—A —k*)uge = —qu.

In order to find u, let us recall that from Chapter 22 we know the fundamental
solution of the operator —A — k2. Therefore,

(k) =0 — [ G (= 3Da(r)ur)dy

where -

()= (1) 7 mlhgun)

27 x|

is the fundamental solution for the operator —A — k*. This equation is called the
Lippmann—Schwinger integral equation.



Chapter 33
The Magnetic Schrodinger Operator

As a continuation (and, in some sense, an extension) of the previous chapter, where
the Schrodinger operator was considered, in this chapter we consider the magnetic
Schrodinger operator

Hutt := —(V+iW(x)u+V(x)u, x€ QR n>2, (33.1)

where €2 is an open set (not necessarily bounded) in R”, n > 2, with smooth bound-
ary. It is assumed that the electric potential V (x) and the magnetic potential W (x)
are real-valued and belong to the following spaces:

Velf(Q) withsomel < p<ooforn=2andn/2<p<ooforn>3,

. ' (33.2)

Wel'(Q) withsome2<s<ooforn=2andn<s<ooforn>3.
The operator Hy, of the form (33.1) is symmetric in the Hilbert space L?(£2) on the
domain Cj'(£2). We want to construct the Friedrichs self-adjoint extension of this
operator and to describe the domain of this extension.

Lemma 33.1. Assume that the conditions (33.2) are satisfied for the coefficients of
Hy,. Then for all f € Ci(L2) the following double inequality holds:

NIV —Cillfl72 ) < Hnf. Oz < 2 IVAR @ +C 1@
(33.3)
where 0 <y <1<y and C;,Cy > 0.

Proof. For all f € C;(£2) we have by integration by parts that

(Huf Sy = [ ((V4+iW)fPax+ [ ViolfPar
- |Vf|2dx+ [ WPIsPar+ [ velsPar-2 [ (s VF)ax
Q Q Q Q
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Therefore, for € > 0 sufficiently small we obtain the following double inequality:

(=) V11~ 1/ =D W], o = [W11] 0 < it P
2

< (14 €) |V F 1B+ (1 /e + 1) |01 @

w11

Due to the conditions (33.2) the functions W and |V|'/ 2 are from equivalent
spaces (with respect to norm estimates). We shall therefore estimate only the norm

2 - . .
[IVIV2£] (co)- and the norm HW f can be estimated in the same manner. Let

2
L2(Q)
us consider first n > 3 and some p satisfying n/2 < p < o. Then for R > 0, using
the Holder’s inequality we obtain

2

g/ 14 2dx+/ V|| f]dx
L@ lv(x)le |1 WMSRI 1]
(n=2)/n

2/n .
< / 1% n/de) (/ f2ﬂ/(ﬂ2)dx> +R f 2
(V(x>>R| | Jveoror”! 1122

_2p/n 2p/n
< C R/ HV”LL’{QQ{X;‘V(X)bR}) Hf”%vzl (@) +R||f||iz(g)-

Iviey

In obtaining the latter inequality we have used the fact that n > 3, n/2 < p < e, and
the well known embedding [1, 3] W, () — L*/("=2)(Q) with the norm estimate

Hf||L2n/(n—2)(_Q) S \/a“fHWZI(.Q) :

Collecting all these estimates, we get

2

H|V|l/2f )

—2n/n 2p/n
<C R/ ||V||Llp){gm{x;\v(x)\>1e}) ||f|“24/21(g) +R||f||1%2(g)

< 8(R) 110y + BRI 20

where 6(R) > 0 can be chosen as small as we want if R is sufficiently large. The
same is true (with some evident changes) for p = oo and for n = 2. Hence, we have
for arbitrarily small € > 0 and for arbitrarily small §(R) > 0 that
[1—e—8(R)—(1/e = DERNIV/72q)
—[R+8(R)+(1/ = D)(R+8R)] I/ 12(0) < (Hnf,)r2()
<[1+e+8(R)+(1/e —~ DSR]IVFIqy + (24 1/e) R+ SR |10 -

Choosing € > 0 arbitrarily small and R > 0 such that §(R) = €, we obtain the
required estimate (33.3). O
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Exercise 33.1. Prove the previous lemma in the cases p = s = o for n > 2 and
p,s <ooforn=2.

This lemma implies that there exists to > 0 such that Hy, 4 ol is positive and
2
((Hm+1oD) f, f)2(0) =< ||f||W21(Q) .

This fact implies that there is a Friedrichs self-adjoint extension of the positive op-
erator Hy, + Uol, denoted by (Hy, + Uol ) (see, for example [5]), with the domain

D((Hu+ pol)r) = {f € WHQ) : (Hu+ ol f € X(Q)}, (334

where V(I)/%(.Q) is the closure of Cjy'(£2) with respect to the norm of the Sobolev space
W, (). Hence, the Friedrichs extension (Hp,)p of Hy, can be defined as (Hp)p :=
(Hm ~+ tol)r — Uolp with the same domain (33.4).

Exercise 33.2. Show thatif W € L*(Q) and V-W,V € L (Q) with some n < p < oo
for n > 3 and with some 2 < p < e for n = 2, then

D((Hn)e) = WH(2) N WF(€2).
In particular, for £ = R" we obtain in this case that
D((H)r) = W3 (R").
Hint. Represent first Hy, in the form
Hptt = —A = 2iW (x)Vu+ [[W[> +V =iV -W]u

and then use the same technique and the same embedding theorems for Sobolev
spaces as in the proof of Lemma 33.1.

Remark 33.2. The Friedrichs self-adjoint extension of the magnetic Schrodinger
operator Hy, exists under much “broader” assumptions for the coefficients V and w
than in Lemma 33.1. Namely, if we just assume that W € L>(Q) and V € L' () but
V >0, then since for all f € Ci(£2) we have

(Huf, f)20) = H (V+iW)f

2
LZ(Q) + (Vfaf)Lz(Q) Z Oa

we may conclude that for all ug > 0, Hy, + tol is positive, and thus the Friedrichs
self-adjoint extension exists (see, for example, [5]). But in this so-called “general”
case we cannot characterize the domain of (Hp )p constructively. We can say only
that
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D((Hp)g) = {f € D(V+iW): V2 f € L*(Q) and Hp, f € L*(Q2)}.

But even in this “general” case we may prove the diamagnetic inequality (see [35]).
For all # > 0 we may consider (using von Neumann’s spectral theorem, see The-
orem 27.13) the self-adjoint operators

efl‘(Hm)Ff(_x) = /Ow eftkdE)Lf(x)’

o (33.5)
efl(fA)Ff(x) ::/O e*’kdE)(L())f(x),

where E) and E /(10) are the spectral families corresponding to the self-adjoint opera-
tors (Hm)r and (—A ), respectively.

Theorem 33.3. Assume that W € LZ(Q), Ve Ll(Q), V >0, and that these poten-
tials are real-valued. Then for all f € L*(Q), t > 0, and u > 0 we have that

ot ()] < 71008 () (33.6)

holds for almost every x € €.

Proof. For brevity we denote V + iw by Dy,. We have the following two lemmas
(which are also of independent interest).

Lemma 33.4. Forall f € C5(Q) we have
1Dy f ()] = [VIf ()] (33.7)

almost everywhere.

Proof. Indeed,
VIf(x)? = V(Fx)f(x)) = FVf+ fVf = fDy f + fDy f = 2Re(fDy f).-

This is equivalent to

2|fIVIf| = 2Re(fDy.f)-
The latter equality implies that
Dy fILf1 = [FIIVIIL-

Thus, the lemma is proved. O

Lemma 33.5. Forall f € C5(Q) and ¢ > 0 sufficiently smooth we have that
R f
e( Dy m‘P Dy f | > VoV|f] (33.8)

almost everywhere.
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Proof. Without loss of generality we may assume that f # 0; otherwise, we consider
fe = \/|f|* + € and then take the limit € — 0+. We have

W<|'ff|(p>:V(f >+1Wf(p Vf fV(p+1Wf

17 /1 A1 1°
:(p{ wf fV|f|]
A R
This equality implies that
f ) Dy fDyf _ JVI|f] f
D” —_— Da = — D” V D
o (0w T e P e

SO

D f]? v, _
we (00 () ur) = o 2807 oYty 0260y

Calculating Re(fDy; f) for f = fi +1if2, we obtain

Re(fDy f) =Re[(fi —if2)(VA+iIVAE+IVA-WEH)] = AVA+ LV =fVIf].

Thus,
f > Dy fIP Vlfl VIl
Re | Dy (=0 |Dyf | =
e(W(m“’ Wf> T T
D- Z_V 2
= <plwf||f|||f|| +VoV|f| > VeV|f|
by Lemma 33.4 and the fact that ¢ > 0. |

To end the proof of Theorem 33.3 we consider y > 0. Using these two lemmas
we obtain

[ vovisiavsu [ olrax<re [y (gw)DWfdxw /. olslax

‘/ If\ fdx+u/ o|f|dx|,

since Rez+ a < |z+ a for real a. Using now integration by parts in both integrals
we have that
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/Qq)(Aw)lflde’/( |§‘<P+ﬂf‘;| >dx

i.e.,

(=8 + 0l ey < | [, oD+ e
< [ ol=Dy +wfldr = (=D} + 0. 0)rz(e

Since (fD%V +ul)~! exists, by introducing f := (fDé/ + ul)~'u we can rewrite
the latter inequality as

(“A+wIf]0)120) = (F], (A + 1)) 20) = (I(=D5, + D)~ ul, W) 120
< (Jul, @) 2y = (Jul, (=A +ul) ') 2q) = (A +uD) " ul,¥) 2 (0),

where we have used the self-adjointness of all operators and the notation y = (—A +
ul)@. Hence, for arbitrary w > 0 sufficiently smooth we obtain the inequality

(1(=DF + 1)~ ul, ¥) 2 (0) < (A + 1)~ |ul, ¥) 20

Since y is an arbitrary function of such type, we may conclude from here that for
every u € L?(Q) we have that

(=D, +10) ()] < (—A 4 pd)~ ful (x)
almost everywhere. Iterating the latter inequality, we obtain for all m € N that
(=D, + 1) " u(x)| < (—A+pul) ™" |ul (x).

Hence, for every u € L?(Q) we have

le” (D tm) u(x)| < lim

m—oo

(?(m@v Fut ?))wu(x)

< Tim (?(—A +u+ ?)) )|

m-—oo

—m
= lim (Z(A+u+T)) )] = e u(x)

m—eo
almost everywhere. Thus (33.6) is proved in the case V = 0. In order to add V > 0
to —D?% + ul we repeat the above procedure and easily obtain that for all u € L*(£)
and v > 0 sufficiently smooth, we have
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(I(=D% +u+V) " "ul, W)i2ga) < (Jul, (A +1+V) "))
< (Jul, (A + )W) 20 = (FA+10) 7 ul, ¥) 1200,

since

(—A+u+V)ly<(-A+u) 'y

almost everywhere. This completes the proof of Theorem 33.3. (]

There are many applications of the diamagnetic inequality. We will consider
some of them. If A is a nonnegative self-adjoint operator acting in Lz(Q), its heat
kernel P(x,y,t) (if it exists) is defined to be a function such that for every # > 0 the
self-adjoint operator e "4 is an integral operator with this kernel (see for comparison
Definition 22.6 and Chapter 45), i.e., for all f € LZ(Q),

e f(x) = /Q P(,y,1) £(7)dy. (33.9)

Using this definition, we may conclude that if a heat kernel exists, then for every
i > 0 the inverse operator (A + ul)~! (which exists) is an integral operator with
kernel

G(x,y, i) = /Ow e M P(x,y,t)f(y)dr. (33.10)

Indeed, by von Neumann’s theorem for A (see Chapter 27), we have that for every
fer*(Q),
@) = [ e B g,
0

where {E) } is the spectral family corresponding to A.
Since (A + ul)~! exists for every p > 0 and it is self-adjoint, it follows that for
every f € L*(Q) we have

_ h i —t(A+p)
(A+ul)” /Mu 0= [CdBS) [ et

= / e Hdr / e "*dE; f(x) = / e M P(x,y,1)dt.
0 0 0

There is (at least) one quite general situation in which the heat kernel exists and
has “good” estimates. Let us assume that £2 C R" is a bounded domain with smooth
boundary (the smoothness is required for the Sobolev embedding theorem). We con-
sider the magnetic Schrodinger operator Hy, in €2 with electric potential V > 0 and
with magnetic potential w satisfying all assumptions of Lemma 33.1. In this case
H,, and Hy = —A have Friedrichs self-adjoint extensions, which are denoted by the
same symbols Hy, and Hy, respectively. We have the following theorem.

Theorem 33.6. Under the conditions of Lemma 33.1 for |1 > 0, the resolvent (Hy, +
ul)~! is an integral operator with kernel G(x,y, 1), called the Green’s function
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corresponding to the Friedrichs extension of Hy. Moreover, the following estimates

are valid:
|x—y|27"ef\/mx*)"’ n> 37

(33.11)
L+ [log( k=], n=2.

G(x,y, 1) SC{

Proof. Using Lemma 33.1, we conclude that for y > 0 sufficiently large and for all
f € Wi(Q) we have

((Hu+ 1D i) 2 VI g0y 7> 0.

Since the embedding W}() — L*(Q) is compact (see Lemma 30.15), we have
that (Hy, + ul)~! is compact. Using now the Riesz—Schauder and Hilbert-Schmidt
theorems (see Theorem 28.10), we conclude that the spectrum o (Hp) = {4;}7_

is discrete and of finite multiplicity with only one accumulation point at mﬁmty
The corresponding normalized eigenfunctions {¢; =1 form an orthonormal basis

in L?(Q) such that the spectral family for Hy,, is defined as

E; f(x) Z 1i9j(x) = (f, @/)LZ Q)

Aj<A

and the heat kernel of Hy, will be equal in this case to

Plx,y,t) = Y e Mo;(x)9;(). (33.12)
j=1

It must be mentioned here that all these equalities (and operations) are considered
in the sense of L?(). The equality (33.12) implies that (Hy, + 1)~ is an integral
operator with kernel G(x,y, i) defined by

Glryp) = [ Py = 900 [ ety = 3 PRI
Conp)= | (0,1 Z(p, e ,; yaa

(33.13)
This function G(x,y, it) is called the Green’s function of the Friedrichs extension
of the magnetic Schrodinger operator Hy, in the bounded domain. To obtain the
estimates (33.11) we proceed as follows. It is known that the heat kernel Py(x,y,)
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for Hy in the whole of R" (see, for example, Chapter 22) is equal to
Po(x,y,1) = (dmr) /e~ hy?/ 40, (33.14)

At the same time, the heat kernel PZ)()C, y,1) of Hyp in the bounded domain ( satisfies
the following boundary value problem:

311";)()6,)’,1) - AXE)(-X?y?[)) X,y € Qvt > 07
ﬁo(x,y,t)‘(mzo, x€EIR, ye, 1>0,
Py(x,3,0) = 8(x—).

If we define E)(x,yJ) = Py(x,y,t) + R(x,y,1), then R(x,y,t) has to satisfy

azR(XJat) :AXR(x7y7t>7 x,y S Qv > 07
R(x,,1)|50 = —Po(x,y,1), x€dQ,yeQ,1>0
R()C,y70) =0, X,y € Q.

But —Py(x,y,7) <0 forx,y € Q2,1 > 0 (see (33.14)). Using then the maximum prin-
ciple for the heat equation (see Theorem 45.7) we obtain that R(x,y,r) < 0 for all
x,yeQandt >0,i.e., B

0 < P()(X,y,t) < P()(X,y,t)-

The next step is as follows: the diamagnetic inequality (33.6) leads in this case to

’/QP(x,yvt)f(y)dy’ < /QP()(x,y,t)\f(y)‘dy’

which holds almost everywhere in x € € and for all f € L?>(Q). Using the Hardy—
Littlewood maximal function (see, e.g., [18]), we can obtain from the latter inequal-
ity that

P(x,y,1)| < (4mr) ™/ 2e R4y v e 1> 0.

Using this and (33.10), we get (see Example 22.8)

|G(x,y, 1) S/ e’“’(4m)*”/ze*\)fﬂ'\z/(4t)d,
Jo

gy (Y B
=(em™ (T 22 (VB =),

where Ky (z) is the Macdonald function of order v. Using the asymptotic expansion
for Ky (z) for z — 0 and z — o (see, for example, [23]), we can obtain the following
inequalities (see also the straightforward calculations in Example 22.8):
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lx—y|2 e VERD >3

G(x,y,u)| <C
1+ [log(y/itlx =y, n=2,

where x,y € £ and the constant C > 0 depends only on the dimension n. Thus,
Theorem 33.6 is completely proved. ]

One more application of the diamagnetic inequality concerns the estimates of the
normalized eigenfunctions of Hy,.

Corollary 33.7. Let ¢ be a normalized eigenfunction of Hy, with corresponding
eigenvalue A > 0. Then

e \n/4,
”(P“LW(Q)S(%) A, (33.15)

Proof. Applying (33.6) to ¢(x), we obtain (||@||;2(o) = 1)
- — —n/2 —|x—y|?
e ] = e | < [ (4mr) /e W] (y) dy

1/2
—n—lx—y[2
< ||(pHL2(Q) (/{;(47’[1‘) e [x=y /(2f)dy>

1/2
< (f (omy e orPrngy )

, 1/2
_ (4mt) /2 ( [ et /zdy)

— (471'1‘)7"/21‘”/4(271')"/4 — n:fn/42—3n/4t7n/47

i.e., forall > 0,
‘(p(x)| < n.fn/4273n/4t7n/4el7u.

Taking the infimum of the right-hand side with respect to r > 0, we
obtain (33.15). O



Chapter 34

Integral Operators with Weak Singularities.
Integral Equations of the First and Second
Kinds.

Let 2 be a bounded domain in R”. Then
AFG) = [ KGn)f )y

is an integral operator in L*(Q) with kernel K.

Definition 34.1. An integral operator A is said to be an operator with weak singu-
larity if its kernel K (x,y) is continuous for all x,y € Q, x # y, and there are positive
constants M and o € (0,n] such that

[K(x,y)| <M[x—y|*™", x#y.

Remark 34.2. 1If K(x,y) is continuous for all x,y € Q and bounded, then this integral
operator is considered also an operator with weak singularity.

If we have two integral operators A; and A, with kernels K; and K>, respectively,
then we can consider their composition as follows:

om0 = [ Kiaaas )= [ Kieo) ([ ke sc)ee) o

= / (/ Ki(x,y)K2 (y,Z)dy> f(2)dz,
Ja \Ja
and analogously
o= [ ([ Komioa) e
assuming that the conditions of Fubini’s theorem are fulfilled.
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So, we may conclude that the compositions A 0A and A, oA are again integral
operators with kernels

K(xy) = [ K oKa(z)dz,
? (34.1)

K(vy) = [ KooKz,

respectively. In general, K (x,y) # K (x,), thatis, Aj oAy £ Ay 0Aj.
Returning to integral operators with weak singularities, we obtain a very impor-
tant property of them.

Lemma 34.3. If A| and A, are integral operators with weak singularities, then
A1 0Aj and Ay oAy are also integral operators with weak singularities. Moreover, if

K1 (x,9)| < Mi|x—y[*™"  and  |Ka(x,y)| < Ma|x—y|[®7", (34.2)
then there is M > 0 such that

lx—y[ater oy +op <n,
IK(x,y)| <M1+ |loglx—y||, o1+o0p=n, (34.3)
I, o1+ 0 >n.

The same estimates hold for the kernel K(x,y).
Proof. Using (34.1) and (34.2), we obtain

K(e)| <My [ =21z = |z,
Q

If o + o < n, then changing the variable z = y + u|x — y|, we have
x—z=|x—yl(eo—u), leo|=1,

and
IK(x,y)] §M1]\42|x—y|°‘1+°‘27"/ |u—eo|® " u|*2 " du. (34.4)
Rn

In order to estimate the latter integral we consider three different cases:
W <172, 1/2< [ <3/2, |u] >3/2.

In the first case,
lu—eo| > |eo| — u| >1-1/2=1/2,
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and therefore

/ |u—eo|® " u|®2 " du < 2"* / |u|*2~"du
ul<1/2 Jjuj<1/2

361

'1/2 2!’170(]7052
= [etar [ ap = =g,
Jo Jsn-1 (05

where |S"~!| denotes the area of the unit sphere in R”.
In the third case,

Ju|

2
ju—eol = Jul —leo] = Jul =1 = Ju = SJul = 5,

and we have analogously

/ lu—eo| ™ " u|*2 " du
|u|>3/2

< 3= |Sn71 | /.w roc1+oc27n71dr _ Q=01 =230 |Sn71 ‘

- 3/2 n—op—o

In the case 1/2 < |u| < 3/2 we have that |u — ep| < 5/2, and so
/‘ i — 0|~ |u[ %" du
1/2<|u[<3/2

2n—0€1—0€250{1

Szn—az/ ‘uie()'a]—ndu: |Sn—1|.
lu—en|<5/2

(34.5)

Combining (34.4)—(34.5), we obtain (34.3) for the case o + o < n. It can be men-
tioned here that the estimate (34.3) in this case holds also in the case of an arbitrary

(not necessarily bounded) domain £2.

If now o + 0 = n, then the proof of (34.3) will be a little bit different, and it

holds only for a bounded domain £2. Indeed, for every z € £2 and

|x — yl

|;C
— < 77
\x Z‘ or 3

-y < ==
we have in both cases that
K (x,y)| < MiM2" " |x—y|a2_n/ lx — 2| "dz
Ql
1 [x—yl/2 |
< M2l —yjee [ gy
0

M1M2 M1M2

|Sn l| |Sn 1|

(34.6)
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If z € Q does not belong to these balls with radius |x — y|/2, then we consider two
cases: |z—x| > |z—y| and |z — x| < |z—y]|. In both cases we have

dz
|K(.X,y)‘ SM]MQ/Q QIW _MM2|S’1 ll/ 2 -
:M1M2|Sn71|10g s
=yl

where d = diam Q2. The estimates (34.6) and (34.7) give us (34.3) in the case oy +
Op =n.

If finally a1 + 0 > n, then since €2 is bounded, we can analogously obtain (34.3)
in this case. This finishes the proof. O

Remark 34.4. In the case o 4+ 0p = n, since for all 0 <1 < 1,
[logt| < Cet™%, €>0,

instead of a logarithmic singularity in (34.3) we may consider a weak singularity for
the kernel K (x,y) as
K (x,y)| < Me|x—y| ™%,

where € > 0 can be chosen appropriately.

Let A be an integral operator in L?(£2) with weak singularity. Then since 0 <
o < n, we have

[l ray<pand [ eyl®rar<p,
Q Q

where

B=sup | |x—y|*"dy < .
xeQJQ

Schur’s test (see Example 26.2) shows that A is bounded in L?(£2) and
ANl 2(0)—12() <MB.

We can prove even more.

Theorem 34.5. An integral operator with weak singularity is compact in L>(Q).

Proof. Let us introduce the function
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Then for all 6 > 0 we may write

K(x,y) = xo(Ix = yDK(x,y) + (1 = 2o (= y[)) K (x,y) = Ki (x,y) + K2 (x, ).

The integral operator with kernel K>(x,y) is a Hilbert—-Schmidt operator for all
o > 0, since

//IKz(x,y)lzdxdySMz// |x — y|** " dxdy
QJQ o<|x—y|<d

is finite. It is therefore compact in L?(£) (see Exercise 28.10). For the integral
operator A; with kernel K| (x,y) we proceed as follows:

||A1f|\i2(g) = (A1, A1 f) ) = (FAT0ALf) 2 (@), (34.8)
where A7 is the adjoint operator with kernel

Ki(x,y) = xo([x =YK (y,x),

which is also an operator with weak singularity. Using Lemma 34.3, we can estimate
the right-hand side of (34.8) from above as

1
| | et Il sty < 5 [ [ (Kale)llrtoPdedy

! 2
T3 /g /g Ko (x,9)[| £ (v)]"dxdy,
(34.9)

where K (x,y) is the kernel of the operator with weak singularity, i.e.,

lx—y[?* " a<n/2,
|Ks(x,¥)] <M Q |x—y| 75, o=n/2,
L o>n/2,

where € > 0 can be chosen as small as we want.
Let us note also that the definition of ¥ (¢) implies that K (x,y) =0 for [x—y| >
20. Thus (see (34.8) and (34.9)) we have (o < 2n)

Ay <M [ PPy
—yl<20

<M [ WP [ ey
Q [x—y|<20

(26)20: 3
=M||in2(g)T|Sn '[—o0,



364 Part III: Operator Theory and Integral Equations
as 0 — 0. This means that

A2 @)—12(0) = 0, 0 —0.
The same fact is valid for the cases o > n/2. Thus,

1A = A2ll2(0)—12(0) < Atll2(@)-r2(@) = 0

as 0 — 0. But A, is compact for every o > 0, and therefore, A is also compact as
the limit of compact operators. This completes the proof. (]

We want now to expand the analysis of integral operators with weak singularity
defined on domains in R” to integral operators with weak singularity defined on
surfaces of dimension n — 1.

Assume that 9 is the boundary of a bounded domain of class C'. This means,
roughly speaking, that at every point x € dQ there is a tangent plane with normal
vector V(x) that is continuous function on d€2, and the surface differential do(y) in
a neighborhood of each point x € d€2 satisfies the inequality (see [22])

do(y) < cop"2dpde,

where (p, 0) are the polar coordinates in the tangent plane with origin x, and ¢ is
independent of x. According to the dimension n — 1 of the surface d€2, an integral
operator in L2(8Q), ie.,

Af) = [ Ky f()do(s),

is said to be with weak singularity if its kernel K (x,y) is continuous for all x,y € 9 Q,
x #y, and there are constants M > 0 and o € (0,n — 1] such that

K(x,y)| < Mlx—y[* =D x £y,

If K (x,y) is continuous everywhere, we require that K is bounded on dQ x 9. We
can provide now the following theorem.

Theorem 34.6. An integral operator with weak singularity is compact in L*(9Q).
Proof. The proof is the same as that for Theorem 34.5. (I

For Banach spaces (i.e., complete normed spaces) the same definition of com-
pact operator holds (see Definition 28.8). We will need the compactness of these
integral operators in the Banach space C(£2). Let 2 be a compact set in R”. The

Banach space C(Q) is defined as the set of all complex-valued functions ¢(x) that

are continuous on £2 with norm

9l = max |p()| = 9]z
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We will need also the famous Ascoli-Arzela theorem (for a proof, see [22]).

Theorem 34.7. A set U C C(Q) is relatively compact if and only if

(1) there is a constant M > 0 such that for all ¢ € U we have ||@|| =) < M (uni-
form boundedness);
(2) forevery € > 0 there is > 0 such that

lo(x) —o()| <e

for all x,y € Q with |x —y| < & and all ¢ € U (equicontinuity).
Theorem 34.8. An integral operator with continuous kernel is compact on C(£).
Proof. The result follows straightforwardly from the Ascoli-Arzela theorem. [

Theorem 34.9. An integral operator with weak singularity is compact on C(Q).

Proof. The proof follows from Theorem 34.8. Indeed, let us choose a continuous
function % as

0, 0<t<1/2,
h(t)=<2t—1, 1/2<t<1,
1, t>1,

and the integral operator A, with kernel K (x,y) given by

Kit.y) = {z<k|x—y|>l<<x,y>7 ii

The kernel K (x,y) is continuous for every k = 1,2, ..., and therefore Ay is compact

on C(£2). Moreover,

400~ Ax(0)] = | (1~ kxR (x3) )y
<ol [, Kl

<MIQlm@ [ eI a0

as k — oo uniformly in x € €. Thus, A is compact as the norm limit of compact
operators. (]

There is a very useful and quite general result for integral operators with weak
singularity for both domains and surfaces in R”.

Theorem 34.10. An integral operator with weak singularity transforms bounded
functions into continuous functions.
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Proof. We give the proof for domains in R”. The proof for surfaces in R" is the
same. Let x,y €  and |x —y| < 8. Then

Af(x) —Af()] S/ (IK(x,2)[ + K (3 2))]f(2)]dz

[x—z|<26
+/ K X,Z —K N4 Z)|dz
Q\{Ix—z|<25}| (x,2) = K(»,2)[|f(2)]
<M o / X — Dt—n+ __jo—n d
<M || fll =) \xfz|<25(| 7] y— 2|z

+ 1l /Q (e sy KO K2 de =+

Since |z —y| < |x—z| + |x — y|, we have

(39)“
o

—0

36
B < 2M oy 18" [ 1% dr = 201870

as 6 — 0. On the other hand, for |x —y| < 6 and |x —z| > 26 we have that
y—z|>fx—z|—|x—y|>26 -8 =6.
So the continuity of the kernel K outside of the diagonal implies that
K(x,z)—K(y,z) — 0, 6—0,
uniformly in z € Q \ {|x —z| < 26}. Since Q is bounded, we obtain that I, — 0 as

6 — 0. This completes the proof. (I

Exercise 34.1. Prove that if A is as in Theorem 34.10, then f(x) +Af(x) € C(Q)
for f € L*(Q) implies f € C(Q).

We are now in a position to extend the solvability conditions (Fredholm alternative;
see Theorem 28.16) to equations in Hilbert space with compact but not necessarily
self-adjoint operators.

Theorem 34.11 (Fredholm alternative II). Suppose A : H — H is compact. For
all u € C either the equations

(I-pA)f=g, (U—-HA)f =¢,

have the unique solutions f and f' for any given g and g’ from H or the correspond-
ing homogeneous equations

(I—pA)f =0, (I-TA")f' =0 (34.10)
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have nontrivial solutions such that

dimN(I — pA) = dimN(I — TAY) < oo,
and in this case equations (34.10) have solutions if and only if

gIN(I—-A*) & g€R(I—pA),
gIN(I—pA) = ¢ eR(I-TA"),

respectively.

Proof. Riesz’s lemma (see Theorem 28.14) and Exercise 26.7 give

R(I — pA) = N(I —A")*,
R(I—TA*) =N(I—pA)*.

Let us first prove that one always has
dimN(I — uA) = dimN(I — A™).
These two dimensions are finite due to Riesz (see Proposition 28.13). Since every
compact operator is a norm limit of a sequence of operators of finite rank (see
Chapter 28 for details), for every u € C, u # 0, we have
[ — A = —uAg+ (I —uAy),

where Ay is of finite rank and ||uA;|| < 1. Then (I — uA;)~! exists and

(I—pA) (I —pA) =T—u(I— pA) " Ag = 1—As,
where A; is of finite rank too. Analogously, since (I — HA’{)_I exists, we must have

(I —EA*)(I - EAT) ™" = I —HAG(I - [AY) ' =11 - A5,

where A3 is adjoint to A and is of finite rank too. These representations allow us to
conclude that

gEN(I—UA) = geN(I—A),
g €N(I—pAS) & (I-TA}) ¢ e N(1 —IA").

Thus, it suffices to show that the numbers of independent solutions of the equations
g=4Ag, g =A%

are equal.
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Since we know that the ranks of A, and Aj are finite, we may represent the
mappings of the operators / — A, and / — A3 as the mappings of matrices / — M> and
I — M3 with adjoint matrices M» and M5. But the ranks of the adjoint matrices are
equal, and therefore the numbers of independent solutions of the equations g = A>g
and ¢’ = A}¢ are equal.

The next step is the following: if R(I — pA) = H, then N(I — uA*) = {0}, and
consequently N(I— uA) = {0} and R(I — A*) = H (see Exercise 26.7). This means
that both (I — uA)~" and (I — A*)~! exist, and the unique solutions of (34.10) are
given by

f=U-pA)g, f=(-mA") g

If N(I— uA) and N(I — [tA*) are not zero, then R(I — uA) and R(I — [TA*) are proper
subspaces of H, and equations (34.10) have solutions if and only if

gER(I—pA), ¢ €R(I—TA").
This is equivalent (see Exercise 26.7) to
gLN(I—[A"), g LN(I—pA).

This completes the proof. (]

We will now demonstrate this Fredholm alternative for integral operators. Let £ C

R” be a domain, and let
0= [ K@) 70y

be a compact integral operator in L?(£2). Then its adjoint is defined as

A = [ KO 0)ay

Hence, the Fredholm alternative for these operators reads as follows: either the equa-
tions

u/ (x,y)f(y)dy = g(x),

(34.11)
u/K% y)dy = g'(x),
are uniquely solvable for all g and g’ from L?(£) or the equations
M/ny y)dy,
(34.12)

u/K% )y,
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have the same (finite) number of linearly independent solutions. And in this case,
equations (34.11) are solvable if and only if g and g’ are orthogonal to every solution
fand f’ of the equations (34.12), respectively.

Definition 34.12. Equations (34.11) and (34.12) are called integral equations of the
second and first kinds, respectively.

Exercise 34.2. Consider in L?(a,b) the integral equation

b
o)~ [ o)y =f(x), x€labl

where f € L*(a,b). Solve this equation and formulate the Fredholm alternative for
it.

Example 34.13. (Boundary value problems) Consider the second-order ordinary
differential equation

ag(x)u” (x) + ar () (x) + az (x)u(x) = f(x)

on the interval [0,1] with coefficients f,a € L*(0,1), a; € W, (0,1) and with
smooth ag(x) > ¢o > 0 subject to the boundary conditions

u(0) =ug, u(l)=uy.

Dividing this equation by ao(x), we may consider the boundary value problem in
the form
' +ar () +ax(x)u=f, u(0)=up,u(l)=u.

Using Green’s function G(x,y) of the form

G(xy)z y(l_x)’ OSySXSL
’ x(1-y), 0<x<y<l,

we can rewrite this boundary value problem as

) = o)+ [ Gl (@ O+ 10

where @p(x) = up(1 — x) + u;x. Integration by parts implies
I
ux) = ()~ [ G) 0y + Gl ) ()

- /0l [0yG(x,y)ai(y) +G(x,y)a (y)] u(y)dy+ /0 1G(x,y)az(y)u(y)dy-
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Since G(x,1) = G(x,0) = 0, this equation can be rewritten as

) = Gol0) — [ KOy

where

N 1
@) = 9o(x) =~ [ Gl f(3)dy

and
K(x,y) = 0,G(x,y)a1(y) + G(x,y)d| (y) — G(x,y)aa(y).

Exercise 34.3. (1) Prove that K(x,y) is a Hilbert-Schmidt kernel on [0,1] x [0, 1].

(2) Prove that the boundary value problem and this integral equation of the second
kind are equivalent.

(3) Formulate the solvability condition for the boundary value problem using the
Fredholm alternative for this integral operator.



Chapter 35
Volterra and Singular Integral Equations

In this chapter we consider integral equations of special types on a finite inter-
val [a,b]. We consider the Lebesgue space L™(a,b) and the Holder space C*(a,b)
(which are not Hilbert spaces but normed spaces) instead of the Hilbert space L’:
The norms of the spaces L= (a,b) and C*[a, b] are defined as follows:

1F |0,y = Inf{M : [ f(x)| < Ma.e. on(a,b)},

flleaiay = I fllimup + sup LE=T0

x,y€la,b] ‘x - yla

where 0 < o < 1.
The fact that f belongs to the Holder space C%*|a, b] is equivalent to the fact that
f € L”(a,b) and there is a constant ¢y > 0 such that for all & (sufficiently small),

[f(x+h) = f(x)] < col A%,
where x,x+h € [a,b].

Definition 35.1. Integral equations in L™ (a,b) of the form

10 = [ K@)e0)d

and

o0 =10+ [ K(xy)p()dy (35.1)

where x € [a,b] and sup, [, 5| [K(x,y)| < e, are called Volterra integral equations
of the first and second kinds, respectively.

(© Springer International Publishing AG 2017 371
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Theorem 35.2. For each f € L= (a,b) the Volterra integral equation of the second
kind has a unique solution ¢ € L*(a,b) such that

9(0)] < M Fll oy (35.2)

Sorall x € |a,b] and
101l o0y < 1Nl m () €, (35.3)

where M = supy o [K(x,)].

Proof. We introduce the iterations of the equation (35.1) by

0r1(0:= [ Ke)g0)d j=0.12,...

with ¢y = f. Let us prove by induction that

J
) ||fHL°°(a,b)7 J:Oala (354)

gy < ML)

Indeed, this estimate clearly holds for j = 0. Assume that (35.4) has been proved
for some j > 0. Then

X X (M(y— J
opeal < [ IkGllolay < [T gy 0

: x (y—a)l ) (x—a)/t!
— M]+1 . / (y a) d — Mj+1 - .
L A ([ T
This proves (35.4).
Let us introduce the function
P(x) = @j(x). (35.5)
j=0
Then from (35.4) we obtain for all x € [a, b] that
e (M(x—a))/ _
96 < Wl 2, D — ey M
j=0 '

Thus, the function @(x) is well defined by the series (35.5), since this series is uni-
formly convergent with respect to x € [a, b].

It remains now to show that this ¢(x) solves (35.1). Since the series (35.5) con-
verges uniformly, we may integrate it term by term and obtain
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X
/ K(x,y)(y)dy = Z/ K(x,y);(y)dy = Z(pm
a Jj= 0
Z x) = f(x) = @(x) — f(x).
So (35.1) holds with this ¢. The estimate (35.3) then follows immediately from

(35.2). Finally, the uniqueness of this solution follows from (35.3) too. O

Corollary 35.3. The homogeneous equation

= /:K(x,yﬁp(y)dy

has only the trivial solution in L (a,b).
Proof. The result follows from (35.3).

In general, integral equations of the first kind are more delicate with respect to
solvability than equations of the second kind. However, in some cases, Volterra inte-
gral equations of the first kind can be treated by reducing them to equations of the
second kind. Indeed, consider for x € [a, b],

/ K(x,y)p()dy = f(x), (35.6)

and assume that the derivatives %—f(x, y) and f(x) exist and are bounded and that
K (x,x) # 0 for all x € [a,b]. Then, differentiating with respect to x reduces (35.6) to

oWK )+ [ 9E ety =),

" B AORNE HCS)
o0 =%ty K

o(y)dy. (35.7)

Exercise 35.1. Show that (35.6) and (35.7) are equivalent if f(a) =
The second possibility occurs if we assume that

oK
7y(xay)

exists and is bounded and that K (x,x) # 0 for all x € [a, b]. In this case, setting

Z/axq)(y)dy, V=0
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and performing integration by parts in (35.6) yields

160 = [ KW 0y = KOt - [ G oy

— Kyl — [ ‘3’;<x,y>w<y>dy,

a

or

IK
f(x) / 5y (x.y)
= d .
There is an interesting generalization of equation (35.1) when the kernel has
weak singularities. More precisely, we consider (35.1) in the space L*(a,b) and
assume that the kernel K (x,y) satisfies the estimate

|K(x,y)| <M|x—y|™%, x,y€la,b], x#y,

with some 0 < a < 1. If we consider again the iterations
* .
j(x) := / K(x,y)pj1(y)dy, j=12,...,
a
with @y = f, then it can be proved by induction that for all x € [a,b] we have

M(x—a)'=*

J
0 < () Wl 501

Indeed, since this clearly holds for j = 0, assume that it has been proved for some
j > 0. Then

01 < [ K,y

MIx ,
M [ 6= Y U
Mj-H ) x
< gy O Wl [ =)y
M+ ) _ N\l-a
< g 6= Y Wl ST

M(x—a)l=o\ /!
((1_)> 11 2= a,p) -

o

If we assume now that
M(b— a)l_o‘

1
-« <4
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then the series

> 9;(x)
=0
converges uniformly on the interval [, b], and the function ¢ defined by
o(x) =Y 9;(x)
=0

solves therefore the inhomogeneous integral equation (35.1). Moreover, the follow-
ing estimates hold:

112 a.0)
[p(x)] < Wv x € [a,b],
-«
" 71
L>(a,b)
1010y = M)
-«

Exercise 35.2. Show that the Volterra integral equation of the first kind

o) =2 [ el

has, for all A, only the trivial solution in L= (a,b).

Definition 35.4. Let0 < a < 1, ¢ € C*[—a,al, and suppose that @ is periodic, i.e.,
¢(—a) = ¢(a). In this space an integral equation of the form

a d
o(x) = f(x)+Ap.v. "’(“;y)y, rec, (35.8)
—a
is understood in the sense that
p.v. ¢ @Lrty)dy lim PLr+y)dy (35.9)
J—a y =0 [y[>e.y€[~a,q] y

and the function ¢ is extended periodically (with period 2a) to the whole line.

a d
p.V./ & =0.
—ay

Due to (35.9), we have that
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Thus

v, q)(ery)dy:p.V. (P(ery)—cO(X)dy: Px+y)— o)
—a y —a y —a y

dy,

and the latter integral can be understood in the usual sense for periodic ¢ €
C%[—a,al, since

a _ a o "a
’ —(p(x+y) (p(x)dy’ §co/ mdy:2co/ éaildé = 2¢
—a y

aa
—a |)’| 0 ;

(35.10)

Inequality (35.10) shows us that for every ¢ € C%[—a,d] the integral in (35.8) is
uniformly bounded and also periodic with period 2a. But even more is true.

Proposition 35.5. For every 2a-periodic ¢ € C*|—a,a] with 0 < o < 1 the integral
in (35.8) defines a 2a-periodic function of x that belongs to the same Holder space
C%—a,al.

Proof. Let us denote by g(x) the integral in (35.8). For || > 0 sufficiently small we
have

_ [ <p(x+h+y)—<p(x+h)dy_ oty — o)

g(x+h) —g(x) /. y /. y y
:/ plthty) —olth) _/ <p(x+y)—¢(x>dy
IvI<3l y NE y
px+h+y)—@) Ppx+y)—o(x)
+/|y|z3|h| y @ -/\y\zaw y o

=1L +1.

For the first integral /; we have

i g/ oty +h) —px+h) | +/ o +y) = o()l 4
R 1yl REI Iyl

o o
SCO/ mdy+co/ mdy
v<3ial [yl RE<II

3|h| 3|h))*  4c3”
g4c0/0 g“*'d¢:4c07( |a|) _ 0

ol (35.11)

For the estimation of I, we first rewrite it as (we change variables in the first integral)
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b:/ ¢@+mfw@&7/ ¢@+@*Mm&
|z—h|>3|] z—h |2|>3]n| Z

— [, G —ot) | - a:

|z>3]A]

_/{\z—h\23lh|}\{\2\23|h|} z—h

Then we have

V\S/' 9(z+x) —@(x)||r|dz /‘ oz tx) —p@)| .
<=3 2h|<[2| <3

ERER St
z€[—a,d
e Ek
el [ i | dz
O s T 273 % Lyt T 2
3 a 3l
:2-JEV4/D 5“4d§+4cq/ ge g
2 3|n| 0
a—1 |4 o o=l o=l “
3|h 3|h 4co3
=l S| ey B gy (G 0
— 15 o -« l—o a
3@ 4¢o3* 1 4
< 1_Czclh|“7L D] = 93 (1—(x+oc) Ll (35.12)

since 0 < a < 1. Estimates (35.11)—(35.12) show that this proposition is completely
proved. O

If we denote by
¢ @(x+y)dy
—a y

Ap(x) :=p.v. (35.13)

a periodic linear operator on C%[—a,al, 0 < o < 1, then Proposition 35.5 gives that
A is bounded in this space. But this operator is not compact there. Nevertheless, the
following holds.

Corollary 35.6. There is Ay > 0 such that for all A € C, |A| < Ao, and periodic
f € C%—a,a), 0 < o < 1, the integral equation (35.8) has a unique solution in
C%—a,a, 0< < 1.

Proof. Since the operator A from (35.13) is a bounded linear operator in the space
C%[—a,al, it follows that

[A]lcoca < co
with some constant ¢y > 0. If we choose now A9 = 1/co, then forall A € C, |A| < Ao,
the operator I — AA will be invertible in the space C%[—a,a], since

JAA] e < 1.
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This fact implies that the integral equation (35.8) can be solved uniquely in this
space, and the unique solution ¢ can be obtained as

¢=(—-24)"7.

This is equivalent to the fact that (35.8) can be solved by iterations. U



Chapter 36
Approximate Methods

In this chapter we will study approximate solution methods for equations in a Hilbert
space H of the form

Ap=f, (I-Ap=f (36.1)

with a bounded or compact operator A. The fundamental concept for solving equa-
tions (36.1) approximately is to replace them by the equations

An@n = frn, (I—An)Qu= fu, (36.2)

respectively. For practical purposes, the approximating equations (36.2) will be cho-
sen so that they can be reduced to a finite-dimensional linear system.
We will begin with some general results that are the basis of our considerations.

Theorem 36.1. Let A : H — H be a bounded linear operator with bounded inverse
AL, Assume that the sequence A, : H — H of bounded linear operators is norm
convergent to A, i.e.,

A, —A|| — 0, n—oo.

Then for all n such that
A~ (A, —A)| < 1,

the inverse operators A, " exist and

.
[A=1 (A, = A

Il = 3=

Moreover, the solutions of (36.1) and (36.2) satisfy the error estimate

lou ol < — L4 (Ian=)ell+ 15— 111).
T AT A, - A !
(© Springer International Publishing AG 2017 379
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Proof. Since A~ exists, we may write
ATA, =1-A"1(A-4,).

Since
A~ (A, —A)| < 1

for n sufficiently large, for these values of n we have that
(1-A""(A—-4,))""

exists by the Neumann series. Thus,

1

)

(A7'A) = (1-A"(A-A)”

or |
A A=(T-A71A-Ay)

or
1

Al =(1-A7"A-Ay)) AL

The error estimate follows immediately from the representation

Pn—@ :Ay;l (A—An)o +A;1 (fu = 1)
This completes the proof. O

Theorem 36.2. Assume that A,; ' H — H exist for all n > ng and that their norms
are uniformly bounded for such n. Let ||A, —A| — 0 as n — . Then the inverse
operator A=\ exists and

4z ]
1—||Ax " (A, —A)||

la =

for all n> ng with ||A, (A, —A)|| < 1.
Exercise 36.1. Prove Theorem 36.2 and obtain the error estimate in this case.

Definition 36.3. A sequence {A,}’;_; of compact operators in a Hilbert space H is
said to be collectively compact if for every bounded set U C H, the image

J={A0:0€U,n=1,2,...}

is relatively compact, i.e., if every sequence from J contains a convergent subse-
quence.
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Exercise 36.2. Assume that a sequence of compact operators {A,}_, is collec-
tively compact and converges pointwise to A in H, i.e.,

limA,p =Ap, @€eH.
Nn—oo

Prove that the limit operator A is compact.

Exercise 36.3. Under the same assumptions for {A,}_, as in Exercise 36.2, prove
that
1(An = A)A[ =0, [[(An —A)An] — O,

asS n — oo,

Theorem 36.4. Let A: H — H be a compact operator and let I — A be injective.
Assume that the sequence A, : H — H is collectively compact and pointwise con-
vergent to A. Then for all n such that

[(1=A4)"" (A —A)A|| < 1,

the inverse operators (I —A,,)’1 exist and the solutions of (36.1) and (36.2) satisfy
the error estimate

1+||(1—A)"'A,|

(I —A) 1Ay — A)A,||

lon—oll < 1 (14w =)ell+ 1152 = £1).

Proof. By Riesz’s theorem (see Theorem 28.15), the inverse operator (I —A)~! ex-
ists and is bounded. Due to Exercise 36.3,

[(An = A)An|| =0, n—ee.
Therefore, for n sufficiently large we have
[(1—A4)"" (A —A)A,|| < 1.
This fact allows us to conclude (as in Theorem 36.1) that (1 —A”)’l exists and

1+][(1-A) 1A,
1= [[(1=A)"1 (A, - A)A,|

=40 <

The error estimate follows from this inequality and the representation

Gu—@=(—4A)""((An—A)o+ fi— f).

This yields the claim. O
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Corollary 36.5. Let A, be as in Theorem 36.4. Assume that the inverse operators
(I—A,)~" exist and are uniformly bounded for all n > ny. Then the inverse (I —A)~!
exists if

[(1—An) "' (A —A)A|| < 1.

The solutions of (36.1) and (36.2) satisfy the error estimate

1+]|(1—An) A
[(I—An) A —A)A|

lon =0l < 1 (14w =A)oll+ 115 £1).

Theorem 36.6. Let A : H — H be a bounded linear operator with ||A|| < 1. Then
the successive approximations

Ont1 =A@, +f, n=0,1,..., (36.3)

converge for each f € H and each @y € H to the unique solution of (36.1).
Proof. The condition ||A|| < 1 implies the existence and boundedness of the inverse
operator (I —A)~! and the existence of the unique solution of (36.1) as

¢p=(-A)"f.

It remains only to show that the successive approximations converge to ¢ for all
@ € H. The definition (36.3) implies

1@n1 = @ull < AN 1[@n = @arll < - < MIAI" 01 — o] -

Hence for each p € N we have

H‘Pner_ (PnH < ||(Pn+p_ Pn+p—1 || T+t H‘Pn+1 - (Pn”
< (A2t A2 Al o — ool

]

< lor — ol — 0
Y |

as n — oo uniformly in p € N. This means that {¢,} is a Cauchy sequence in the
Hilbert space H. Therefore, there exists a unique limit

¢ = lim @,.
It is clear that this ¢ solves (36.1) uniquely. ]

We will return to the integral operators

Af() = [ Ky f()ay, (36.4)
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where K (x,y) is assumed to be in L?(Q x Q). In that case, as we know, A is compact
in L2(Q).

Definition 36.7. A function K, (x,y) € L>(Q x Q) is said to be a degenerate kernel
if

mmwziw@mw,

with some functions a;,b; € L*(2).

We consider integral equations of the second kind with a degenerate kernel
Ky (x,y), i.e.,

200 [, a0 =) 365)

in the form

%m—inwm—ﬂm
2

where ¥; = (@4,b)) 12(2)- This means that the solution ¢, of (36.5) is necessarily
represented as

0.0 = 1) + 3, a2 (36.6)

J=1

such that the coefficients y; (which are to be determined) satisfy the linear system

yj_ ZYk(ak7Fj)L2(Q) = (f?Fj)LZ(Q) :f]7 J: 172,...,1’1. (367)
k=1

Hence, the solution ¢, of (36.5) (see also (36.6)) can be obtained whenever we
can solve the linear system (36.7) uniquely with respect to ¥;.

Let us consider now integral equations of the second kind with compact self-
adjoint operator (36.4), i.e.,

o(x) —Ap(x) = f(x). (36.8)

The main idea is to approximate the kernel K(x,y) from (36.8) by the degenerate
kernel K, (x,y) from (36.5) such that

1K (x,3) — Ka(x,3) | 20y — 0 (36.9)

as n — oo and such that in addition, the inverse operators (I —A,)~! exist and are
uniformly bounded in n.

In that case the system (36.7) is uniquely solvable, and we obtain an approximate
solution ¢, such that



384 Part III: Operator Theory and Integral Equations

o — (P11HL2(Q) =0, n—eo

Indeed, equations (36.5) and (36.8) imply

(0= @) —An(@— @) = (A—A4)o.
Since (I —A,)~! exist and are uniformly bounded, we have
lo—all < |7 —A) [ A~ Aull 0]l — 0

as n — oo by (36.9). The unique solvability of (36.7) (or the uniqueness of ¢,) fol-
lows from the existence of the inverse operators (I —A,)~!

We may justify this choice of the degenerate kernel K, (x,y) by the following
considerations. Let {e;}7_; be an orthonormal basis in L?*(Q). Then K(x,y) €

L?(Q x Q) as a function of x € Q (with parameter y € ) can be represented by

i ),ej)2e(x).

Then

—0
L2(QxQ)

K(x,y)— (K('vy)7ej)Lze/

~.
Il M:
—_

as n — oo, and we may consider the degenerate kernel K, (x,y) in the form

Ka(xy) = Y e;(0)b;().

j=1

where bj(y) = (K(-,y),e;);2. The system (36.7) transforms in this case to

Z Ye(ex (e, K ))LZ)L2(.Q) =TI

If, for example, e; are the normalized eigenfunctions of the operator A with corre-
sponding eigenvalues A;, then the latter system can be rewritten as

/y‘ ]’}/j f17 j:l72,...,l’l

We assume that A; # 1, so that ¥; can be uniquely determined as
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and therefore ¢, is equal to

A different method goes back to Nystrom. Let us consider instead of an integral
operator A with kernel K(x,y) a sequence of numerical integration operators

A,0(x) = Y oK (2o (x").
j=1

We assume that the points xﬁ")

(n)

and the weights o j” are chosen so that

[

“Jo
()

as n — oo. The main problem here is to choose the weights o i and the points xi-”)
with this approximation property. The original Nystrém method was constructed for
continuous kernels K (x,y).

In Hilbert spaces it is more natural to consider projection methods.

2
1 - n n n
S KG2)00) g1 X @ Kl ol dy| dx—0
j=1

Definition 36.8. Let A: H — H be an injective bounded linear operator. Let P, :
H — H, be projection operators such that dimH,, = n. For given f € H, the pro-
Jjection method generated by H, and P, approximates the equation A¢p = f by the
projection equation

PAQ,=Pf, @, €H. (36.10)

This projection method is said to be convergent if there is ng € N such that for each
f € H the approximating equation (36.10) has a unique solution ¢, € H, for all
n > ng and

Op — @, n— oo,

where ¢ is the unique solution of the equation A = f.

Theorem 36.9. A projection method converges if and only if there exist no € N and
M > 0 such that for all n > ng the operators

PA:H—H
are invertible and the operators (P,A)~'P,A : H — H are uniformly bounded, i.e.,

H(PHA)_IPnAH SM, l’lzng.
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In case of convergence we have the error estimate
lon—oll < (1+M) inf |[y—ol.
weEH,

Proof. If a projection method converges then, by definition, the P,A are invertible,
and the uniform boundedness follows from the Banach—Steinhaus theorem.
Conversely, under the assumptions of the theorem,

on— ¢ =((PA)'RA-D)o.
Since for all y € H, we have trivially (P,A) "' B,Ay = v, it follows that
P — @ = ((RA) ' RA-I)(@— ),
and the error estimate follows. (]

Remark 36.10. Projection methods make sense, and we can expect convergence
only if the subspaces H, possess the denseness property

it [y=pl =0, n—e

Theorem 36.11. Assume that A : H — H is compact, I — A is injective, and the
projection operators P, : H — H, converge pointwise, i.e., P, — @,n — oo for
each ¢ € H. Then the projection method for I — A converges.

Proof. By Riesz’s theorem (see Theorem 28.15), the operator I — A has a bounded
inverse. Since P, 0 — ¢ as n — oo, we have ,A@ — A@ as n — oo, t0o. At the same
time, the sequence P,A is collectively compact, since A is compact and P, is of finite
rank. Thus, due to Exercise 36.3 we have
[(P,LA—A)BA| —0, n— oo (36.11)
Then the operators (I — P,A)~! exist and are uniformly bounded. Indeed, writing
B,:=I+(I—-A)"'PA,

we obtain

B,(I—PA)=(I—-PBA)+(I—A) 'RA(I—BA)
=I-(I-A)"Y(PA-APA=1-5,.

But it is easy to see from (36.11) that

1Sall = 0, 1 — oo,
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Hence, both I — P,A and B, are injective. Since P,A is compact, we have that (I —
P,A)~! is bounded. As a consequence of this fact we have that

(I-PA) ' =(-5,)"'B,.
The definition of B, implies
I1Ball < 1+[(7=A)"" | l1A] -

Therefore H (I-PA)"! || is uniformly bounded in #. The exact equation ¢ —AQ = f
and (36.10) with operator / — A lead to

(I—=PA)(@n— @) =PAQ—A@+ P, f — f,

which implies also the error estimate

lon— ol < [[1=PA) || (P40~ Apll +[IPf ~ 1)

The proof is concluded. O

Corollary 36.12. Under the assumptions of Theorem 36.11 and provided addition-
ally that
[PA—Al =0, n— oo,

the approximate equation (36.10) with I — A is uniquely solvable for each f € H,
and we have the error estimate

lon— ol <M||Po— o,
where M is an upper bound for the norm H (I-PA)"! H

Proof. The existence of the inverse operators (I — P,A)~! and their uniform bound-
edness follow from

[-PA=(I—A)—(BA-A)=(I—A)[I-(I—A) " (RA-A)],
(I=PA) ' = [1-(1=A) " (PA—A)] ' (1-4)",
and

o [a=4)""|
|(1—P,A) HS1_||(1—A)—1HII(PnA—A)II'

From
(@ — @) —PA(@— Q) = @ — P00
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and
lon— ol < || =PA) || IBio — o]

we obtain the error estimate. O

Let us return to the projection equation (36.10). It can be rewritten equivalently as
(Agn—f,8) =0, geH, (36.12)
Indeed, if g € H,, then g = P,g, P; = P,, and hence
=(AQu—f,8) = (AQu — [, Pag) = (Ps(Apu — f). 8),

or
Pn(A(Pn_f) =0,
since H, is considered here to be a Hilbert space. This is the basis for the following

Galerkin projection method.
Assume that {e j};": | is an orthonormal basis in a Hilbert space H. Considering

Hn = span(el,. e >en)7

we have for the solution ¢, of the projection equation (36.10) the representation
n
x) =Y vej. (36.13)
=1

The task here is to find (if possible uniquely) the coefficients y; such that ¢, from
(36.13) solves (36.10). Since (36.12) is equivalent to (36.10), we have from (36.13)
that

(AQu,8) = (f.g), &€ Hy,

or
(A(anek):(faek):fb k:l,2,...7n,
or
n
Z Aejvek = Ji
or
My=F, (36.14)

where 7= (V1,...,%)s f = (fis-- s fa)s and M = {@jx }uxn With aj = (Aej, ). If
the operator A is invertible, then the matrix M is invertible too, and ¥ can be obtained
uniquely as
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— —1 =
Yy=M "f.

As a result of this consideration we obtain ¢,(x) uniquely from (36.13). It remains
only to check that this ¢, converges to the solution of the exact equation A¢ = f. In
order to verify this fact it is enough to apply Theorem 36.9.

We apply now this projection method to the equation (36.8) with compact oper-
ator A.

Theorem 36.13. Let A: H — H be compact and let I — A be injective. Then the
Galerkin projection method converges.

Proof. By Riesz’s theorem, the operator / — A has bounded inverse. Therefore, ¢,
from (36.13) is uniquely defined with y; that satisfies equation (36.14) with matrix
M= {ajk}nxn, aji = ((I—A)ej7ek). Since

5 oo
1B =@l =3 l(9.e)P =0, n—eo
Jj=n+1

we may apply Theorem 36.11 and conclude the proof of this theorem. (I
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Chapter 37
Introduction

We consider the Euclidean space R", n > 1, with elements x = (xi,...,x,). The
Euclidean length of x is defined by

bl = /at

and the standard inner product by

(x,y) =x1y1+ - +XnYn-

We use the Cauchy—Bunyakovsky—Schwarz inequality in R”:

|Coo )< Il - [yl

Equality here occurs if and only if x = Ay for some A € R. By Bg(x) and Sg(x) we
denote the ball and sphere of radius R > 0 with center x:

Br(x):={yeR": |x—y| <R}, Sgpkx):={yeR":|x—y|=R}.

We say that 2 C R", n > 2, is an open set if for every x € € there is R > 0 such that
Br(x) C Q.If n =1, by an open set we mean an open interval (a,b), a < b.

We say that Q C R", n > 2, is a closed set if R"\ Q is open. This is equivalent
to the fact that Q' C Q, where Q' denotes the set of limit points of £, i.e.,

Q' ={yeR":3xW}r, cQ,x*® —y| =0,k — oo}.

The closure Q of the set £ is defined as Q = Q U Q’. We say that € is bounded
if there is R > 0 such that 2 C Bg(0). A closed and bounded set in R” is called
compact. The boundary dQ of the set Q C R” is defined as

(© Springer International Publishing AG 2017 393
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agzﬁm(m).

An n-tuple a = (0, ..., o) of nonnegative integers will be called a multi-index.
We define

1) |of =Xl 0;

2) o+B=(c1+Bi,..., 00+ B,) with |oc+ B| = |oc| + | B].

3) al=o! -0, with0! = 1.

(4) oo > B if and only if o¢; > fB; for each j =1,2,...,n. Moreover, o > f3 if and
only if o > B and there exists jo such that o, > B;,.

S) fa>pB,thena—pB = (a1 —Pi,...,0,—PBy) and | — B| = || — |B].

(6) For x € R" we define

o oy

x% =1 On

.. xn
with 00 = 1.
‘We will use the shorthand notation

0 olol

=—, 9%=9M..9% ="
ox;’ ! " Ixt - dx

J;

This part assumes that the reader is familiar also with the following concepts:

(1) The Lebesgue integral in a bounded domain €2 C R” and in R”.
(2) The Banach spaces (L”, 1 < p < oo, CX) and Hilbert spaces (L?). If 1 < p < oo,
then we set

. 1/p
LP(Q) :={f: Q — Cmeasurable : || f]|;(q) := (/Q |f(x)|1’dx> < oo},
while

L*(Q) :={f: Q — Cmeasurable : || f|[;~(q) := ess sup|f(x)] < eo}.
xXEQ

Moreover,

CHQ) = {f:Q = C:|fllx(g) :=max Y, [0f(x)| <o},

xeQ2 or| <k
where Q is the closure of Q. We say that f € C*(Q) if f € C(£;) for all

k € N and for all bounded subsets Q; C Q. The space C*(£2) is not a normed
space. The inner product in L?(€2) is denoted by

(.80 = [ S8



37 Introduction 395
Also in L?(Q), the duality pairing is given by
(b = [ S0,
(3) Holder’s inequality: Let 1 < p < oo,y € L and v € L” with
=L,

Then uv € L' and

iy < (] utx |de) (f, borax)”.

where the Holder conjugate exponent p’ of p is obtained via

with the understanding that p’ = if p=1and p’ = 1 if p = .

(4) Lebesgue’s dominated convergence theorem:
Let A C R” be measurable and let { fi };_, be a sequence of measurable func-
tions converging to f(x) pointwise in A. If there exists a function g € L!(A)
such that | f;(x)| < g(x) in A, then f € L'(A) and

lim [ fiodx= [ f(x)ax

(5) Fubini’s theorem on the interchange of the order of integration:

_wa@ﬂﬂﬂwié&<Lf@JMO:ié®(éfmww),

if feLl(X xY).

Exercise 37.1. Prove the generalized Leibniz formula

2%(fg) =Y, ChaPfao P,

B<a
where the generalized binomial coefficients are defined as

Ot' a_ﬁ

B _
e = Bia_py
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Hypersurfaces

A set S C R" is called a hypersurface of class C*, k=1,2,... o, if for every xo € §
there exist an open set V C R” containing xo and a real-valued function ¢ € C*(V)
such that

Vo=(d10,...9,0) 20 on SNV,

SNV ={xeV:pkx) =0}.

By the implicit function theorem we can solve the equation ¢(x) = 0 near xp to
obtain

Xn = W(xlv"'axnfl)

for some C¥ function . A neighborhood of x( in S can then be mapped to a piece
of the hyperplane x, = 0 by

X (o — (),

where X' = (x1,...,x,—1). The vector V¢ is perpendicular to S at x € SNV. The
vector v(x), which is defined as

Vo
v(x) =+t ——,
W=y

is called the normal to S at x. It can be proved that

(Vllja _1)

VIVyP+1

If S is the boundary of a domain 2 C R", n > 2, we always choose the orientation
so that v(x) points out of , and we define the normal derivative of u on S by

v(x) ==+

du du
=v-Vu=vi—+-+v,—.
ou:=v-Vu=v, I +- 4+ o

Thus v and d,u are C*~! functions.
Example 37.1. Let S,(y) ={x€R": |x—y| =r}. Then
1 & d d

o
v =" and dy=- Y (g-y)5- =5
j=1 J
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The divergence theorem

Let 2 C R”" be a bounded domain with C' boundary S = dQ and let F be a C'

vector field on Q. Then
/ V.Fdx= /F~vdo(x)
Q s

Corollary 37.2 (Integration by parts). Let f and g be C' functions on Q. Then

/Qajﬁgdx:—/Qfﬂ/gdxf/sf-gV/dG(X)-

Let f and g be locally integrable functions on R", i.e., integrable on every bounded
set from R". The convolution f x g of f and g is defined by

(Fe9)) = [ 7lx=2)s0)dy = (g /),

provided that the integral in question exists. The basic theorem on the existence of
convolutions is the following (Young’s inequality for convolution):

Proposition 37.3 (Young’s inequality). Letr f € L'(R") and g € L(R"),
1 <p<eco Then fxge LP(R") and

1S+ &lle < 1Al llell -

Proof. Let p = oo. Then

(f*g)(x) < /R fr=y)llg)Idy < llgll - /]R [FOe=y)Idy = llgllz= I 1] -

Now let 1 < p < oo. Then it follows from Holder’s inequality and Fubini’s theorem
that

[rsowpas [ ([ f<x_y>|g<y)|dy>”dx

<[ ([ 1re y|dy) [ =5Vl
< [, [ 1re=yllet)ravas
<A [ leray [ L=y

+1
= A1 Nl 1.1 = AN gl
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Thus, we have finally

1/p'+1
1+ gl < 1AL 18l = A1 gl

and the proof is complete. ]

Exercise 37.2. Suppose 1 < p,q,r <o and %—k% = % + 1. Prove that if f € LP(R")
and g € L4(R"), then f*g € L"(R") and

178l < 171, gl -

In particular,
1F* gl < [1Fller llegll -

Definition 37.4. Letu € L'(R") with

/n u(x)dx=1.

Then ue (x) := & "u(x/€), € > 0, is called an approximation to the identity.

Proposition 37.5. Let ug(x) be an approximation to the identity. Then for every
function @ € L*(R") that is continuous at {0} we have

lim ug (x)@(x)dx = @(0).
e—0+ JRn

Proof. Since ug(x) is an approximation to the identity, we have

[, ue00d—00) = [ ue(x)(o(x) — p(0))dr,

and thus

[ et o) < [ oo - o0)as
[ helior -~ po)ax

< sup 1909~ 9(O)] [ le()lde+2lgl- [ lue()la

x<vE A>ve
< sup \(p(x)fw(o)Hlullu+2||<p||m/ |u(y)|dy — 0
[x|<ve lyl>1/ve

as € — 0.
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Example 37.6. Let u(x) be defined as

u(X) = { SmZXI Slr;x,,’ X € [Oa n]n’

Then ug(x) is an approximation to the identity and

lim (2¢) ”/ /Snﬁsm = ¢(0).

£—>0

Fourier transform

If f € L'(R"), its Fourier transform f or .Z(f) is the bounded function on R”
defined by

F&) = @m 2 [ e

Clearly f(€) is well defined for all & andHfH @) 2| f],.

The Riemann-Lebesgue lemma

If f € L'(R"), then fis continuous and tends to zero at infinity.

Proof. Let us first prove that .% f(&) is continuous (even uniformly continuous) in
R”. Indeed,

FFE+) = F O] < @m) "2 [ 1700]-Je )~ 1jdx

< hldx+2
< /‘ e Ol + /| -
SVl [ @i —0

|/ (x)|dx

as |h| — 0, since f € L'(R"). '
To prove that % f(&) — 0 as |£| — 0 we proceed as follows. Since e = —1, we
have

27 (&)= (2m) "2 ” fx)e S dx — (2m) /2 / f(x)e*i(x*m:/\ﬁ\zaé)dx

= (2717)7n/2 - f(X)eii@C"é)dx— (277:)’"/2/ (y—|—7t€/|€| Je —i(né
——@m 2 [ (flx+mE1EP) - SC0)eEa,



400 Part IV: Partial Differential Equations

Hence
27 1) < @m) "2 [ |7+ 7E/IEP) - S(0)ldx
= 2m) 2|+ 7E/IER) = FO)l|y =0
as || — oo, since f € L' (R"). O

Exercise 37.3. Prove that if f,g € L' (R"), then f g = (21)"/?fg.
Exercise 37.4. Suppose f € L!(R"). Prove the following:

(1) If fy(x) = f(x+h), then fj, = e f.

(2) If T : R" — R" is linear and invertible, then foT = |detT|_1f((T_1)’§),
where T’ is the adjoint matrix.

(3) If T is a rotation, that is, 7/ = T~! (and |detT| = 1), then fo\T = fo T.

Exercise 37.5. Prove that

~ —

0“f = (~ix)*f, 9%f = (i€)*f.
Exercise 37.6. Prove that if f,g € L'(R"), then

FERENE = [ FE)e(E)de.
Rn R}’l

For f € L'(R") we define the inverse Fourier transform of f by

)

) =) [ e pE)ae.
RYI

It is clear that

and for f,g € L'(R"),
(Zf,8)2= (7 g

The Schwartz space S(R") is defined as

S(R™) = {f € C”(R") : sup |x*9P £(x)| < oo, for all multi—indicesaandﬁ}.
xeR?

The Fourier inversion formula

If f € S(R"), then (ﬂ‘*lﬁ)f:f.

Exercise 37.7. Prove the Fourier inversion formula for f € S(R").
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Plancherel’s theorem

The Fourier transform on S extends uniquely to a unitary isomorphism of L?(R")

onto itself, i.e.,
17, = 171

This formula is called Parseval’s equality.
The support of a function f : R" — C, denoted by supp f, is the set

supp f = {x € R": f(x) £0}.

Exercise 37.8. Prove that if f € L' (R") has compact support, then fextends to an
entire holomorphic function on C".

Exercise 37.9. Prove thatif f € C5(R"), i.e., f € C*(R") with compact support, is
supported in {x € R” : |x| < R}, then for every multi-index o we have

1(8)“F(8)] < (2m) 2Rl 9% ],

~

that is, (&) is decays rapidly [Re €| — o when [Im &| remains bounded.

Distributions

We say that ¢; — ¢ in C7'(£2),  C R" open, if ¢; are all supported in a common
compact set K C 2 and

sup [0“;(x) = d%@(x)| = 0, j— oo

xekK

for all or. A distribution on £ is a linear functional u on C(£2) that is continuous,
ie.,

(1) u:Cy(8L2) — C. The action of u on ¢ € C;(£2) is denoted by (u, ®). The set
of all distributions is denoted by 2'(€2).

(2) (u,c101+c202) = c1{u, @1) +co{u, @2).

(3) If ; — @ in C5 (L), then (u, ;) — (u, ) in C as j — oo. This is equivalent to
the following condition: for all K C € there exist a constant Cx and an integer
Nk such that for all ¢ € C5(K),

(o) <Cx ¥ 9%l

o <Nk

Remark 37.7. Tfue L) _(Q), Q C R" open, then u can be regarded as a distribution

loc
(in that case, a regular distribution) as follows:
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(w.p) = [ ulpdr, @ eCy(@).

The Dirac §-function

The Dirac 8-function is defined as

(6,90) =0(0), ¢eC5(Q).
It is not a regular distribution.

Example 37.8. Let ug(x) be an approximation to the identity. Then

@(§) = 2m) "2 [ emuC)e e = 2m) 2 [ uly)e 0Dy = (e€).

n n

In particular,
lim i (£) = lim u(e€) = (2m)™"/2.

£—0+ e—0+

Applying Proposition 37.5, we may conclude that

(1) limg_,04 (ue, @) = @(0) i.e. limg_o4 ue = O in the sense of distributions, and
(2) 6= 02n)"?-1.

We can extend the operations from functions to distributions as follows:
(0%u, @) = (u,(~1)"0%9),
(fu,0) = (u,fo), [eC(Q),
(wey, @) = w,0xy), yelGQ),
where y(x) = w(—x). It is possible to show that u x y is actually a C* function and
0% (u*xy) =uxd%y.

A tempered distribution is a continuous linear functional on S(R"). In addition to the
preceding operations for tempered distributions we can define the Fourier transform
by

<i‘\7(p>:<ua(,ﬁ>7 pes.

Exercise 37.10. Prove that if u is a tempered distribution and y € S, then

— n/2

uxy = (2n)"*yu.



37 Introduction

Exercise 37.11. Prove that

(1) §=2rn) ™21, 1=2n)"?.

-~

(2) 998 = (i&)*(2m) "2,
1

3) x@=il*g (1) =ildl(2m)n/2995.

403



Chapter 38
Local Existence Theory

A partial differential equation of order k € N is an equation of the form
F (x,(0%u)g)<k) =0, (38.1)

where F is a function of the variables x € Q C R”, n > 2, and (aau)‘odgk.
A complex-valued function u(x) on Q is a classical solution of (38.1) if the
derivatives d%u occurring in F exist on Q and

F (x,(9%u(x)) o)<k) =0

pointwise for all x € £2. The equation (38.1) is said to be linear if it can be written
as

> aa(x)9%u(x) = f(x) (38.2)

|| <k
for some known functions a, and f. In this case we speak of the (linear) differential

operator
L(x,0)= Y ag(x)d”
o] <k

and write (38.2) simply as Lu = f. If the coefficients a(x) belong to C=(£2), we
can apply the operator L to any distribution u € 2'(€Q), and u is called a distribu-
tional solution (or weak solution) of (38.2) if equation (38.2) holds in the sense of
distributions, i.e.,

> (—1) N, 0% (aap)) = (f.9),

lor| <k

where @ € Cy’(£2). Let us list some examples. Here and throughout we set u; = %,

2
Uy = % and so forth.
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(1) The eikonal equation
V2 = 2,

where Vu = (dyu,...,d,u) is the gradient of u.
(2) (a) The heat (or evolution) equation

Ur = kA u.
(b) The wave equation
Uy = P Au.
(c) The Poisson equation
Au=f,

where A =V -V =97+ -+ 92 is the Laplacian (or the Laplace operator).
(3) The telegrapher’s equation

Uy = Au— ou — mu.
(4) The Sine—Gordon equation
Uy = A Au—sinu.
(5) The biharmonic equation
A’u=A(Au) =0.
(6) The Korteweg—de Vries equation
U+ cu - Uy + Uy = 0.
In the linear case, a simple measure of the “strength” of a differential operator is
provided by the notion of characteristics. If L(x,0) = ¥4 <k @0 (x) 9%, then its char-

acteristic form (or principal symbol) at x € Q is the homogeneous polynomial of
degree k defined by

awxE) =Y ag(x)E* E€eR"

|o[=k

A nonzero & is said to be characteristic for L at x if 7 (x,&) = 0, and the set of all
such & is called the characteristic variety of L at x, denoted by char,(L). In other
words,

char, (L) ={¢ #0: x.(x,§) = 0}.

In particular, L is said to be elliptic at x if char,(L) = @ and elliptic in Q if it is
elliptic at every x € €.
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Example 38.1. (1) L= 0,0, with

char,(L) = {E € R*: & =00r & = 0,6 + &7 >0}
2) L= %((91 +i0h) is the Cauchy—Riemann operator on R?. It is elliptic in R?.

(3) L= A iselliptic in R".
4) L:alfzyzza}, char (L) = {& e R"\{0}: §; =0,j=2,3,...,n}.

(5) L=02 %! ,9?2, char,(L) = {5 ERM {0} : E2 =", ;3}.

Let v(x) be the normal to S at x. A hypersurface S is said to be characteristic for L
atx € Sif v(x) € char,(L), i.e.,

xL(x, V(x)) =0,
and S is said to be non-characteristic if it is not characteristic at every point, that is,
if for all x € S,
xLx, v(x)) #0.
It is clear that every S is noncharacteristic for elliptic operators. The lines
S={xeR":x1 #0,x,=--=x,=0}

are characteristic for the heat operator, and the cones
Sy ={xeR":x;==+/x3+ 22}

are characteristic for the wave operator.
Let us consider the first-order linear equation

Lu_Za, Yoju+b(x)u= f(x), (38.3)

where a;, b, and f are assumed to be C! functions of x. We assume also that a s
b, and f are real-valued. Suppose we wish to find a solution u of (38.3) with given
initial values u = g on the hypersurface S (g is also real-valued). It is clear that

char, (L) = {5 £0:A-& :0},
where A = (aj,...,a,). This implies that char,(L) U{0} is the hyperplane orthog-

onal to A, and therefore, S is characteristic at x if and only if A is tangent to S at x
(A-v =0). Then
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-

a(x)3u(x) = ila,(x)ajg(x» xes,

1

J

is completely determined as a set of certain directional derivatives of ¢ (see the
definition of S) along S at x, and it may be impossible to make this sum equal to
f(x) = b(x)u(x) (in order to satisfy (38.3)). Indeed, let us assume that u; and u
have the same value g on S. This means that u; —up = 0 on S, or (more or less
equivalently)

Uy —ur=9¢-Y,
where ¢ = 0 on S (¢ defines this surface) and y # 0 on S. Next,
(A-Vyur — (A-V)uy = (A-V)(97) = Y(A-V)p+ p(A-V)y=0,

since S is characteristic for L (A-V)p =0 < (A- I%)(P =0« A-v =0). Therefore,
to make the initial value problem well defined we must assume that S is noncharac-
teristic for this problem.

Let us assume that S is noncharacteristic for L and u = g on S. We define the
integral curves for (38.3) as the parametrized curves x(¢) that satisfy the system

X=Ax), x=x(t)=x1(t),...,x(1)), (38.4)
of ordinary differential equations, where

i=(xX)(t),..., % (2)).
Along one of those curves a solution u of (38.3) must satisfy

= (ulx(0) = zlj = (R V)u=f ~bu= f(x(1)) ~ bulx(1),

or d
u
pri f—bu. (38.5)

By the existence and uniqueness theorem for ordinary differential equations there
is a unique solution (unique curve) of (38.4) with x(0) = xo. Along this curve the
solution u(x) of (38.3) must be the solution of (38.5) with u(0) = u(x(0)) = u(xy) =
g(xo). Moreover, since S is noncharacteristic, x(¢) ¢ S for ¢ # 0, at least for small 7,

and the curves x(¢) fill out a neighborhood of S. Thus we have proved the following
theorem.

Theorem 38.2. Assume that S is a surface of class C' that is noncharacteristic
for (38.3), and that aj, b, f, and g are real-valued C U functions. Then for every
sufficiently small neighborhood U of S in R" there is a unique solution u € C' of
(38.3) on U that satisfies u = g on S.
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Remark 38.3. The method that was presented above is called the method of char-
acteristics.

The following two examples demonstrate the necessity of noncharacteristic sur-
faces for boundary value problems.

Example 38.4. (1) InR?, solve x2dju+x1dhu = u with u(x1,0) = g(x;) on the line
Xy = 0.
Since v(x) = (0,1) and since yr.(x,&) =x2&; +x1 &, we have

A(x,v(x)) =x2-04x; - 1 =x1 #0,

so that the lines x; > 0 and x; < O are noncharacteristic. The system (38.4)—
(38.5) to be solved is

X =x2, Xp=x1, U=u,
with initial conditions
(x1,22) =0 = (7,0),  u(0) = g(x),
on S. We obtain

0 0
X1

X
x| = ?l(e’—&—e*’), Xy = !

e —eT), u=gld)e"
These equations imply

0. Ot 22 0y2
xi+xy=xj¢, xj—xp=xje’, x]—x5=(x])".

So n
X1 X2
=+ x% >x%,
2 2
X=X
and thus
X1 +x2
u(xy,x) ==+g (:I:\/x% x%) _—
X —xy

where we have a plus sign for x; +x, > 0 and a minus sign for x; +x < 0.

(2) InR?, solve x1du +x2dhu = u with u(x1,0) = g(x1) on the line x, = 0.
Compared to previous example, in this case the line x, = 0 is characteristic,
since x; -0+x2-1 =0 on S. The system (38.4)—(38.5) gives in this case that

0.t — 0\ .t
xp=xje', x=0, u=g(j)e.
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This means that u(x1,x;) is a function of only one variable x;, and the original
equation transforms to
X1 8] uU=up,

which has only the solution u;(x;) = cxj, where ¢ is a constant. But then we
have a contradiction, since the equality cx; = g(x;) is impossible for an arbi-
trary C! function g.

Let us consider more examples in which we apply the method of characteristics.

Example 38.5. Tn R3, solve x1diu + 2xpdhu + d3u = 3u with u = g(x1,x,) in the
plane x3 = 0.

Since § = {x € R?:x3 =0}, we have v(x) = (0,0,1), and since y.(x,&) =
x1&1 4+ 2x2&, + &3, we must have

xL(x6,v(x)) =x1-042x-0+1-1=1+#0,

so that S is noncharacteristic. The system (38.4)—(38.5) to be solved is

xlle, )&2:2)(27 x3:17 u:3u’

with initial conditions

(xl’x27x3)‘f:(): (x(1)7x(2]70)7 M(O) :g(x(l)7x(2])7

on S. We obtain

0.t 0.2 0 .0y.3
xp=xje', xm=xe’, xz3=t, u=gx],x)e".
These equations imply
WM =xe T =xe™, =xe ¥ =xe .

Therefore,

u(x) = u(xr,x2,x3) = g(x1e ™, xpe” 23 )e¥,

Example 38.6. In R3, solve dyu +xdru — dsu = u with u(x1,x2, 1) = x1 +x.
Since § = {x € R? : x3 = 1}, we have v(x) = (0,0,1), and therefore,

xL (6, v(x)=1-0+x-0—1-1=—1+#£0,

and S is noncharacteristic. The system (38.4)—(38.5) for this problem becomes

=1 X=x, B=-1, u=uy,
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with
(r12,33) [0 = (69,23, 1), (0) =) +x5.
‘We obtain
0 r 0, .0 0, .0
XM=y, =S4y, xn=-r 1, u=(x]+x3)e
Then,
t=1—x3, x(l]:xl—t:xl—l—xg—l,
1 —x3)? 1 X3
x(z) =X % —(1=x3)(x1+x3—1) = 5 M +x2 —x3+x1x3+ 33,
and finally,

2
1
u= (j;?’ +x1x3+x — 2) el™,

Now let us generalize this technique to quasilinear equations, or to the equations of
the form

n
2 i(x,u)dju = b(x,u), (38.6)
where a;, b, and u are real-valued. If u is a function of x, the normal to the graph of
u in R is proportional to (Vu, —1), so (38.6) just says that the vector field
A’(xmy) = (al PR 7aﬂ7b) € Rn+1

is tangent to the graph y = u(x) at every point. This suggests that we look at the
integral curves of A in R"H! given by solving the ordinary differential equations

xj=uaj(x,y), j=12,...,n, y=0b(x,y).

Suppose we are given initial data u = g on S. If we form the submanifold

S i={(x,g(x)) :x€ S}

in R"*! then the graph of the solution should be the hypersurface generated by
the integral curves of A passing through S*. Again, we need to assume that § is
noncharacteristic in the sense that the vector

(a1(x,8(x)),---,an(x,8(x))), x€S,
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should not be tangent to S at x, or

™

laj(xyg(x))vj(x) £0.

J

Suppose u is a solution of (38.6). If we solve
xj=aj(xu(x)), j=12,...,n,

with x;(0) = x?, then writing the solution u via integral curves as y(t) = u(x(t)), we
obtain that

y= dju-xj=Y a;(x,u)dju=>b(x,u) =b(x,y).
j=1 i=1

Thus, as in the linear case, u solves (38.6) with given initial data g on S.

Example 38.7. TnR?, solve udu+ dru = 1 with u = s/2 on the segment x; = x, = s,
where s > 0, s # 2, is a parameter.
Since @(s) = (s,s), it follows that (X' =x; = s)

aX]
L oa(s,s,s/2) (1 s/2)
det § = det =1—-5/2#0,
(”Z ar(s.5.5/2) i 27
for s > 0, s # 2. The system (38.4)—(38.5) for this problem is
X1=u, X=1, u=1,
with 0
0.0 %

<x17x27u)|1‘=0 = (x15x27 E) = (S,S,S/2>.

Then
u=t+s/2, xp=t+s, x=rt+s/2,

so that x| = %—F % + . This implies
x| —xa=12/2+1(s/2—1).

For s and ¢ in terms of x; and x, we obtain

s 1 t? 2(x1 —x2)
R e B2
2= (x‘ 2 2)’ -2
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Hence
2()(1 —XZ) X1 — X2 t
- 1 -~
" xp—2 T t 2
2(x; — -2 —
_2(n X2)+1+X2 XX
X2 —2 2 X2 —2
— -2 — 2x1 —4 2
_X x2+1+x2 _X—Xx X 2x X2 + x5
X2—2 2 x2—2 2 2()62—2)

Exercise 38.1. In RZ, solve x%&lu —|—x%82u = u? with u = 1 when x, = 2x;.
Exercise 38.2. In R?, solve udu+xydou = x1 with u(xy, 1) = 2x1.

Example 38.8. Consider the Burgers equation
udiu+du=0

in R? with u(x;,0) = h(x;), where h is a known C' function. It is clear that § :=
{x € R? : x, = 0} is noncharacteristic for this quasilinear equation, since

det((l)h()lcl)> =140,

and v(x) = (0, 1). Now we have to solve the ordinary differential equations

X1=u, X=1, u=0,

with
()C] axz,u)|l:0 - (X?,O,h(x(]))) .
‘We obtain
=t u=h(), x=h0)+x,
so that

x; —xh(x) =¥ =0.

Let us assume that
—xoh) () = 1#£0.

By this condition, the last equation defines an implicit function x(l) = g(x1,x2).
Therefore, the solution u of the Burgers equation has the form

u(x1,x2) = h(g(x1,x2)).
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Let us consider two particular cases:
(1) If h(x9) = ax9 + b,a # 0, then

ax;+b

M(thz) = m7

1
X2 75 -
a

(2) Ifh(x?) = a(x)? 4+ bx{ +c,a #0, then

2
—x2b — 14 +/(xab+ 1)2 —daxy(cxy — x1)
2ax2

u(xy,xm)=a (

—xob—1 )24 -
+b< x2b — 14/ (x02b+1) axs(cxy X1)>+C7
2axn

with D = (xab + 1) — 4axy(cxy —x1) > 0.

Let us consider again the linear equation (38.2) of order £, i.e.,

Y, aq(x)0%u(x) = f(x).

|or|<k
Let S be a hypersurface of class C¥. If u is a C¥ function defined near S, the quantities
u,(?vu,...ﬂf*lu (38.7)

on S are called the Cauchy data of u on S. And the Cauchy problem is to solve
(38.2) with the Cauchy data (38.7). We shall consider R”, n > 2, to be R"~! xR
and denote the coordinates by (x,#), where x = (xy,...,x,_1). We can make a change
of coordinates from R” to R"~! x R so that xo € S is mapped to (0,0) and a neigh-
borhood of x( in § is mapped into the hyperplane ¢ = 0. In that case dy, = % on
S ={(x,t) :t =0}, and equation (38.2) can be written in the new coordinates as

Y o j(x,0)d%u=f(x.1) (38.8)
e+ j<k
with the Cauchy data
9/u(x,0) = @;j(x), j=0,1,....k—1. (38.9)

Since v = (0,0,...,0,1), the assumption that S is noncharacteristic means that

XL(anv V()C, 0)) = an(X,O) ?é 0.
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Hence by continuity, ag «(x,) # 0 for small 7, and we can solve (38.8) for dfu:

fu(x,r) = (aojk(x,t))il (f— D aa,jax“a,fu> (38.10)

loe]+j<k,j<k

with the Cauchy data (38.9).

Example 38.9. The line r = 0 is noncharacteristic for 9?u = d2u in R?. The Cauchy
problem u(x,0) = go(x), dyu(x,0) = g1(x), has a unique solution in appropriate
classes for gg and g;. This can be proved by the method of separation of variables
(see Section 14.2).

Example 38.10. The line t = 0 is characteristic for did;u = 0 in R?, and we will
therefore have some problems with the solutions. Indeed, if u is a solution of this
equation with Cauchy data u(x,0) = go(x) and dyu(x,0) = g (x), then dyg; = 0, that
is, g1 = constant. Thus the Cauchy problem is not solvable in general. On the other
hand, if g; is constant, then there is no uniqueness, because we can take u(x,7) =
go(x) + f(t) with any f(¢) such that f(0) =0 and f’(0) = g;.

Example 38.11. The line t = 0 is characteristic for d2u — du = 0 in R?. Here if
we are given u(x,0) = go(x), then dyu(x,0) is already completely determined by
du(x,0) = gg(x). So, again the Cauchy problem has “bad” behavior.

Let us now formulate and give a sketch of the proof of the famous Cauchy—
Kowalevski theorem for the linear case.

Theorem 38.12. If ag j(x,1),¢0(X),...,¢c—1(x) are real-analytic near the origin
in R", then there is a neighborhood of the origin on which the Cauchy problem
(38.10)—(38.9) has a unique real-analytic solution.

Proof. The uniqueness of the analytic solution follows from the fact that an analytic
function is completely determined by the values of its derivatives at one point (see
the Taylor formula or the Taylor series). Indeed, for all o and j =0,1,...,k—1,

959 u(x,0) = 97 ; ().

Therefore,

Huli—o = (aos) ™" (f(xvo) - Y aa,j(x,o)axa(Pj(x)) :
loe|+j<k,j<k
and moreover,

u(x,1) = (ao’k)fl <f(x,t) - aa,j(x,t)axaa,ju> :

[ot|+j<k,j<k
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Then all derivatives of u can be defined from this equation by
oty =9, (atku) .

Next, let us denote by yq,; = (9;"8,/ u and by ¥ = (yq,;) this vector. Then equation
(38.10) can be rewritten as

Yok = (ao,k)_l (f— Y aa,j)’tx,j) ;

o+ j<k,j<k

or

9 (Yox-1) = (GO,k)_1 (f_ Y a%jaxjy(a.f),j> '

ot +j<k,j<k

and therefore, the Cauchy problem (38.10)—(38.9) becomes
n—1
1A 0y Y +B
Z + | (38.11)
(x 0)=d(x), xeR",

where Y, B, and @ are analytic vector-valued functions and the A; are analytic
matrix-valued functions. Without loss of generality we can assume that @ = 0.
LetY = (y1,...,yn), B=(b1,...,bn), Aj = (afrfl))fxvl:l. We seek a solution ¥ =
(¥1,---,yn) of the form

m= 2 Cox, m=12,.. N

The Cauchy data tell us that C((xmg = 0 for all o and m, since we assumed @ = 0. To

determine C( )

that

for j > 0, we substitute y,, into (38.11) and get for m = 1,2,.

atYm = Zaf,{l)anyl+bm(xay)7

or

Yot =33 (all ) P Y oIt 1Y bl

Jil B,r

m o
o.j
therefore the solution ¥ = (y1,...,yn)- D

It can be proved that this equation determines uniquely the coefficients C

Remark 38.13. Consider the following example in R2, due to Hadamard, which
sheds light on the Cauchy problem:

Au=0, u(x,0)=0, ou(x,0)=ke ¥sin(xk), keN.
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This problem is noncharacteristic on Rz, since A is elliptic in R2. We look for
u(x1,x2) = up(x1)uz(x2). Then
uiuy +uhuy =0,
which implies that
u// u//
L —_22_—_) =constant.

uj us

Next, the general solutions of

U = —2Auy
and
uy = Aup
are
ui = Asin(vV/Ax;) + Beos(VAx;)
and

uy = Csinh(VAxy) + Dcosh(VAx,),

respectively. But u(0) = 0,u5(0) =1 and u;(x;) = ke’\/%sin(kxl). Thus D = 0,

B=0,k=v2A,A=ke Vk and C = % = ﬁ So we finally have

1
u(xy,x) = ke vk sin(kxr)  sinh(kx) = e V¥sin(kx; ) sinh(kx» ).

As k — oo, the Cauchy data and their derivatives (for x, = 0) of all orders tend
uniformly to zero, since e Vk decays faster than polynomially. But if x; # 0 (more
precisely, x, > 0), then

kliT e*‘/ﬁsin(kxl ) sinh(kx; ) = oo,

if we choose, for example, x, = 1 and x(lk) = m/(2k) + 2m. Hence u(x,x2) is not
bounded. But the solution of the original problem that corresponds to the limiting
case k = oo is of course u = 0, since u(x;,0) = 0 and dru(x,0) = 0 in the limiting
case. Hence the solution of the Cauchy problem may not depend continuously on
the Cauchy data. This means by Hadamard that the Cauchy problem for elliptic
operators is “ill-posed,” even when this problem is noncharacteristic.

Remark 38.14. This example of Hadamard’s shows that the solution of the Cauchy
problem may not depend continuously on the Cauchy data. By the terminology of
Hadamard, “the Cauchy problem for the Laplacian is not well posed, but it is ill
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posed.” Due to Hadamard and Tikhonov, a problem is called well posed if the fol-
lowing conditions are satisfied:

(1) existence;
(2) uniqueness;
(3) stability or continuous dependence on data.

Otherwise, it is called ill posed.

Let us consider one more important example due to H. Lewy. Let L be the first-order
differential operator in R3 ((x,y,7) € R3) given by

L= i—|—ii—21()c—|—iy)z

o gy 3% (38.12)

Theorem 38.15 (The Hans Lewy example). Let f be a continuous real-valued
function depending only on t. If there is a C' function u satisfying Lu = f, with the
operator L from (38.12), in some neighborhood of the origin, then f(t) necessarily
is analytic att = 0.

Remark 38.16. This example shows that the assumption of analyticity of f in
Theorem 38.12 in the linear equation cannot be omitted (it is essential). It appears
necessarily, since Lu = f with L from (38.12) has no C I'solution unless f is analytic.

Proof. Suppose x> +y> < R?, |t| < R, and set z = x +iy = re'®. Let us denote by
V(¢) the function

21 i
V(t)::/‘l u(x,y,t)da(z):ir/ u(r,0,1)e%d,
z|=r 0

where u(x,y,t) is the C! solution of the equation Lu = f with L from (38.12). We
continue to denote u in polar coordinates also by u. By the divergence theorem for
F := (u,iu) we get

. . du .du . .
i V- Fdxdy = 1/|z\<r (Bx +i 8)}) dxdy = 1/|Z‘=r(u,1u) -vdo(z)

|z|<r
. X X . i)
=i w4 iu do(z) =i ue'’do(z)
lzg|]=r \ T r |z|=r

o
= ir/ ue®do =v(r).
Jo

But on the other hand, in polar coordinates,

10 Ei/lKr(gZ )dxdy—l/ /2”< i ”) (p,6,1)pdpdo.
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This implies that

aV. . [ (Ju . du B du . du do(z)
o= 1;’/0 ((9x —H&y) (r,0,1)d6 = " (ax +l(9y) (x,y,1)2r 2

=2r " (13’: + ]02(;)) do(z) =2r (1‘?; + 1) /‘ler dc;iz))
=2r <i89‘t/ +i7rf(t)> .

We therefore have the following equation for V:

1 dV av
L <at+7rf(t)> | (38.13)

Let us introduce now a new function U(s,t) = V(s) + nF(t), where s = r> and

F" = f. The function F exists because f is continuous. It follows from (38.13) that

LV _av U 9V U U

2 9r ds’ s ds ds o
Hence U ou
—+i—=0. 38.14
or s G819
Since (38.14) is the Cauchy—Riemann equation, we have that U is a holomorphic
(analytic) function of the variable w = ¢ +is, in the region 0 < s < R2, |f| < R, and
U is continuous up to s = 0. Next, since U(0,7) = nF(¢t) (V. =0 when s = 0, i.e.,
r=0) and f(z) is real-valued, it follows that U(0,7) is also real-valued. Therefore,
by the Schwarz reflection principle (see complex analysis), the formula

U(—s,t) :=U(s,1)

gives a holomorphic continuation of U to a full neighborhood of the origin. In par-
ticular, U (0,¢) = mF (r) is analytic in 7, hence so is f(¢) = F'(¢). O



Chapter 39
The Laplace Operator

We consider what is perhaps the most important of all partial differential operators,
theLaplace operator (Laplacian) on R”", defined by

é:

We will begin with a quite general fact about partial differential operators.

Definition 39.1. (1) A linear transformation T on R” is called arotation if T' =
T

(2) Let h be a fixed vector in R". Thetranslation transformation T}, f (x) := f(x+h)
is called a.

Theorem 39.2. Suppose that L is a linear partial differential operator on R". Then
L commutes with translations and rotations if and only if L is a polynomial in A,
that is, L = T:O a;A’l.

Proof. Let

)= ag(x)0”

| <k
commute with a translation 7j,. Then

Y a(x)0%f(x+h) =Y ag(x+h)d*f(x+h).

| <k lo|<k

This implies that the aq (x) must be constants (because ay (x) = aq(x+ h) for all k),
say aq. Next, since L now has constant coefficients, we have (see Exercise 37.5)

Lu(§) = P(&)a(§),
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where the polynomial P(&) is defined by

P(&)= D aa(if)”.

o <k

Recall from Exercise 37.4 that if T is a rotation, then

—

woT (&)= (@oT)(&).

Therefore,

—

(Lu)(Tx)(&) = Lu(T¢),

or

P(E)u(Tx) (&) = P(TE)(TE).

This forces

P(G) =P(T¢).

Write £ = |£|60, where 6 € S"! = {x € R" : |x| = 1} is the direction of &. Then
T& = |£]6’ with some 6’ € S"~!. But

0=P(§)—P(TE) = P(I£]6) - P(IE|6")
shows that P(&) does not depend on the angle 6 of &. Therefore, P(&) is radial, that

’ PE) =P(E) = 3 el

|of <k

But since we know that P(&) is a polynomial, |ct| must be even:
P(&) = alE[*.
J
By Exercise 37.5 we have that

Au(&) = —|E]u(€).

It follows by induction that

AJu(E) = (1Y [EHa(E), j=0,1,....

Taking the inverse Fourier transform, we obtain

Lu= 7 (PE)a(§) = 7 Taleale) = 7 T AIu() = Ydjalu.
J J J
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Conversely, let '
Lu= ZajAj u.
J

It is clear by the chain rule that the Laplacian commutes with translations 7, and
rotations 7'. By induction, the same is true for any power of A, and so for L as
well. (]

Lemma 39.3. If f(x) = o(r), r = |x|, that is, f is radial, then Af = ¢"(r) +

().

Proof. Since a—r =Y it follows that
X‘/ r

This completes the proof. O

Corollary 39.4. If f(x) = @(r), then Af =0 on R"\ {0} if and only if

(r) = a+br’ ™" n#2,
o= a+blogr, n=2,

where a and b are arbitrary constants.
Proof. If A f =0, then by Lemma 39.3, we have

n—1

¢"(r)+——¢'(r) =0

Define y(r) := @'(r). Since y solves the first-order differential equation

n—1

v (r) +

y(r) =0,

r

y(r) can be found by the use of an integrating factor. Indeed, multiply by
e(nfl)l()gr — o get
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P () (= )P Py () =

or
It follows that

Integrate once more to arrive at

- ar—+b, n=1,
(p(r):{LZr—n +c1, n7é2,

1 n _, =dqalogr+b, n=2,
clogrmen, n=2s ar* " +b, n>3.

In the opposite direction the result follows from elementary differentiation. (I

Definition 39.5. A C? function u on an open set 2 C R" is said to be harmonic on
Qif Au=0o0n Q.

Exercise 39.1. Foru,v € C?(Q)NC'(Q) and for S = 92, which is a surfaceGreen’s
identities of class C', prove the following:

(1)
/ (VAu—uAv)dx:/(v&vu—u&,v)dd
JQ S

(2) _
/ (vAu+Vv-Vu)dx:/V(9vudG.
Q s

Exercise 39.2. Prove that if « is harmonic on Q and u € C' (), then
/8vud6 - 0.
s

Corollary 39.6 (From Green’s identities). Let u € C'(Q) be harmonic on Q.

(1) ifu=0o0nsS, thenu=0;
(2) if dyu=0onS, then u = constant.

Proof. By taking real and imaginary parts, it suffices to consider real-valued func-
tions. If we let u = v in part (2) of Exercise 39.1, we obtain

/ |Vu\2dx:/uavud0'(x).
Q s
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In the case (1) we get Vu = 0, or u = constant. But u = 0 on S implies that u = 0.
In the case (2) we can conclude only that # = constant. (]

Theorem 39.7 (The mean value theorem). Suppose u is harmonic on an open set
Q CR"™ Ifx € Q and r > 0 is small enough that B.(x) C €2, then

W)= gy [ uae0) = [ o),

2
where @, = Ig(nTn//z) is the area of the unit sphere in R".

Proof. Letus apply Green’s identity (1) with u and v = |y|>"if n # 2, and v = log |y |
if n =2 in the domain

B (x)\Be(x) ={yeR":e<|x—y| <r}.

Then for v(y — x) we obtain (n # 2)

0= / _ (vAu—uAv)dy
Br(x)\Beg (x)

= /‘X_y‘:r(vavu — u&vv)dd(y) — (Va\;l/l _ Mﬁvv)dc(y)

lx—yl=¢
— P2 /‘ _ dudo(y) = @) /‘ _ o)
x—y|=r x—y|=r
- 827"/ ovudo (y) + (2—n)817”/ udo(y). (39.1)
i fri=e

In order to get (39.1) we took into account that

d

x—yx—yd
8 = ~V: —_— =
vV r r dr dr

for the sphere. Since u is harmonic, due to Exercise 39.2 we can get from (39.1) that
foralle >0,e<r,

817"/ udo(y) = rlfn/ udo(y).
[x—yl=¢ [x—y|=r

Therefore,
fim 81,,,/‘ o) = tim [ u(x+0)a0
x—y|=¢

£—0 £—0J]9|=1

=ou()=r'" [ u)aol).

This proves the theorem, because the latter steps hold for n = 2 also. (|
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Corollary 39.8. Ifu and r are as in Theorem 39.7, then

n n
u(x) = u dz—/ u(x+ry)dy, xeQ. 39.2
()= /|x—y\5r )dy = - el (x4 ry)dy (39.2)
Proof. Perform integration in polar coordinates and apply Theorem 39.7. (]

Remark 39.9. 1t follows from the latter formula that

vol{y: [y < 1} = 2.

n
Exercise 39.3. Assume that « is harmonic in Q. Let y(x) € C5(B1(0)) be such
that y (x) = x1(|x]) and [ ¥ (x)dx = 1. Define an approximation to the identity by
xe(-) = e "y (e~ 1), Prove that

u(x) = Xe(x—y)u(y)dy
Be (x)

forxe Q. :={xe€Q:B:.(x) C Q}.
Corollary 39.10. Ifu is harmonic on Q, then u € C*(Q).

Proof. The statement follows from Exercise 39.3, since the function )y, is com-
pactly supported and we may thus differentiate under the integral sign as often as
we please. ]

Corollary 39.11. If {uy},_, is a sequence of harmonic functions on an open set
Q C R" that converges uniformly on compact subsets of €2 to a limit u, then u is
harmonic on £2.

Theorem 39.12 (The maximum principle). Suppose 2 C R" is open and con-
nected. If u is real-valued and harmonic on Q with sup,cou(x) = A < oo, then
either u < A for all x € Q or u(x) = A in Q.

Proof. Since u is continuous on £, the set {x € Q : u(x) =A} is closed in Q. On
the other hand, we may conclude that if u(x) = A at some point x € €, then u(y) =A
for all y in a ball about x. Indeed, if yy € Bz (x) and u(yo) < A, then u(y) < A for all
y from a small neighborhood of yy. Hence, by Corollary 39.8, for r < o,

A=u(x) = /lx_y‘gru(y)dy

",
n

n
= u(y)dy + / u(y)dy
@y Avfy\ﬁr,lyo*ybcg ) MWy J|y—yo|<e )

n n
<A ( / dy+ / dy>
M@y J|x—y|<n|yo—y|>e M@, Jly—yo|<e

—at / dy=A,
Py S|z
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that is, A < A. This contradiction proves our statement. This fact also means that the
set {x € Q :u(x) =A} is also open. Hence it is either Q (in this case u = A in Q)
or the empty set (in this case u(x) < A in Q). O

Corollary 39.13. Suppose 2 C R" is connected, open, and bounded. If u is real-
valued and harmonic on £ and continuous on €2, then the maximum and minimum
of uon £ are achieved only on 0.

Corollary 39.14 (The uniqueness theorem). Suppose €2 is as in Corollary 39.13.
Ifuy and uy are harmonic on £2 and continuous in €2 (possibly complex-valued) and
u1 = up on 92, then u; = up on .

Proof. The real and imaginary parts of u; —up and up — u; are harmonic on £2.
Hence they must achieve their maxima on d£2. These maxima are therefore zero, so
up = up. O

Theorem 39.15 (Liouville’s theorem). If u is bounded and harmonic on R", then
u = constant.

Proof. For all x € R" and |x| < R, by Corollary 39.8 we have

o n
" R'o,

n

d —/ dy| < / dy,
/BR(x)u(y) y BR(O)u(y) y‘ ST D\u(y)\ y

ju(x) — u(0)]

D = (Bg(x)\Bg(0)) U (Br(0)\Bg(x))

is the symmetric difference of the balls Bg(x) and Bg(0). Therefore, we obtain

R+|x|
|M()C)—M(O)| S n”un/ dy§ nHM”oo/ }”n_ld}’/ de
R0y JR—|x|<[y|<R-+]x] Ry JR-|x l6]=1

bRy (1)

Rn

Hence the difference |u(x) —u(0)| vanishes as R — oo, that is, u(x) = u(0). O

Definition 39.16. Afundamental solution for a partial differential operator L is a
distribution K € 2’ such that
LK = 6.

Remark 39.17. Note that a fundamental solution is not unique. Any two fundamen-
tal solutions differ by a solution of the homogeneous equation Lu = 0.

Exercise 39.4. Show that the characteristic function of the set
{(xl,)Cz) S RZ X > O,XQ > 0}

is a fundamental solution for L = 0 0».
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. . 12 i
Exercise 39.5. Prove that the Fourier transform of T3 10 R is equal to 5E

Exercise 39.6. Show that the fundamental solution for the Cauchy—Riemann oper-
ator L= % (dy +id,) on R? is equal to

1 1
T X +ixy

Since the Laplacian commutes with rotations (Theorem 39.2), it should have a radial
fundamental solution that must be a function of |x| that is harmonic on R™\ {0}.

Theorem 39.18. Let

‘x‘z—n
K@) = Cmor 72 (39.3)
> loglx|, n=2.

Then K is a fundamental solution for A.

Proof. For € > 0 we consider a smoothed-out version K, of K as

(hP+e2) 2"
Ke(x)={ @man n#2 (39.4)

ﬁ log(|x|> +€?), n=2.

Then K — K pointwise (x # 0) as € — 0+, and K, and K are dominated by a
fixed locally integrable function for € < 1 (namely,
for n =2, and (|x|>+1)'/? for n = 1). So by Lebesgue’s dominated convergence
theorem, K, — K in Llloc (or in the topology of distributions) as € — 0+. Hence we
need to show only that AK, — & as € — 0 in the sense of distributions, that is,

(AKe,9) — 9(0), €—0
for all ¢ € Cj (R").
Exercise 39.7. Prove that
AKe(x) = noy, €2 (|2 +€2)~(3) = gy (e 1)
for y(y) = na, ' (|yP +1)~(3+1),

Exercise 39.7 allows us to write

(AKe, 0 /(p e lllslxdx /(pez z)dz — ¢(0 /l// dz
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as € — 0+. So it remains to show that
[ w@a=1.
Using Exercise 39.7, we have

[ w@de= - [

U) Rn
:i/ r"*I(r2+1)—(%+1)dr/ de
Wy Jo |6|]=1

= [Ty a2 [T +t)*%*1%dt

/2—1 1 K 1 ds
=—/ 1" 1)1 dr = -—1 22
2/ (1+1) 2/ ( ) Ve
B n/2—1 _ Q/ n/2-1 4. _
2/ ds 2 Jo T drt=1.

This means that £~ 'y/(e~'x) is an approximation to the identity and
AK, — 6.

But K — K, and so AK = § also. O

Theorem 39.19. Suppose that

(1) feL'(R")ifn>3,
(2) Jre |f)]([log|yl|+1)dy < e ifn=2,
(3) JrlfWIA+)dy <eoifn=1.

Let K be given by (39.3). Then f x K is well defined as a locally integrable function,
and A(fxK) = f in the sense of distributions.

Proof. Letn > 3 and set

. 1, xGBl(O),
’“(x)_{o, x¢ Bi(0).

Then y K € L'(R") and (1 — 1)K € L*(R"). So, for f € L'(R") we have that
f*(nK) €L (R") and f*(1—x1)K € L”(R") (see Proposition 37.3). Hence f *
K e LIOC(R”) by addition, and we may calculate

(A(f+K). @) = (f<K.Ap), wecs"(R")
[ Fe)0apear= [ [ K- yaaear



430 Part IV: Partial Differential Equations

= [ f0) [ Ker=yap(xdndy = / (K(x=). 49(x))dy
= [ FO) ARGy 0@y = [ f& 9(x))dy
= IR{”f(y)q)(y)dy:<ﬁqt>>~
Hence A(f*K) = f. O

Exercise 39.8. Prove Theorem 39.19 for n = 2.

Exercise 39.9. Prove Theorem 39.19 forn = 1.

Theorem 39.20. Let 2 be a bounded domain in R" (for n =1 assume that 2 =
(a,b)) with C' boundary 9Q = S. If u € C'(Q) is harmonic in Q, then

u(x) = [ ()9 K(x—y) ~K(x=3)du(n)do(y), xeQ,  (95)

where K (x) is the fundamental solution (39.3).

Proof. Let us consider K, from (39.4). Then since Au = 0 in €2, by Green’s identity
(1) (see Exercise 39.1) we have

A K= 3)dy = [ (1) Kelx—3) = Kelr—)hauy) do ).

As € — 0, the right-hand side of this equation tends to the right-hand side of (39.5)
for each x € Q, since for x € 2 and y € S there are no singularities in K. On the other
hand, the left-hand side is just (u* AK) (x) if we set u = 0 outside 2. According to
the proof of Theorem 39.18,

(uxAKg) (x) — u(x), €—0,

completing the proof. (]

Remark 39.21. 1f we know that u = f and dyu = g on S, then

u(x) = /S (£ K (x—) —K(x—y)g(»)) do(y)

is the solution of Au = 0 with Cauchy data on S. But this problem is overdetermined,
because we know from Corollary 39.14 that the solution of Au = 0 is uniquely
determined by f alone.
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The following theorem concerns the spaces C%(£2) and C*%(Q) defined by

C*(Q)=C"*(Q) ={u e L7(Q) : [u(x) —u(y)| < Clx—y|*x,y € Q},
Cho(Q) = CHo(Q) = {u Pueccr(Q),|p| < k},

forO< o< 1landkeN.

Theorem 39.22 (Regularity in Holder spaces). Suppose k > 0 is an integer, 0 <
o<1, and Q C R" is open. If f € C¥%(Q) and u is a distributional solution of
Au= fin Q, thenu € C};.27%(Q).

Proof. Since A(dPu) = 9PAu = 0B f, we can assume without loss of generality
that k = 0. Given Q; C Q such that | C Q choose ¢ € C7(£2) such that ¢ = 1 on
Qrandletg=of.

Since A(g* K) = g (see Theorem 39.19) and therefore A(g+K) = f in £, it
follows that u — (g + K) is harmonic in £; and hence C* there. It is therefore enough
to prove that if g is a C* function with compact support, then g% K € C>*%. To
this end we consider K¢ (x) and its derivatives. Straightforward calculations lead to
following formulas (n > 1):

J - n
ijKe(x) = o, 'x;(|x* + %) 2,
39.6
7 Ke(x) = ;! —nxix(|x +e2) 2 itj, 9
dxidx; " (WP 2 —nd) (kP e2) =

Exercise 39.10. Prove formulas (39.6).

Since K¢ € C~, we have g * K € C* also. Moreover, d;(g * K¢) = g* d;jK, and
0i0;(g *K¢) = g * d;d;jKe. The pointwise limits in (39.6) as € — 0 imply

0 _ _
T)C]K(x) =, lx]"x‘ "
_ . .. (39.7)
82 K x) _ —h@, lxixj|x| 27 l7é Js
ax0x; o7 (WP —n) g2, =),

for x # 0. Formulas (39.7) show that d;K(x) is a locally integrable function, and
since g is bounded with compact support, it follows that g * d;K is continuous. Next,
g*0djKe — g*d;K uniformly as € — 0+. This is equivalent to d;K; — d;K in the
topology of distributions (see the definition). Hence d;(g *K) = g+ d;K.

This argument does not work for the second derivatives, because d;d;K (x) is not
integrable. But there is a different procedure for these terms.

Let i # j. Then 0;djK¢(x) and 9;d;K(x) are odd functions of x; (and x;); see
(39.6) and (39.7). Due to this fact, their integrals over an annulus 0 < a < |x| < b
vanish. For K; we can even take a = 0.
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Exercise 39.11. Prove this fact.

Therefore, for all b > 0 we have
g+ 00Kel) = [ 8(x=2)0Ke (3)dy— gl /‘ DKy
" y

= (8(x—y) —g(x))did;Ke (y)dy + g(x—y)0id;Ke(y)dy.

~pl<n yl=b
If we let € — 0, we obtain
lim g% (9,-8,-1{8 ()C)
£—0 :

-/ (g(x—y) —g(x))did;K (y)dy + g(x—)did;iK (y)dy.
Jly|<b Jy|>b

This limit exists because

lg(x—y) — g(x)||d:9;K(y)| < cly|*[y]™"

(g is C*) and because g is compactly supported. Then, since b is arbitrary, we can
let b — 4-o to obtain

didj(g*K)(x) = lim (g(x—y) —g(x))did;K(y)dy

b—eo J|y|<b

+ lim g(x—y)d;d;iK (y)dy
b=eo Jly|zb

= lim ((x—y) —&(x))did;K(y)dy. (39.8)
b—eo Jlyl<b

A similar result holds for i = j. Indeed,
2 1 —n -1 £
JiKe(x) = € v(e x)+Kj(x),

where y(x) = naw, ' (|x[>+1)"/>~! and Kf = @, ' (Jx]? fnxi)(|x|2 +€2)7/2 1 (see
(39.6)). The integral I; of Kf over an annulus a < |y| < b vanishes. Why is that so?
First of all, /; is independent of j by symmetry in the coordinates, that is, /; = I; for
i # j.Sonl;is the integral of 37 Kf. But 3, KJ8 =0. Hence /; = 0 also. We can
therefore apply the same procedure. Since

gx(e"y(e"x) —g, €0

(because ¢ "y(e~1x) is an approximation to the identity), it follows that
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Rerk)0) =S fim [ (es-y)—e)FKOM. (399)

Since the convergence in (39.8) and (39.9) is uniform, at this point we have shown
that g * K € C2. But we need to prove more.

Lemma 39.23 (Calderon-Zigmund). Let N be a C' function on R"\ {0} that is
homogeneous of degree —n and satisfies

/ N(y)dy =0
a<ly|<b

Jorall 0 < a < b < oo Then if g is a C* function with compact support, 0 < o < 1,
then

h(x) = lim ' (g(x—z)—g(x))N(z)dz

b—eo J|z|<b
belongs to C*.

Proof. Let us write h = hy + hy, where

meo=[ | (82 ()N

ha(x) = lim (g(x—2) —g(x))N(z)dz.

b= J3)y|<[z]<b

We wish to estimate i(x+y) — h(x). Since o > 0, we have

e <

|2]%|z] "dz = ¢'|y|*
|z|<3]y]

and hence
[y (x4 y) = b (x)] < Jha (x4 )]+ [ (x)| < 2 [y|*.

On the other hand,

M@+W—M@%=ggHW%M@@@—@—A@W&+w&

— lim (8(x—2) —g(x))N(z)dz

b=veo J3ly|<2|<b

= lim (8(x—z) —g(x))(N(z+y) —N(z))dz

b—ee J3y|<|z|<b

+ lim (glx—2z)—g(x))N(z+y)dz
b—eo J{3]y|<|z+y|<b}\{3ly|<|z|<b}

=L+
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It is clear that

{BIyl < lz+yD\{BI < [zl} < {20y] < [2l3\ {3yl < [z]}
= {2yl <zl <3[y[}-

Therefore,
bl l8(x—2) ~ 8N G +3)ldz
J2ly[<|z|<3]y|
SC/ IZ\"‘IHyI’”szC’/ |2[*"dz = ¢"[y|*.
2ly|<|z[<3]y] 2y|<|z[<3]y]

Now we observe that for |z| > 3]y,
IN(z+y) =N(2)| < |y| sup [VN(z+1y)|
0<i<l

—n—1 e
<cly| sup |z+ey[ " <Pyl
0<r<1

because VN is homogeneous of degree —n — 1, since N is homogeneous of degree
—n. Hence

mi<e [ bl =l [ p%Rdp =
lz[>3]y] 3y

Note that the condition o < 1 is needed here. Collecting the estimates for /1 and 1,

we can see that the lemma is proved. (I
In order to end the proof of Theorem 39.22 it remains to note that d;d;K(x)
satisfies all the conditions of Lemma 39.23. (|

Exercise 39.12. Show that a function K is a fundamental solution for A2 = A(A)
on R" if and only if K] satisfies the equation

AK| =K,

where K is the fundamental solution for the Laplacian.

Exercise 39.13. Show that the following functions are the fundamental solutions
for A% on R":

(1) n=4:
~log x|
4oy
2) n=2:
x> log|x]

8t
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3) n#2,4:
o

24—-n)2—n)o,

Exercise 39.14. Show that (47|x|)~'e "l is the fundamental solution for —A + ¢?
on R? for an arbitrary constant ¢ € C.



Chapter 40
The Dirichlet and Neumann Problems

The Dirichlet problem o
Given functions fin 2 and g on S = 9 €2, find a function u in Q = QUJQ satisfying

Au=f, inQ
{ / D)
u=g, onS.
The Neumann problem o
Given functions f in £2 and g on S, find a function « in Q satisfying
Au=f, inQ
™)
dyu=yg, onS.

We assume that Q is bounded with C! boundary. But we shall not, however, assume
that © is connected. The uniqueness theorem (see Corollary 39.14) shows that the
solution of (D) will be unique (if it exists), at least if we require u € C(Q). For (N)
uniqueness does not hold: we can add to u(x) any function that is constant on each
connected component of 2. Moreover, there is an obvious necessary condition for
solvability of (N). If £2’ is a connected component of €2, then

/QlAudx / dyudo(x / g(x)do(x /fdx

| f@dr= [ gx)dots)

that is,

It is also clear (by linearity) that (D) can be reduced to the following homoge-
neous problems:
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Av=f, inQ
D
{V:O, onS (Da)
Aw=0, inQ
{ (Dg)
w=g, onS

and u := v+ w solves (D). Similar remarks apply to (N), that is,

Av=f, inQ
dyv=0, onS
Aw=0, 1inQ
dyw=g, onS§

and u =v-+w.

Definition 40.1. The Green’s function for (D) in Q is the solution G(x,y) of the
boundary value problem

{AXG(xyy) =58(x—y), xyeQ (40.1)

G(x,y) =0, xeS,yeQ.

Analogously, the Green’s function for (N) in € is the solution G(x,y) of the bound-
ary value problem

A = - Q
«G(x,y) =8(x—y), xy€ 40.2)
dv,G(x,y) =0, xeS,ye Q.
This definition allows us to write
G(x7y) =K(x—y)+vy(x), (403)

where K is the fundamental solution of A in R” and for all y € £, the function vy (x)
satisfies

{Avy(x) —0, inQ 04

vy(x) =—K(x—y), onS

in the case of (40.1) and

Avy(x) =0, inQ
Ay, vy(x) = =0y, K(x—y), onS



40 The Dirichlet and Neumann Problems 439
in the case of (40.2). Since (40.4) guarantees that vy is real, it follows that so is G
corresponding to (40.1).

Lemma 40.2. The Green’s function (40.1) exists and is unique.

Proof. The uniqueness of G follows again from Corollary 39.14, since K(x —y) in
(40.4) is continuous for all x € § and y € Q (x # y). The existence will be proved
later. U

Lemma 40.3. For both (40.1) and (40.2) it is true that G(x,y) = G(y,x) for all
X,y € Q.

Proof. Let G(x,y) and G(x,z) be the Green’s functions for  corresponding to
sources located at fixed y and z, y # z, respectively. Let us consider the domain

Qe = (Q\{x: =yl <eP)\{x:[x—zf <e},

see Figure 40.1.

Fig. 40.1 The domain €,.

If x € Qg, then x # z and x # y, and therefore, A,G(x,z) = 0 and A,G(x,y) = 0.
These facts imply

0= J, (CE2)AG(2) = Glr. ) AG(xy) dx
- /S(G(xv}’)ava(va) — G(x,2)0y,G(x,y)) do(x)
_ /|ry\:€ (G(x,y)0y,G(x,2) — G(x,2) 0y, G(x,y)) do (x)
_ /|)<le:€ (G(x,)0y, G(x,2) — G(x,2)dy,G(x,y)) do (x).
Hence by (40.1) or (40.2), for arbitrary & > 0 (sufficiently small),
/lx,ylzs (G(x,5)0v,G(x,2) — G(x,2)dy,G(x,y)) do(x)

= (G(x,2)0y,G(x,y) — G(x,y)0y,G(x,2)) do (x).

lx—z|=¢
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Let n > 3. Due to (40.3) for € — 0 we have
(4‘ (G(x,¥)2,G(x,2) — G(x,2) 9, G(x, ) do (x)
x—y|=¢
1 ) ((x—wc—Z) )
~— e ————= 49, v.(x) |do(x
GM/;WQ e T e ) do)
—%“‘ G(x,2)y, G(x,y)dG (x)
x—y|=¢€

~ ing’ig’l*ll/ (86,89—1—)7—2)
6

do -1, =~ -1,
oy, € €0 +y—z|" ! !

where we have defined
L= / G(x,2)0y,G(x,y)do ().
pe—yl=¢
The same is true for the integral over |x — z| = &, that s,
[, (6(996(5) = Gl5,9)20 Gl ) do () = b, e =0,
JI|x—z|=€

where
L :/‘ ‘ G(x,¥)0y,G(x,2)do (x).
X—Z|=&

But using the previous techniques we can obtain that

1
I ~ —81_"8"_1/ G(e0+y,7)d0 — G(y,z), €—0
Wy |6|=1
and |
L~ —gl gt / G(€0 +2z,y)d6 — G(z,y), € —0.
Wy |6|=1

This means that G(y,z) = G(z,y) for all z # y. This proof holds for n = 2 (and even
for n = 1) with some simple changes. (I

Lemma 40.4. In three or more dimensions
K(x—y) <G(x,y) <0, xyeQ, x#y
where G(x,y) is the Green’s function for (D).

Proof. For each fixed y, the function vy (x) := G(x,y) — K(x —y) is harmonic in Q;
see (40.4). Moreover, on S = d €2, v,(x) takes on the positive value
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e —y[>"

—K(x—y) E_a)n(2fn)'

By the minimum principle, it follows that vy (x) is strictly positive in €. This proves
the first inequality. U
Exercise 40.1. Prove the second inequality in Lemma 40.4.

Exercise 40.2. Show that for n = 2, Lemma 40.4 has the following form:

1o x—y
—1
2n 08 h

<G(x,y) <0, x,yeQ,

where i =max, g [x—yl|.

Exercise 40.3. Obtain the analogue of Lemma 40.4 for n = 1. Hint: show that the
Green’s function for the operator < on Q2 =(0,1)is

L) — x(y—1), x<y
G(%.y) {y(xl), x>,

Remark 40.5. G(x,y) may be extended naturally (because of the symmetry) to Q x
Q by setting G(x,y) =0fory € S.

Now we can solve both problems (D4 ) and (Dg). Indeed, let us set f = 01in (Dy)
outside 2 and define

/ny y)dy = (f*K)(x +/ (x,y) = K(x—y)) f(y)dy.

Then the Laplacian of the first term is f (see Theorem 39.19), and the second term
is harmonic in x (since vy (x) is harmonic). Also v(x) = 0 on S, because the same is
true for G. Thus, this v(x) solves (Da).

Consider now (Dp). We assume that g is continuous on S and we wish to find
w that is continuous on Q. Applying Green’s identity (1) (together with the same
limiting process as in the proof of Lemma 40.3), we obtain

w(x) = [ (w()4,6(x.3) = Gl y)Aw(y)) dy
— [9()9,Glxy)do ) = [ )9, Glx.1)do ().

Let us denote the last integral by (P). Since dy, G(x,y) is harmonic in x and continu-
ousiny for x € Q and y € S, then w(x) is harmonic in . In order to prove that this
w(x) solves (Dp), it remains to prove that w(x) is continuous in £ and w(x) on S is
g(x). We will prove this general fact later.
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Definition 40.6. The function dy, G(x,y) on Q x § is called the Poisson kernel for
Q, and (P) is called the Poisson integral.

Now we are in a position to solve the Dirichlet problem in a half-space. Let
Q=R ={(¥,xyp1) ER"™ 1 ¥ €R" x,51 >0},
where n > 1 now, and let x, .1 =¢. Then
App1=A+03% n=12,....
Denote by K(x,¢) a fundamental solution for A, 1 in R**!, that is,

(xP+2) 2"
K(x,t)={ (-mopi

1 2 2

Hlog(m +t ), n=1.

n>1

Let us prove then that the Green’s function for R is
G(x,y;t,8) =K(x—y,t —s)—K(x—y,—t—s). (40.5)
It is clear (see (40.5)) that G(x,y;,0) = G(x,y;0,s) = 0 and
A 1G=0(x—yt—5)—8(x—y,—t—s)=8(x—y)0(t—s),

because for¢,s > 0, — —s < 0, and therefore, §(—¢ —s) = 0. Thus G is the Dirichlet
Green’s function for R’fl. From this we immediately have the solution of (Dp) in
Rf’ﬁl as

ure) = [ [ Gleits)f)dsay.

To solve (Dg) we compute the Poisson kernel for this case. Since the outward normal
derivative on 8RT1 is —%, the Poisson kernel becomes

0 0
- aG(X,y,l‘,S”s:() = _g (K(x_yvt_s) _K(x_yv —t—S)) ‘S:()
_ 2 _— (40.6)
Ot (|x =y +12) 7

Exercise 40.4. Prove (40.6).

Note that (40.6) holds for all n > 1. According to the formula for (P), the candi-
date for a solution to (Dg) is

u(,t) = —2 / ¥ 18(y) dy. (40.7)

W41 |x — y|2+t2)%
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In other words, if we set

2t
})t(x) = errl )

= (40.8)
Opr (32 +12) 2

which is what is usually called the Poisson kernel for Rf‘ﬁl , the proposed solution
(40.7) is simply equal to
u(x,t) = (g*xP)(x). (40.9)

Exercise 40.5. Prove that P,(x) =t "P;(t~'x) and

F(y)dy=1.
Rll

Theorem 40.7. Suppose g € LP(R"), 1 < p < oo. Then u(x,t) from (40.9) is well
defined on R'}r“ and is harmonic there. If g is bounded and uniformly continuous,

then u(x,t) is continuous on R"™" and u(x,0) = g(x), and

llu(-1) —g()]l. — 0
ast — 0+.

Proof. Tt is clear that for all ¢ > 0, P,(x) € L'(R") N L= (R"); see (40.8). Hence
P.(x) € L4(R") for all g € [1,eo] with respect to x and fixed ¢ > 0. Therefore, the
integral in (40.9) is absolutely convergent, and the same is true if B is replaced by
its derivative AP, or (?tzP, (due to Young’s inequality for convolution).
Since G(x,y;t,s) is harmonic for (x,r) # (y,s), it follows that P,(x) is also har-
monic and
A+ 07u =g+ (A +09?)P, =0.

It remains to prove that if g is bounded and continuous, then
llu(-1) —g()]l. — 0

as t — 0+, and therefore, u(x,0) = g(x) and u is continuous on R*".
We have (see Exercise 40.5)

lg* P —gll.. = sup g(x*y)Pz(y)dy*/ g(X)Pz(y)dy'
xeRn [JR? R~
< sup | 1glx—) —g@)IA(y)ldy

xeR?

sup | [g(x—1tz) —g(x)||P1(z)|dz
xeRn JR?
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—sup ([ letx—r0)—elIP 0

xeR?

+ |g<x—zz>—g<x>||P1<z>dz)

lZ|>R

< swp fgle—r)—gl+2lel. [ IAEId<e
xER™ |z|<R [z]>R

for ¢ sufficiently small.

The first term in the sum on the last line can be made less than £/2, since g is
uniformly continuous on R”. The second term can be made less than £ /2 for R large
enough, since P, € L'(R"). Thus, the theorem is proved. O

Remark 40.8. The solution of this problem is not unique: if u(x,t) is a solution,
then so is u(x,t) 4 ct for all ¢ € C. However, we have the following theorem.

Theorem 40.9. [f g € C(R") and limy_.. g(x) = 0, then u(x,t) := (g*F)(x) — 0
as (x,t) — e in R'ﬁ], and it is the unique solution with this property.

Proof. Assume for the moment that g has compact support, say g = 0 for |x| > R.
Then g € L' (R") and

lg* Bl < llglly 1Pl < ™,

so u(x,t) — 0 as t — e uniformly in x. On the other hand, if 0 <7 < T, then

2t o
u(x,t)| < [|gll; sup [P(x—y)| = lgll; sup ot << !
yl<Rr <R @pp1 (Jx—y2 +12) 2

for |x| > 2R. Hence u(x,7) — 0 as x — oo uniformly for 7 € [0, T]. This proves that
u(x,t) vanishes at infinity if g(x) has compact support. For general g, choose a se-
quence {g;} of compactly supported functions that converges uniformly (in L (R"))
to g and let

e (x,1) = (8 * Fr) (x).

Then

[ o= 00)R G-

n

H”k_u”L“'(]R”“) = Sup
X
< sup (g #lseuoysup | 12059l )
t X Rll
= I8k — 8l = () SUP / [P()Idy = llgk — 8l =) — 0
>0 JR?

as k — oo,
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Hence u(x,) vanishes at infinity. Now suppose v is another solution and let
w :=v —u. Then w vanishes at infinity and also at # = O (see Theorem 40.7). Thus
|w| < € on the boundary of the cylindrical region {(x,7) : |x| <R,0 <t < R} for R
sufficiently large, see Figure 40.2.

N

Fig. 40.2 Geometric illustration of the Poisson integral.
But since w is harmonic, it follows by the maximum principle that |w| < € in this
region. Letting € — 0 and R — oo, we conclude that w = 0. O

Let us consider now the Dirichlet problem in a ball. We use here the following
notation:
B=B;(0)={xeR":|x| <1}, dB=S.

Exercise 40.6. Prove that

X
|x—y[ = | = —ylx|
x|

forx,y € R", x £ 0,

y =1

Now, assuming first that n > 2, we define

Glry) 1= Kx=3) =K 15 -3l

&

1 B X 2—n
T 2o (Ixy2 ”'Mylxl > x#0.  (40.10)
n

Exercise 40.6 shows that G(x,y) from (40.10) satisfies G(x,y) = 0,x € B,y € S.
It is also clear that G(x,y) = G(y,x). This is true because
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2

2
X
= ‘ | e+ PR = 1= 2(x,) + [y |2l

X
m—)’\x‘
2 y 2

() + 2 = 'M x|

_ ‘y
|y

Next, for x,y € B we have that

x| 1 -1
S S Y
and y # ﬁ.Hence,
_ X
Glxy)—K(x—y)=-K m—ylﬂ

is harmonic in y. But the symmetry of G and K shows also that G(x,y) — K(x —y)
is harmonic in x. Thus, G(x,y) is the Green’s function for B. This also makes clear
how to define G at x =0 (and at y = 0):

G(0,y) = ———(]y* "1
(0,y) (2_n)wn(|y\ )
since
‘x—yIXI —1
||
asx — 0.

For n = 2 the analogous formulae are

X
= = ylx|

2r

1
— — (loglx—y|—1
G(x,y) <Og|x y| —log o

1
x| )

Now we can compute the Poisson kernel P(x,y) := dy,G(x,y), x € B,y € S. Since
&vy =y-V, on &, it follows that

o, \ =y C oyl =y

P(x,y) = — n>2. (40.11)

X n
m—ym‘

Exercise 40.7. Prove (40.11).

Theorem 40.10. If f € L'(S), then

u(x) = [ Py ()4 (s), xeB,
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is harmonic. If f € C(S), then u extends continuously to B and u = f on S.

Proof. For each x € B (see (40.11)), P(x,y) is a bounded function of y € S, so u(x)
is well defined for f € L'(S). It is also harmonic in B, because P(x,y) is harmonic
for x # y. Next, we claim that

/‘P(x7y)d0(y) =1. (40.12)
S

Since P is harmonic in x, the mean value theorem implies (y € S)

1= w,P(0,y) = /SP(ry’,y)dG(y’)

forall0 < r < 1.But
P(ry',y) = P(y,ry') = P(ry,y)

if y,y’ € S. The last formula follows from
I =3 = =2r(yy) + 1= ry =y,

We therefore conclude that
1—/Pryyd6 /nydc

with x = ry. This proves (40.12). We claim also that for all yp € S and for a neigh-
borhood B (yo) C S,

lim P(ryo,y)do(y) = 0. (40.13)
r—l-. S\Bs (y0)

Indeed, for yp,y € Sand 0 < r < 1,

[ryo —y| > rlyo —

and therefore
n

[ryo =y[™* < (rlyo—y) ™" < (ro)”
if y € S\Bs(y0), i.e., |y —yo| > 0. Hence |ryo —y| ™" is bounded uniformly for r —
1— and y € S\Bs (o). In addition, 1 — |ryo|> = 1 —r? — 0 as r — 1—. This proves
(40.13).

Now suppose f € C(S). Hence f is uniformly continuous, since S is compact.
Hence for every € > 0 there exists d > 0 such that

lf(x)=f(y)|<e, xyes|x—y|<é.
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For allx € Sand 0 < r < 1, by (40.12),

u(rx) = f(x)] =

JG0) = P00

< [, V0—r@IPe o)

iy o VOV IR d0)

<e [IPrenlaot) #2105l [ P(eldo)

<etalfle [ POxdo0) —0
s\x

as € — 0 and r — 1— by (40.13). Hence u(rx) — f uniformly as r — 1—. O

Corollary 40.11. (Without proof) If u is as in Theorem 40.10 and f € LP(S), 1 <
p < oo, then

Ju(r) = fC)ll, —0
asr—1—.

Exercise 40.8. Show that the Poisson kernel for the ball Bg(xo) is

R? — |x —xo|?

>2.
R[x —y[" "

P(xvy) =

Exercise 40.9. (Harnack’s inequality) Suppose u € C(B) is harmonic on B and
u > 0. Show that for [x| =r < 1,

uiﬁu(o) <u(x) < Ui#u(oy

Theorem 40.12. (The reflection principle) Let Q C R""', n > 1, be open and
satisfy the property that (x,—t) € Q if (x,t) € Q. Let Q4 = {(x,1) € Q:t>0}
and Qo = {(x,t) € Q :+ =0}. If u(x,t) is continuous on QU Qy, harmonic in
Q., and u(x,0) = 0, then we can extend u to be harmonic on Q by setting
u(x,—t) ;== —u(x,1).

Proof. See [11, (2.68), p. 110]. ]

Definition 40.13. If « is harmonic on 2\ {xo}, 2 C R" open, then  is said to have
a removable singularity x¢ if u can be defined at xg so as to be harmonic in 2.

Theorem 40.14. Suppose u is harmonic on Q\ {xo} and u(x) = o (|x—xo|*™") for
n > 2 and u(x) = o(log|x —xo|) for n =2 as x — xo. Then u has a removable sin-
gularity at x.
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Proof. Without loss of generality we assume that = B := B1(0) and xo = 0. Since
u is continuous on 9B, by Theorem 40.10 there exists v € C(B) satisfying

Av=0, inB
vV=u, onS.

We claim that u = v in B\ {0}, so that we can remove the singularity at {0} by
setting 1(0) := v(0). Indeed, given € > 0 and 0 < § < 1, consider the function

{u(x) —v(x)—e(xF=1), n>2
ge(x) =

—v(x)+ €elog|x], n=2
in B\Bg(0). These functions are real (as we can assume without loss of generality),
harmonic, and continuous for 0 < |x| < 1. Moreover, g¢(x) =0on dB and g.(x) <0
on dBg(0) for all  sufficiently small. By the maximum principle, g.(x) is negative
in B\ {0}. Letting € — 0, we see that u — v < 0 in B\ {0}. By the same arguments
we may conclude that also v—u < 0 in B\ {0}. Hence u = v in B\ {0}, and we can
extend u to the whole ball by setting #(0) = v(0). This proves the theorem. O



Chapter 41
Layer Potentials

In this chapter we assume that {2 C R”, n > 2 is bounded and open, ind that S =0Q
is a surface of class C2. We assume also that both  and Q' := R\ Q are connected.

Definition 41.1. Let v(x) be a normal vector to S at x. Then

dy_u(x) := lim v(x)-Vu(x+1v(x)),

t—0—

0, 1(x) = lim V() Vula-+1v(x),

are called the interior and exterior normal derivatives, respectively, of u.

The interior Dirichlet problem (ID)

Given f € C(S), find u € C?(2)NC(Q) such that Au=01in  and u = f on S.
The exterior Dirichlet problem (ED)

Given f € C(S), find u € C>(Q")NC(Q’) such that Au =0 in Q' and at infinity and
u=fonsS.

Definition 41.2. A function u is said to be harmonic at infinity if
|x|2—nu (xz) _ 0(|x|27n)7 n 7é 2
[ o(loglx[), n=2

Remark 41.3. This definition implies the following behaviour of u at infinity

u(v) = o(1), n#2
(y){oaogwn, n=2

as x — 0.

asy — oo.
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The interior Neumann problem (IN)

Given f € C(S), find u € C*(2)NC(Q) such that Au=0in Q and J,_u = f exists
onS.

The exterior Neumann problem (EN)

Given f € C(S), find u € C*(2')NC(€Q’) such that Au = 0 in Q' and at infinity and
dv,u = f exists on S.

Theorem 41.4. (Uniqueness)

(1) The solutions of (ID) and (ED) are unique.
(2) The solutions of (IN) and (EN) are unique up to a constant on £ and ',
respectively. When n > 2 this constant is zero on the unbounded component of

Q'
Proof. 1f u solves (ID) with f = 0, then u = 0, because this is just the uniqueness
theorem for harmonic functions (see Corollary 39.14). If u solves (ED) with f =0,
we may assume that {0} ¢ Q. Then u = |x|>"u <ﬁ) solves (ID) with f = 0 for
the bounded domain Q = {x : ﬁ IS .Q’}. Hence u = 0, so that u = 0, and part (1)

is proved.

Exercise 41.1. Prove that if u is harmonic, then i = |x|*>~"u (ﬁ), x # 0, is also

harmonic.

Concerning part (2), by Green’s identity we have

/ |Vu|2dx:—/ uAudx—&—/u&vfudG(x).
Q Jo Js

Thus Vu = 0 in £, so that u is constant in Q.
For (EN) let r > 0 be large enough that Q C B,(0). Again by Green’s identity we
have

/ |VuPdx= —/ 7uAudx+/ u&rudc(x)—/u(?wudc(x)
F(0\Q r(0\Q 9B,(0) s

= udyudo(x),
9B,(0)

where dyu = %u. Since for n > 2 and for large |x| we have
u(x) =0 ("), dux)=0(x'"),

it follows that

Jrudo
/83,(0)u udo (x)

< Cr27nrlfn/ dO'(x) _ Cr372nrn71 — Cr27n =0
J9B,(0)
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as r — oo, Hence
|Vu|?dx = 0.
Q/

This implies that u is constant on £’ and u = 0 on the unbounded component of £,
because for large |x|,

u(x)=0 (|x|2_") , n>2.
If n = 2 then dyu(x) = O (r~?) for a function u(x) that is harmonic at infinity.

Exercise 41.2. Prove that if u is harmonic at infinity, then u is bounded and
dru(x) =0 (r?) asr —ooif n=2and dyu(x) = O(|x|'"™"), r — eo,if n > 2.

By Exercise 41.2 we obtain

drudo
/BB,(O)M udo(x)

Hence Vu = 0 in ' and u is constant in (each component of) Q’. |

<crlr=cr' =0, r—oo

Remark 41.5. If Q and ' are both simply connected, then the solution of (EN) for
n > 2 is unique. This is a consequence of Theorem 41.4 for simply connected Q’.

We now turn to the problem of finding the solutions (existence problems). Let us
try to solve (ID) by setting

i(x) == [ F5) K(x=y)do(y) @1

where K is the (known) fundamental solution for A.

Remark 41.6. Note that (41.1) involves only the known fundamental solution and
not the Green’s function (which is difficult to find in general) as in the Poisson
integral

w(x) = [ 1099, Glx.y)do(y) ®)

We know that #(x) is harmonic in €2, because K(x —y) is harmonic for x € Q,
y € S. It remains to verify the boundary conditions. Clearly u will not have the
correct boundary values, but in a sense it is not far from correct. We shall prove it
(very soon) that on S,
-~ f
==+4T
=547,

where 7 is a compact operator on L?(S). Thus, what we really want is to take

ux) = [ 00)aK(x—3)do(y). x¢5. @12)
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where ¢ is the solution of

1

Similarly, we shall try to solve (IN) (and (EN)) in the form

/(p K(x—y)do(y), x¢S. (41.3)

Definition 41.7. The functions u(x) from (41.2) and (41.3) are called the double
and single layer potentials with moment (density) ¢, respectively.

Definition 41.8. Let I(x,y) be continuous on S x S, x # y. We call I a continuous
kernel of order ot, 0 < ax <n—1,n>2,if

H(x,y)| <clx—y[7% O0<a<n-—I,

and
|I(x,y)\§c1+c2|10g|x—y||, a=0,

where ¢ > 0 and ¢, > 0.

Remark 41.9. Note that a continuous kernel of order 0O is also a continuous kernel
of order ¢, 0 < x <n—1.

We denote by I the integral operator

0= [1e)f()do(), xes.

with kernel 1.

Lemma 41.10. [f1 is a continuous kernel of order o, 0 < o« < n— 1, then

(1) IlS bounded on LP(S), 1 < p < co.
(2) Tis compact on L*(S).

Proof. Ttis enough to consider 0 < o < n— 1. Let us assume that f € L!(S). Then
77,1 = [ [ 915010 ()0 )
Li(s) — JsJs
< [170)ldo0) [ Jr—y] “do(y
d
<cllfllzrs /0 e = | fll )

where d = diam$§ = sup, ;g [x —y|.
If f € L(S), then



41 Layer Potentials 455

7], g < eMsllimgs [ 2o = Ul

For 1 < p < oo part (1) follows now by interpolation.
For part (2), let € > 0 and set

I(Xy): I('x7y)7 |)C—y|>£7
e 0, |x—y| <e.

Since I is bounded on § xS, it follows that IAS is a Hilbert—Schmidt operator in
L2(S), so that I is compact for each & > 0.

Exercise 41.3. Prove that a Hilbert—Schmidt operator, i.e., an integral operator
whose kernel /(x,y) satisfies

[ [ 116e) Paxdy < .
SJS

is compact in L*(S).

On the other hand, due to estimates for convolution,

o < ( [/ If(y)llx—y"‘dc(y)>2d0(x)>

i
<clfllag [ 200, e 0.

1/2

|7 —Fer

Thus, 7 as the limit of I, is also compact in L2(S). O
Lemma 41.11.

(1) Iflis a continuous kernel of order o, 0 < ox <n— 1, then IAtransforms bounded
Jfunctions into continuous functions.
(2) If1is as in part (1), then u-+1Iu € C(S) for u € L*(S) implies u € C(S).

Proof. Let |x—y| < &. Then
|1Af(X) —IAf(Y)‘ < /_;ll(x,d —I(32)|lf(2)|do(2)

: /Ix—z|<25 ([1(x,2)| + 1(»2)) [ f()|do(2)

" /S\{\x—z\<25} [1(x,2) = 1(32)[|f(2)|do(2)

§C||f||oo/ (x—z] % +|y—z]"*)do(z)
[x—z]<26

+/S\{\x7‘<25} l(x,2) —I(y,2)||f(2)|do(z) =: I + I>.
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Since |z—y| < |x —z| + |x — y|, we have
30
I < c\|f||w/ PG 0, 8 0.
Jo

On the other hand, for |x —y| < 6 and |x —z| > 26 we have that
y—z| >|x—z]—|x—y| >26 -6 =06.
So the continuity of / outside of the diagonal implies that
I(x,2) =1(y,2) =0, x—y,
uniformly in z € S\ {|x — z| < 28}. Hence, I; and I, will be small if y is sufficiently

close to x. This proves the first claim.
For the second part, let € > 0 and let ¢ € C(S x ) be such that 0 < ¢ < 1 and

17 |x_y|<8/2a
x,y) =
Pl {0, =yl =e.

—

Write Tu = @\Iu +(1—@)u=: Tou+ L. By the Cauchy—Bunyakovsky—Schwarz
inequality we have

R R , 1/2
i)~ )| <l [ 1020~ G20 ) =0,y

since /] is continuous (see the definition of ¢). Now if we set
g:= u—+—IAu—IA1u = u—i—IAgu,
then g is continuous for u € L?(S) by the conditions of this lemma. Since the operator

norm of Iy can be made less that 1 on L2(S) and L™(S) (we can do this due to the
choice of € > 0 sufficiently small), then

-\ -1
u=(1+5) &
where [ is the identity operator. Since g is continuous and the operator norm is less

than 1, we have
> ~\J
u= 2 (—[0) 8.
j=0

This series converges uniformly, and therefore u is continuous. (|

Let us consider now the double layer potential (41.2) with moment ¢,
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ux) = [ 9)ayK(x—y)do(y), xRS,

First of all,
(x=yv()

8VyK(x_y) =- alx—y"

(41.4)

Exercise 41.4. Prove that (41.4) holds for all n > 1.

It is clear also that (41.4) defines a harmonic function in x € R"\S, y € S. More-
over, itis O (|x|' ™) as x — o (y € S), so that u is also harmonic at infinity.

Exercise 41.5. Prove that (41.4) defines a harmonic function at infinity.

Lemma 41.12. There exists ¢ > 0 such that

|(x—y7v(y))\§c|x—y|27 x7y€S'

Proof. 1t is quite trivial to obtain

[x=y v < x=ylv)] = x—yl.

But the latter inequality allows us to assume that |x —y| < 1. Given y € S, by
a translation and rotation of coordinates we may assume that y = 0 and v(y) =
(0,0,...,0,1). Hence (x—y,v(y)) transforms to x,, and near y, S is the graph of
the equation x, = y(x1,...,X,_1), where y € C2(R"1), y(0) =0, and Vy(0) = 0.
Then

(=3 VO] = Pl < el o0 ) < claf? = el —y?

by Taylor’s expansion. (]
We denote dy, K (x—y) by I(x,y).
Lemma 41.13. [ is a continuous kernel of order n —2, n > 2.

Proof. If x,y € S, then I(x,y) is continuous for x # y; see (41.4). Hence

clx—y|?

I(x,y)| < /2 = |x—y[>™"
[1(x,y)| < PR x =yl
by Lemma 41.12. (]
Lemma 41.14.
1, xeQ,
/I(x,y)do(y) =<0, xeg, (41.5)
s



458 Part IV:  Partial Differential Equations

Proof. If x € ', then K(x—y) is harmonic in x ¢ S, y € S, and it is also harmonic
iny € Q, x € Q'. Hence (see Exercise 39.2)

/ShavyK(x —y)do(y) =0,

or
/I(x,y)dc(y) =0, xeQ
s

If x € Q, let § > 0 be such that Bg(x) C Q. Denote Q5 = Q\Bs(x) and Sg =
S\ (SN Bg(x)), see Figure 41.1. Then K (x — y) is harmonic in y in g, and therefore
by Green’s identity,

0= (1-AyK(x—y)—K(x—y)Al)dy
Q\Bs(x)

= K=ot~ [ o K(x—)do()

1-n

= [Henaom) =" [ dot) = [ aot) 1.

(7

or

o) = 1.
N

Now suppose x € S. In this case

[1ty)do(s) = lim [ 1x.v)do(). (41.6)
s 5—0.Js;

+
9B}

Fig. 41.1 Geometric illustration of the boundary near x.

If y € Qg, then for x € S we have that x # y. This implies that
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0=/ AK(x—y)dy= /8v x—y)do(y / dyv,K(x—y)do(y).
Qs
Therefore, see (41.4),

li o K(x—v)do(y) = li ov,K(x—y)do
51_% S, v K (x—y)do(y) 513}) . v K(x—y)do(y)

1—n
= lim / do
5—0 @y 9By (y)
l—n 1

—lim & — (81t 4 0(8")) = 5.

This means that the limit in (41.6) exists and (41.5) is satisfied. [l

Lemma 41.15. There exists ¢ > 0 such that
/ 0y, K(x—y)ldo(y) <c, xeR"
s

Proof. Tt follows from Lemma 41.13 that
C _
J100K(x=yldo(s) < = [lx=ydo(y) <er, xes.

Next, for x ¢ S define dist(x,S) = infycg [x —y|.
There are two possibilities now: if dist(x,S) > &/2, then |x —y| > §/2 for all
y € S, and therefore

[10uKx=pldo(s) < c8'" [ do) =<, (41.7)
S S

where ¢’ does not depend on & > 0 (because § is fixed).
Suppose now that dist(x,S) < 8/2. If we choose & > 0 sufficiently small, then
there is a unique xp € S such that

x=xo+tv(xp), t€(=6/2,6/2).

Set Bs ={y € S: |xo —y| < 8}. We estimate the integrals of |/(x,y)| over S\Bs and
Bg separately. If y € S\Bg, then

x—y[ = xo—yl—lx—x| >8-8/2=6/2

and
(x,y)] <c8',

so that the integral over S\ Bg satisfies (41.7), where again ¢’ does not depend on &.
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To estimate the integral over Bg, we note that (see (41.4))

_ =y vODI _ [ =x0,v)) + (0 =3, V()|
=S - anbe

x — xo| + c|xo —y[?
@y |x —y|"

(41.8)

The latter inequality follows from Lemma 41.12, since xg,y € S. Moreover, we have
(due to Lemma 41.12)

o= yI? = pe—x0f* + [xo = yI* + 2(x — x0,%0 — y)

X—X0
= |x—xo|* 4 |x0 — y|* +2|x — x0| (x()y, >
|x — xo|

> =0/ + [xo = y|* = 2Jx —x0]|(x0 — y, v (x0))|
> [x—xo|* + [x0 — y1* — 2¢|x — x| |xo — y|?
> | —x0[* + xo — yI* = [x = xol[xo — 31,
if we choose 0 > 0 such that |xp —y| < 2%, where the constant ¢ > 0 is from Lemma

41.12.
Since [x —xo||xo —y| < 5 (Jx—x0|* + |x0 — y|*), we obtain finally

1
=y > > (e —xo|* +xo —yI%)
and (see (41.4) and (41.8))

e —x0] + [0 — y/?
)n/2

(x,y)| <c
(]x —xo|* + |xo — ¥/
|x — xo c

<c + —.
(Jx—x02+ [xo —y[2)"% o=y

This implies
[ _ S -2
/ [1(x,y)|do(y) Sc’/ ‘x—xo|/2rn_2dr+cl/ %dr
Bs 0 (Jxr—xo|>+r2)" o r
oo arn72

/ /
<cd+c /0 7(a2+r2)”/2dr’

where a := |x — xp|. For the latter integral we have (t = r/a)

oo arn72 "c0 tn72
————>d :/ ———df <o
./o @122 T Jy (T2
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If we combine all estimates, then we may conclude that there is ¢y > 0 such that

/S|8V>,K(x—y)\d0'(y) <cg, x€eR"

and this constant does not depend on x. O

Theorem 41.16. Suppose ¢ € C(S) and u is defined by the double layer potential
(41.2) with moment ¢. Then for all x € S,

lim u(x+rv(x) (p(x —I—/I xy)o(y)do(y),
t—0— 2

lim u(x+1v(x)) +/I xy)o(y)do(y)
t—0+

uniformly on S with respect to x.

Proof. If x € S and r < 0, with 7| sufficiently small, then x; := x+1v(x) € Q and
u(x+1tv(x)) is well defined by

u(r+1v(0) = [ 9()1(x,y)do () = /S (90) ~ ()1 (,7)d6 () + 9(x)
— @(x —|—/(p I(x,y)do(y /Ixydc
+/<p 1(x,y)do(y) — 9(x)/2, 1 —0—.
If t > 0, the arguments are the same except that

JRESILER

Uniform convergence follows from the fact that S is compact and ¢ € C(S). ]

Corollary 41.17. Forx € S,

P(x) = u—(x) —u4(x),
where uy = lim, o+ u(x;).

We state without proof that the normal derivative of the double layer potential is
continuous across the boundary in the sense of the following theorem.

Theorem 41.18. Suppose ¢ € C(S) and u is defined by the double layer potential
(41.2) with moment @. Then for all x € S,

IEI& (v(x)-Vu(x+tv(x)) —v(x)-Vu(x—tv(x))) =0

uniformly on S with respect to x.
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Let us now consider the single layer potential

0= [ @O)K(x=y)do()

with moment ¢ € C(S).
Lemma 41.19. The single layer potential u is continuous on R".

Proof. Since u is harmonic in x ¢ S, we have only to show continuity for x € S.
Givenxg € Sand § >0,let Bs = {y € S: |xo—y| < 8}. Then

|u(x) —u(xo)| < /Ba (IK(x=y)|+ K (xo—)]) |@(v)|do(y)
+/S\35 [K(x—y) = K(xo=y)lle(y)|do(y)

1
< c5(0r510g5f0rn =2)+ ||(pr/S\B |K(x—y) —K(xo—y)|do(y) — 0
s

asx — xg and 6 — 0. O

Exercise 41.6. Prove that

/(m@w|HmeDW@WM()<d¢L{; =2
Bs Og(s’ T

Definition 41.20. Let us set

(x =y v(x)

I'(x,y) =0y K(x—y) = oy

Theorem 41.21. Suppose ¢ € C(S) and u is defined on R" by the single layer po-
tential (41.3) with moment @. Then for x € S,

11131 dyu(x+1v(x)) o) —l—/I* x,y)e(y)do(y),
1—0—
hm 8vu(x+tv ) +/I* x,y)p(y)do(y).

Proof. We consider the double layer potential on R”\S with moment ¢,

%)= [[00)yK(x—y)do().

and define the function f on a tubular neighborhood V of S by
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Flr) = {v(x)+8vu(x), x € V\S, 41.9)

Ip(x) + I p(x), x€S,

where u is defined by (41.3).
Here the rubular neighborhood of S is defined as

V={x+rv(x):xeS,|t|<5}.

We claim that f is continuous on V. It is clearly (see (41.9)) continuous on V\ S and
S, so it suffices to show that if xo € S and x = x¢ +1v(xp), then f(x) — f(xo) — 0 as
t — 0+. We have

F@) = f(x0) = v(x) + dyu(x) — T (x0) — I* (x0)
_/Ixy y)do(y +/(p )oK (x—y)do(y)

- [ 1509000040 (5) — [ 1'o.3)9(0)do )
N N

= [ 1 () = 160.9) I (50.5)) 9 )0 ).

We write this expression as an integral over B = {y € S: |xo —y| < 8} plus an
integral over S\Bg. The integral over S\Bg tends uniformly to 0 as x — xo, because
[y —x| > & and |y —xo| > 0, so that the functions / and I* have no singularities in
this case.

On the other hand, the integral over Bs can be bounded by

||(l>||o<,/B‘S ((x,y) + 17 (x,y) [+ 1 (x0,y) + 1" (x0,y) ) do (¥).

Since
(x=yv(®)

I(X,y) = wn‘x_y|n

and v(x) = v(xg) forx = xp +1v(xp) € V, we have

(= V() _ (x=yviw)

(41.10)

Hence

(x =y, v(x0) —vy))| _ x=yllvixo) = v()|
a),,|x Y|n o a),,|x—y|"
<= y\lXo—ylgcl IxO—yll
O |x — )" |x0_)’|ni

(ey) + 1 ()| =

_ C/|X0 _y|2—n’
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because |xo — y| < |xo — x|+ |x — y| < 2]x — y|. Here we have also used the fact that
[v(x0) — v(y)| < c|xo —y|, since v is C' (Figure 41.2).

X0

Fig. 41.2 Geometric illustration of the boundary at the point xo.

This estimate allows us to obtain that the corresponding integral over Bg can be
dominated by

3
c/ lxo —y[*"do(y) = ¢’ / P 2dr = 8.
ly—x0|<6 J0

Thus f := v+ dyu extends continuously across S. Therefore, for x € S,

o~ ~

T () + Fp() = v () + v ux) = 5 0() +Tp(0) + 3y ulx).

It follows that

Oy u(x) = —@ + ().

By similar arguments we obtain

~ ~ 1 ~

1Q(x) +I*@(x) = vy (x) + dy, u(x) = —Eq)(x) +1¢(x)+ 9y, u(x)
and therefore @)

X ~
dv.ux) = L2+ Fo(x)

This completes the proof. O
Corollary 41.22.

@(x) = v, u(x) —y_u(x),

where u is defined by (41.3).
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Lemma 41.23. If f € C(S) and

+lFo=f -2+Fp=1.

/(pdcf:/fda, /fdG:O,
s s s
respectively.

Proof. 1t follows from (41.10) that

/f )do (x 2/(p )do (x +/(p )do (y /I*xydo()

2/(p )do(x +/(p )do(y /(p )do(y

where we have also used Lemma 41.14. O

Lemma 41.24. Letn=2.

(1) If @ € C(S), then the single layer potential u with moment ¢ is harmonic at
infinity if and only if

(SRS

then

oot =o.
S

and in that case u — 0 as |x| — oe.
(2) Let ¢ € C(S) with

/ o(x)do(x) =0
S

and u as in part (1). If u is constant on Q, then u = 0.

Proof. Since n =2, we must have
1
u(x) = 5 [ loglt—1lo()do(y)
TJs

— 5= [ Goglx | ~log ) 9(1)do () + 5 toga| [ ¢(1)do ().

But log |x — y| —log|x| — 0 as x — oo uniformly for y € S, and therefore, this term
is harmonic at infinity (we have a removable singularity). Hence u is harmonic at
infinity if and only if [;¢@(x)do(x) =0, and in this case u(x) vanishes at infinity.
This proves part (1).

In part (2), u is harmonic at infinity. If u is constant on Q, then it solves (ED) with
f = constant on S. But a solution of such a problem must be constant and vanish at
infinity. Therefore, this constant is zero. Thus u = 0. O

Remark 41.25. For n > 2 the single layer potential u is a harmonic function at in-
finity without any additional conditions for the moment ¢.
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For solvability of the corresponding integral equations in the space C(S) with
integral operators I and I* (see Theorems 41.16 and 41.21) we need the Fredholm
alternative (see in addition Theorems 34.8 and 34.9).

Theorem 41.26 (First Fredholm theorem). The null spaces of %I —Tand %I I
have the same finite dimension

A 1 -
dimN (21—1) = dimN (21—1*> < oo,

where I denotes the identity operator.

Proof. Since Tand I* are compact operators in C(S), the null spaces N (%I -1 ) and

N (%IfIA*) are closed subspaces of C(S). If p € N (%Iflj and y € N (%IfIA*),
then

2d¢ =9, 2y =y,
i.e., 21 and 2I* are identical on the corresponding null spaces. Since they are com-
pact there, this is possible only when the corresponding null spaces are of finite
dimension. The equality of these dimensions can be checked in the same manner as

in the proof of Theorem 34.11. In this proof, part (2) of Lemma 41.11 must be taken
into account. O

Theorem 41.27 (Second Fredholm theorem). The ranges of the operators %I -1
and 31— I* on C(S) can be described as

1 1 ~
R<21—I> ={feCS): (f,v)xs) :Oforanyl//eN<21—I*>}

and
1 ~ 1. 2
R (21—1*) ={8€C(S): (8 @)25)=0forany 9 €N (21—1>}.
Proof. Let f =% — I for some @ € C(S). Then for all y € N(%I—I/;) we have

(W) = (% ~To.¥)s

? i L _
= (5 V)i — (@Y = (0.5 Y =0.

Conversely, assume that f € C(S), f # 0 satisfies (f, y) 2(5) = O forall y € N(AI—
I*). Assume to the contrary that there is no ¢ € C(S) such that f = %(p —TI¢. Then
f can be chosen to be orthogonal to all %(p — IA(p, ie.,
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L 1 5 1. 5
0=(f,50—10)2i5) = (f: 50)r25) = (" [, @)125) = (5/ =" f, @) 12s)-

This means that f € N(%I—I/:‘). But at the same time, fJ_N(%I—I/;). Thus f=0.
This contradiction proves the opposite embedding. For the operator %I —TI* the proof
is the same, since (I*)* =1. O

Since the ranges of %I —7Tand %I — I* are closed due to Riesz’s lemma (see Theo-
rem 28.14) and due to part (2) of Lemma 41.11, we obtain the following result.

Theorem 41.28 (Fredholm alternative). Either 11 —1 and 11— I* are bijective or
%I —Tand %I — I* have nontrivial null spaces with finite dimension

1 ~ 1 ~
dmN (| =I—1 ) =dimN | =1 —1I* oo
im (2 ) im (2 >< ,

and the ranges of these operators are given by
| A 1. ~
and
| PN | A
R EI_I* ={g€C(S): (8 ¢)25)=0foranyp €N EI_I }.
We will interpret this alternative as follows: either the integral equations
1 -~ 1 ~
s0-To=f sw-Ty=g (41L.11)

have unique solutions ¢ and y for every given f and g from C(S), or the corre-
sponding homogeneous equations

1 ~ 1 ~
0—Tp=0, Sy—Fy=0

have the same number of linearly independent solutions @y, ..., @y, W1,..., Yy, and
in this case equations (41.11) have solutions if and only if fL¢;, j=1,2,...,m,
and gLy, j=1,2,...,m, respectively.

In fact, it is possible to prove a stronger result (which is the analogue of Theo-
rem 28.15) for the complete normed space C(S); see [22] for a proof.

Theorem 41.29 (Riesz). Let A : C(S) — C(S) be a compact linear operator. Then
1 — A is injective if and only if it is surjective. If [ — A is injective (and therefore also
bijective), then the inverse operator (I —A)~" : C(S) — C(S) is bounded.
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Exercise 41.7. Show that

RIIIA—NIIIA*lRIIIA*—NIIIAL
2 T \2 ’ 2 T\2 ’

and then

A 1 - 1 - A
C(S)—R(21—1>®N<21—1>—R<21—1>@N<21—1>.

Now we are in a position to prove the main result of this chapter.

Theorem 41.30 (Main theorem). Suppose Q and Q' are simply connected. Then

(1) (ID) has a unique solution for every f € C(S).

(2) (ED) has a unique solution for every f € C(S).

(3) (IN) has a solution for every f € C(S) if and only if [ fdo = 0. The solution
is unique up to a constant.

(4) (EN) has a unique solution for every f € C(S) if and only if [; fdo = 0.

Proof. We have already proved uniqueness (see Theorem 41.4) and the necessity of
the conditions on f (see Exercise 39.2 and Lemma 41.24). So all that remains is to
establish existence.

For (IN) and (EN) the function f must satisfy the condition

/SfdG:O,

(f7 1)L2(S) =0.

or

Next, since

J1tx3)d0() =172,

we may conclude first that 1 € N(%I—T), ie., dimN(%I—IA) > 1, and dimN(37 —
IA*) < 1 due to the fact that the single layer potential uniquely (up to a constant; see
Theorem 41.4) solves (IN). Thus, due to Theorem 41.28 (Fredholm alternative), we

have | |
dimN (21—f> = dimN (21—f*) =1.

Using again this alternative, we see that the condition (f,1);2 (s) = 0is necessary and
sufficient for the solvability of the equation —%(p —|—IA*(p = f, which solves (IN). For
(EN) we can solve uniquely the equation %(p +F‘(p = fifand only if f1N (%I + IA)
But since the solution of (ED) is unique, the null space of %I +1 consists only of the
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trivial solution (we have used here Lemma 41.24 for n = 2). Therefore, the necessary

and sufficient condition for f is automatically satisfied. R
Concerning (ID) we consider the integral equation %(p +1¢p = f. Let us set

1 ~

sothat f = y+(1¢ +1¢). Since f € C(S) and 10 +1p GR(%I—i—IA), we can choose
v uniquely (using Exercise 41.7) from N(%I—&—IA*), ie.,

1 —~

= Iy =0.

A +I'y
If we consider now the single layer potential with moment vy,

W)= [ WK (=)o (s),
then it is harmonic in Q U Q' and
1 ~
oy, v= EW—H*W =0.

Hence dy, v(x) = 0 for all x € Q7 (due to the uniqueness result), which means that
v =constant in R"\ ©, and since v is required to be harmonic at infinity, this constant
is equal to zero (see Theorem 41.4 and Lemma 41.24 for n = 2). The final step is that
a single layer potential v is continuous everywhere in the whole of R" and vy =0 on

€' including S. Thus v = 0 in Q as well. The latter fact can be proved if we consider
the Dirichlet boundary value problem

Av=0, inQ,
v=0, onS.

But Theorem 41.21 leads to dy, v — dy_v = y or y = 0. Therefore, we have proved
that (ID) is uniquely solvable for all f € C(S). O

Exercise 41.8. Prove the second part of Theorem 41.30.



Chapter 42
Elliptic Boundary Value Problems

In this chapter we study the equation Lu = f on some bounded domain £2 C R" with
Ck-class (with appropriate k > 1) boundary dQ = S, where u is to satisfy certain
boundary conditions on S. The object of interest is to prove existence, uniqueness,
and regularity theorems. Our approach will be to formulate the problems in terms of
sesquilinear forms and then to apply some Hilbert space theory (see Part III of this
book). Here L will denote a differential operator in the divergence form

Lix,d)= Y (~D)9%aus(x)dP), m=1,2,..., (42.1)

|o|=[B[<m

satisfying the coercivity (generalized strong ellipticity) condition with u € C5'(£2),
Re ¥ [agdbudtuxzv ¥ [ jo%ufar, @22
jol=[B|=m 2 jaf=m’<

where v > 0 is constant. It is easy to see that for the operator (42.1) with constant
coefficients, the condition (42.2) is equivalent to

Re Y agps®&P>v ¥ |7

o= [Bl=m jo=m

The coefficients of L are assumed to be complex-valued (in general). We introduce
the Dirichlet form D(u,v) associated with this operator L as

Duyv)= Y, / agp(x)0Pu- 9%vdx. (42.3)
o =|Bl<m
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The Dirichlet boundary value problem for the operator L from (42.1) on the domain
Q can be formulated as follows: given f € L?(Q), find a function u satisfying Lu = f
on £ in the distributional sense, i.e., u is a distributional solution satisfying the
boundary conditions

u|S:gO7 8VM|S:gla"'7a\'}/lilu‘_g:gm—h (424)

where S is a C"-class surface, v is an outward normal vector to S, and g s for j =
0,1,...,m— 1, are from some appropriate space on S.

Remark 42.1 (This example is due to A. Bitsadze). The operator
=132 1200,
L_Z( x+21 xCy — y)
is elliptic on R?. The general solution of Lu = 0 is

u(x,y) = f(z) +z8(z), z=x+iy,

where f and g are arbitrary holomorphic functions; see [11]. In particular, if we
choose

8(z) = —zf(2),

where f is holomorphic on the unit disk B and continuous on B, then u(x,y) =
(1—|z]*)f(2), and u(x,y) solves the Dirichlet boundary value problem

Lu=0, inB,
u=0, ondB.

Hence we have no uniqueness for this problem in B. The reason is that L is elliptic
but not strongly elliptic.

Exercise 42.1. Show that L from Remark 42.1 is elliptic on R? but not strongly
elliptic in the sense of (42.2).

In order to investigate the solvability of the Dirichlet boundary value problem we
need a regularity theorem for the operator L from (42.1). Here we define

Jully = llullgs(q) -

Theorem 42.2. Suppose that the operator L from (42.1) satisfies the ellipticity con-
dition (42.2) and the coefficients aqpg(x), |0, |B| < m belong to the Sobolev space
Wk(Q), k=0,1,2,.... Then there is a constant C > 0 such that for all u € H6"+k((2)
we have
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el < CCMLttll g+ el g1 )- (42.5)

Proof. Since Ci’(£2) is dense in the Sobolev space Hj(£2), s > 0, let us consider
u € Cy(£2). Consider first the case k = 0. Then integration by parts leads to

|(Lut,u) 12 ()|

- / 15 ()P ud iy + / aaﬁ(x)aﬁuaaudx‘
|ou|=[B|=m "< |o|=B|<m—17€
>Re ¥ /aaﬁ(x)9ﬂu8aﬁdxfc /|aﬁuaau|dx
o= [Bl=m” < || =|Bl<m—1
>v 3, [ 10%uPds—clul} .
ol

where the constant C > 0 limits the norms of the coefficients ag(x) in L7(€2).
Using now the Poincaré inequality (Theorem 20.23) and the properties of Sobolev
space, we obtain from the latter inequality that
2

(1Zatl] o el = v [faell = C el latl ]

that is, we have
1Ly = i [l = C el 1 -

Thus (42.5) is proved for k = 0. Consider now the case k = 1. Since the coefficients
of L belong to W.!(€2), in that case we have L(d;u) = d;Lu + Lu, where L is again
an elliptic operator in divergence form with coefficients from L~(Q). Hence,

loull, < closzal| ,+ |Lu_ + (sl )
S C(||LM||lfm+ ”uHm+ Hu“m)

Here we have used the fact that || Lu|| _,, < C||u]|,, by duality. Using the Poincaré in-
equality (Theorem 20.23), we obtain (42.5) for k = 1. The general case for k follows
by induction. Thus, the theorem is proved. O

Corollary 42.3. Suppose that s € R and s > m. If the coefficients of the operator L
Sfrom (42.1)—(42.2) belong to the Sobolev space W5 ™(Q), then there is a constant
C > 0 such that for all u € Hj(£2) we have

llully < COUILally g+ Nluell 1) (42.6)

Proof. The result follows by interpolation of Sobolev spaces Hj(£2); see [39]. [0
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Theorem 42.4 (Regularity in Sobolev spaces). Suppose that the coefficients of the
operator L from (42.1)~(42.2) belong to C*(Q). Let u and f be distributions on Q
satisfying Lu = f. If f € H{ (82) for s >0, then u € HP2M(Q).

oc loc

Proof. Let ¢ € C5(£2). Then the equation ¢Lu = ¢ f can be rewritten as

L(gu) = @ f + Liu, (42.7)

or _
L(ﬁ) =f+Lu,

where the operator L; is of order 2m — 1 with Ci’(€2) coefficients and fe H;(Q).
Our task is to show that & from (42.7) belongs to HS”’"(Q). We use first induction
on s >0 and 2m > 2. Let us assume that s = 0 and 2m = 2. Then f € L2(2) with
compact support and z € L*(£2) with compact support (we may assume this without
loss of generality). Applying now Theorem 42.2 (see (42.5)) and using (42.7), we
obtain

Nl < cQizil -+ o) < (7], + Izl +llo)

< (||, + Ny + o) < =

That is, # € H} (€2). Applying again Theorem 42.2 with this u € H} (), we obtain
that

Il < COlLalo+ izl + Nill,) < (|| -+l + 1l )-

Thus, u € Hg(.Q), and the starting point of induction is checked. Let us assume
now that for every integer s > 1 and 2m > 2 it is true that f € H} (£2) implies
u € HE2™(Q). Consider now f € H ' (Q). Then f € H, () as well, and we

may apply the induction hypothesis, that is, the solution u of Lu = f belongs to
H”2m(Q). But then we have that (see (42.5) withk =m+s+1)

loc

151 < O 4 il ) < €]+ U0l 4 1)

<O+ 1l ) <

since L; is of order 2m — 1 and u € Hfotz’"(Q). The latter inequality means that this
theorem has been proved for integer s > 0. For arbitrary s > O the result follows by
interpolation of Sobolev spaces (see [39]). (]

Corollary 42.5. Suppose that the coefficients of the operator L from (42.1)—(42.2)
belong to W (Q). Then the distributional solution u of Lu = f with f € L*(Q)
belongs to HX"(£2).
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Proof. The result follows from the proof of Theorems 42.2 and 42.4. (]

Theorem 42.6 (Garding’s inequality). Suppose L from (42.1)—~(42.2) has L=(Q)
coefficients. Then for all u € Hy' () we have

ReD(u,u) > cy |Jully, — ca ||ul[g (42.8)

with some positive constants ¢ and c;.

Proof. The proof is much the same as the proofs of previous theorems. Indeed, as
before we can easily obtain that

2 2
ReD(u,u) = vy [lull;, — Cull;, -,
with positive constants v; and C. Since for all u € Hj'(£2) we have
2 2 2
el < €lully, + Ce [lullg
with arbitrary € > 0, we obtain that
ReD(uu) > (vi = Ce) ||ull3, — CCe |lul5.-

This completes the proof. (]

Exercise 42.2. Show that Theorem 42.6 does not hold for L = A2 on Q C R” for
any u € H*(Q).

Exercise 42.3. Prove that the range of the operator (—A)" 4 ul, u > 0, consid-
ered on HJ'(B), B the unit ball in R”, is complete in H(B) for all / =0,1,2,....
Hint: Prove the solvability of the equation ((—A)" + ul)u = (Jx|> — 1)P(x) for a
polynomial P(x).

Returning now to the Dirichlet boundary value problem (42.4) for the operator
(42.1)—(42.2), we must search for u in a space of functions for which these bound-
ary conditions make sense. Based on Corollary 42.5, the natural candidate for this
is H?"(€Q). The trace formula for Sobolev spaces (see Part IT of this book) says that
g from (42.4) must be from the spaces H¥1-1/2(9Q), j=0,1,...,m— 1, respec-
tively. For these given functions g; from (42.4) we may find a function g € H 2m(Q)
such that '

J

gl =gj, j=0,1,....m—1. (42.9)

Q2

Then, setting w := g — u, we reduce our original problem (42.4) for L to solving

{Lw—Lgme, 42.10)

dlw=0onS,j=0,1,...,m—1.
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Since (42.9) and (42.10) imply that all derivatives of w of order strictly less than
m vanish on S, we reformulate the Dirichlet boundary value problem (42.10) as
follows: given f € L?(£2), find w € H'(£2) such that

D(w,v) = (Lg— f,v)12(0) (42.11)

forall v € HJ'(Q).
In order to solve the problem (42.11) we consider the properties of sesquilinear
forms. Let H be a Hilbert space.

Definition 42.7. A complex-valued function a(u,v) on H x H is said to be a
sesquilinear form if

(1) a(Auy + uz,v) = Aja(uy,v) + Aa(uz,v),
(2) au, vy + pova) = ma(u,vy) + pa(u, v2),

for all u,v,uy,uz,vi,v, € H and for all Ay, A, wy, i € C.

Definition 42.8. A functional F on H is called a conjugate linear functional if
F(vi + tava) = F (vi) + F (v2)

for all vi,v, € H and for all u;,u, € C.

Theorem 42.9 (Lax-Milgram). Let a(u,v) be a sesquilinear form on H x H such
that

(1) la(u,v)| < MIIMH2||V|| ,u,v € H,

(2) la(u,u)| = Blull",ucH,

where M and B are some positive constants. Then for every conjugate linear func-
tional F on H there is a unique u € H such that a(u,v) = F(v). Moreover,

Jull <collFllg—c
and the constant c is independent of F.

Proof. For each fixed u € H the mapping v — a(u,v) is a bounded conjugate linear
functional on H. Hence, the Riesz—Fréchet theorem gives that there is a unique
element w € H such that a(u,v) = (v,w) or a(u,v) = (w,v). Thus we can define an
operator A : H — H mapping u to w as

a(u,v) = (Au,v)

if and only if w = Au. It is clear that A is a bounded linear operator. The linearity
follows from

a(Auy + Luy,v) = Aia(uy,v) + ha(uz,v) = A1 (wi,v) + Aa(wa, v)
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if and only if A(Adyu; + Aup) = AjAuy + ArAuy. The boundedness follows from
1 Au]l? = (Au, Au) = a(u, Au) < M ||u|| | Au|],

which implies ||Au|| < M ||u||. Let us note that a(u,Au) is real and positive here.
Next we show that A is one-to-one and that the range of A is equal to H. Indeed,

2
Bllull” < lau,u)| = [(Au, u)| < [[Aul] |[u]

implies that 3 ||u|| < ||Au|| < M ||u||. The first inequality implies that A is one-to-one
and R(A) = R(A). Now we will show that in fact, R(A) = H. Let w € R(A)*. Then

BIwl < la(w.w)| = |(Aw,w)| =0,

and therefore w = 0, i.e., R(A) = H = R(A). Next, again due to the Riesz—Fréchet
theorem for F' we have that there is a unique w € H such that

F(v)=(w,v), veEH,

and ||w|| = ||F||y_c. But since R(A) = H, we may find u € H such that Au = w if
and only if
a(u,v) = (Au,v) = (w,v) = F(v),

which proves the solvability in this theorem. Furthermore,

1
B

Finally, we need to show that this element u is unique. If there are two elements u
and u; such that

1 ~ 1
ul| < < |JAu|l = < Wl = < |IF]-
lull = g llAulf = g Il = 5 1IFl

Cl(ul,V) = F(V), (1(142,\/) = F(V)7
then a(u; —uy,v) = 0 for all v € H, and therefore
Bl —wa* < la(ur —uz,u1 —u)| = 0.

This completes the proof. (]

Remark 42.10. The Lax—Milgram theorem actually says that the operator A that
was constructed there has a bounded inverse such that

1

A N < 5

where 3 is the same as in condition (2).
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Assume now that the sesquilinear form a(u,v) satisfies all conditions of the Lax—
Milgram theorem and that the sesquilinear form b(u,v) is only bounded, i.e., there
is a constant M > 0 such that

b(u,v)| <M lul[|[v]], wu,veH.

So, we may associate with a(u,v) and b(u,v) two operators A and B, respectively,
such that A has bounded inverse and B is just bounded:

a(u,v)+b(u,v) = (Au,v) + (Bu,v).
In that case the problem of solving
a(u,v)+b(u,v)=F(Vv), u,veH,
with a conjugate linear functional F' can be reduced to solving
Au+Bu=w

with w from F(v) = (w,v)n.

Theorem 42.11. Let A : H — H be a bijective bounded linear operator with
bounded inverse A" and let B: H — H be a compact linear operator. Then A+ B is
injective if and only if it is surjective, and in this case (A+B) ™' : H — H is bounded.

Proof. Write
A+B=A(I—(-A"")B) = A(I - K),

where K is compact, since B is compact. Applying Riesz’s theorem (see Theorem
28.15), we obtain that (A+B) ! = (I—K) 'A~! is bounded. O

Corollary 42.12. Let A be as in Theorem 42.11 and let B be bounded (not neces-
sarily compact) with small norm, i.e., | B|| < € with € sufficiently small. Then A+ B
is bijective and (A+B)~' : H — H is bounded.

Proof. The operator A + B is bijective. Indeed, let (A +B)u =0, or u = —A~'Bu.
Then
lall < [JAH [ 1B leell < & ]]A™"{] [Ju] -

Thus u = 0 is the only possibility, and A + B is injective. The operator A is surjective
with R(A) = H. The same is true for A + B, since

A+B=A(I—-(-A"YH)B)=A(I-K)

with ||K|| < 1. Thus A + B is injective with bounded inverse, since
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(A+B) '=@1—-kKk)'A"L.

The corollary is proved. (]
Theorem 42.13. Let D(u,v) be the Dirichlet form (42.3) corresponding to the op-
erator L from (42.1)—(42.2) with L= (Q) coefficients. Then the following representa-
tion holds:

D(u,v) = (Au,v)gm(q) + (Bu,v)gm(qy, u,v,€ Hy' (L), (42.12)

where A : HJ'(2) — H{'(Q2) is a linear bounded operator with bounded inverse and
B:HJ'(Q) — HJ' (L) is compact.

Proof. The definition (42.3) of D(u,v) allows us to write
D(u,v) = Dpy(u,v) 4+ Dyy—1 (u,v),

where D,,(u,v) is a sesquilinear form that satisfies (see (42.2)) the conditions of the
Lax—Milgram theorem (Theorem 42.9) and D,,_ (u,v) has the form

Dpi(uy)= Y /Q agp(x)0P ud*vdx. (42.13)

o] =[B|<m—1

Applying the Lax—Milgram theorem, we obtain that there is a bounded linear oper-
ator A : Hj'(Q2) — Hy'(£2) with bounded inverse such that

Dy (u,v) = (Au,v) () (42.14)

Concerning the sesquilinear form D,,_1(u,v), we may say that (see (42.13)) since

Dua<C % [ 19Pul- 9%Idx < C o1 g 9l 10

o =|Bl<m—1

< Clullmigy Mlme
there is a bounded linear operator B : Hj'(2) — H{'(£2) such that
Dy—1(u,v) = (Bu,v)gm(q)- (42.15)
We claim that B is compact in Hj'(£2). To see this, we first note that
| BullFm () = (B, Bu) () = D1 (u, Bu)

/ 3 (x) 2P ud® (Bu)dx
Q

o= [B[<m—1

< Cllull g1 () [1Butll gm-1(2) < € l[utll 1) | Butll )
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or
HBMHH’”(Q) SCHM”H;n—l(Q). (4216)

Now let u; € Hj'(£2) be such that ||uj||Hm(Q) is bounded. Since H('(£2) is com-

pactly embedded in H(’)"*l (£2), we have that there is a subsequence u;, that con-
verges strongly in HS”’I(.Q), i.e., uj, is a Cauchy sequence in Hj' '(€). Hence
Buj, is a Cauchy sequence in Hj'(£2); see (42.16). This means that Bu;, converges
strongly in H{'(L2), and thus B is compact in H{'(£2). The theorem now follows
from (42.14) and (42.15). O

Let us now return to the Dirichlet boundary value problem (42.10)—(42.11) for
the elliptic differential operator L from (42.1)—(42.2). Theorem 42.13 allows us to
rewrite (42.11) as

(A+B)w,v)gmq) = (Lg— fv)12(q), (42.17)
and the task is to find w € HJ'(£2) such that (42.17) holds for all v € HJ'(£2). Since
F:Hy'(2)>v— (Lg—f,v)2q)

is a conjugate linear functional, The Riesz—Fréchet theorem says that there is a
unique fy € H{'(£2) such that

(Lg = F)iz@) = (fo,v)um()-
Due to this fact, (42.17) can be rewritten in operator form as
(A+B)w = fo. (42.18)

Theorem 42.14 (Unique solvability). The Dirichlet boundary value problem
(42.4) for the operator L from (42.1)—(42.2) has a unique solution if and only if
A = 0 is not a point of the spectrum of L with homogeneous Dirichlet boundary
conditions. Moreover, this unique solution u can be obtained as

u=g+A+B)"f, (42.19)

where g satisfies (42.9) and fy satisfies (42.18).

Proof. Due to Theorem 42.11, it is enough to show that the operator A 4 B is in-
jective on H'(L2), i.e., (A +B)u = 0 implies u = 0. This is equivalent to the fact
that

((A4+B)u,v) =0, forallve H)'(Q),

implies u = 0, or D(u,v) = 0 for all v € Hj'(€2) implies u = 0. But since D(u,v) =
(Lu,v) 12(q)- the statement of injectivity can be reformulated as
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(Lu,v)12(q) =0, forallv € Hy'(£2),
or
Lu=0,
ue H(’)”(Q) =0,
or
Lu=0, in Q,
u=0,0pu=0,...,0" 'u=0, ondQ.

Formula (42.19) follows now from (42.18) and (42.9). The theorem is proved. [

Garding’s inequality (see (42.8)) allows us to get essential information about the
kernel of the operator L and its adjoint. Let us define

W ={uec Hy'(Q2): (Lu,v);2 = 0if and only if D(u,v) =0 for allv € H}'(Q)}
and

V={ueH)(Q):(L'u,v);» =0if and only if D(v,u) =0 for allv € Hj'(Q)}.

Theorem 42.15. Suppose L from (42.1)~(42.2) has L™ (L) coefficients. Then
dimW =dimV < ce.

Moreover, if f € L*(Q2), then there exists u € H'(Q) such that D(u,v) = (f,v)2
forallv e HJ'(Q) if and only if fLV.

Proof. Garding’s inequality (42.8) implies that
|((L4 cal)u,u);2| > Re[D(u,u) 4 c2(u,u)] > ci ||u||;i7 c1 >0,
for all u € HJ'(€2). Hence
(L A+ 2Dl 20y = et [lul],, -
The latter inequality means that the operator L+ ¢,/ is invertible and its inverse
(L+ coI)~! is compact as an operator in L?(£2), since the embedding HJ'(Q) —

L*(Q) is compact. Moreover, the range R((L+ c2)~1) is in HJ'(€2). Now we can
see that u € W if and only if

(L+c2D)u,v) 2y = 2 (V) 120

or
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(L+col)u = cou,

or

(11— (L+cz1)1> u=0,

2

that is, u belongs to the kernel of the operator él — (L+caI)~!. We can say
also that u € V if and only if u belongs to the kernel of the adjoint operator
él — ((L+c2I)~1)*. Therefore, the Fredholm alternative (see Theorem 34.11) gives
us the statement of this theorem. O

Corollary 42.16. Under the conditions of Theorem 42.15 we have that if in partic-
ular W =V = {0}, then the solution u of the problem D(u,v) = (f.v)2q) always

exists and is unique for all f € L*(Q).
Proof. The result follows from the Fredholm alternative. (I

Corollary 42.17. Suppose that all conditions of Theorem 42.15 are satisfied. As-
sume in addition that L = L*, i.e., L is formally self-adjoint (this holds if and only
if agp =gy for all o, B). Then there is an orthonormal basis {u} for L*(Q) con-

sisting of eigenfunctions that satisfy the Dirichlet boundary conditions %uk =0on
S=0Q for 0 < j <m— 1. The corresponding eigenvalues are real and of finite
multiplicity, and they accumulate only at infinity.

Proof. The proof follows immediately from the Hilbert—Schmidt theorem (Corol-
lary 28.11). (]

Example 42.18. Let us consider the Dirichlet boundary value problem in a bounded
domain Q C R",n > 2 for the Schrodinger operator —A + g with complex-valued
potential g € LP(Q), n/2 < p < co: given f € H'/?(Q), find u € H' () such that
—A —Au=0, inQ
(FA+q=Au=0, in2, (42.20)

u=f, on 02,

where A is real. Then Lemma 32.1 and Theorem 42.14 imply that (42.20) has a
solution if and only if A = 0 is not a point of the spectrum of this Schrodinger
operator with homogeneous Dirichlet boundary conditions.

Example 42.19. Consider the Dirichlet boundary value problem in a bounded do-
main 2 C R”, n > 2, for the Helmholtz operator A + kzn(x) with a complex-valued
function n(x) from LP (), n/2 < p < oo: given f € H'/?(dQ), findu € H'(2) such
that

(42.21)

(A+Kn(x))u=0, inQ,
u=f, ondQ,

where k is a real or complex number. The values k> for which there exists a nonzero
function u € H} (£2) satisfying (in the distributional sense)
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Au+Kn(x)u=0, inQ,

are called the Dirichlet eigenvalues of the Helmholtz operator, and the correspond-
ing nonzero solutions are called the eigenfunctions for it. It is clear that k> = 0 is
not an eigenvalue of this Helmholtz operator. The application of Lemma 32.1 and
Theorem 42.11 lead to the solvability of (42.21). Namely, (42.21) has a unique so-
lution if and only if k? is not a point of the spectrum (i.e., is not an eigenvalue) of
this Helmholtz operator. In the case of a real-valued function n(x), we may prove
even more.

Theorem 42.20. Assume that n(x) € LP(Q), n/2 < p < oo, is real-valued. Then
there exists an orthonormal basis {uy}y_, for H{ () consisting of eigenfunctions
of the Helmholtz operator —A — An(x). The corresponding eigenvalues { A}y, are
all real and accumulate only at infinity (|Ay| — o). If in addition n(x) > 0 (n(x) £0),
then A >0 forallk=1,2,....

Proof. We may rewrite the eigenvalue problem for (42.21) as (see Lemma 32.1 and
Theorem 42.11)
(A=ABu=0, ucH}(Q),1#0, (42.22)

where A is a bounded, self-adjoint, strictly positive linear operator in Hé (Q) with
bounded inverse, and B is a compact self-adjoint operator in H(; (). Next, (42.22)
can be rewritten as

(iIA_l/zBA_I/Z) u=0, ucH}Q). (42.23)

This is an eigenvalue problem for the self-adjoint compact operator A~1/2BA-1/2,

Using the Riesz—Schauder and Hilbert-Schmidt theorems (see Part III of this book),
we may conclude that there exists a sequence {%k }r_, of eigenvalues of A~ 1/2pA-1/2

such that .

A

1

> | —
A

>.0>

as k — co with corresponding eigenfunctions {u; };”_, that form an orthonormal basis
in H} (). Hence, the theorem is proved. O

Exercise 42.4. Prove thatif {¢;}7, is an orthonormal basis in HY(Q),k=1,2,...,

then {¢;}7_, is a basis (orthogonal) in H}(Q) for every integer 0 </ < k. Show that
the converse is not true.



Chapter 43
The Direct Scattering Problem for the
Helmholtz Equation

In this chapter we will show that the scattering problem for an imperfect conductor
in R", n > 2, is well posed. More precisely, we consider a bounded domain Q2 C R”
(the conductor) containing the origin with connected complement such that dQ is
in the class C2. Our aim is to show the existence of a unique solution u € C*(R" \

Q)NC(R"\ Q) of the exterior impedance boundary value problem

Au+Ku=0, xeR"\Q, (43.1)

U= ug + Usc, uozeik(x’e), 0esS,

where the boundary condition on d€2 is assumed in the sense of uniform conver-
gence as x — dQ, A(x) € C(dQ2), A(x) > 0, and v is the outward unit normal
vector to dQ.

Themzm 43.1 (Representation formula for an exterior domain). Let u,. € Cc?
(R"\ Q)NC(R"\ Q) be a solution of (43.1) such that aa“f exists in the sense of

uniform convergence as x — 982. Then for all x € R"\ Q we have

Use(x) = /8..(2 [usc(}’)avyGljUx_YD —&vy”sc(}’)Gljﬂx_ym do(y), (43.2)

where G,j is defined in Chapter 32.

Proof. Let x € R"\ Q be fixed and let € > 0 be so small that B (x) C R"\ Q. Let
Bg(0) be a ball of radius R containing both Q and B (x) (Figure 43.1).
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Fig. 43.1 Geometric illustration of x ¢ Q, B¢ (x) and Bg(0).

Then from Green’s identity we have that

0= (9 G+ _ —8 , G+ . do .
QB (x)UOBR(0) [use (¥) 9, Gy ([x = y]) — vy use () G (|x —y])] do (y)

On the spheres dB.(x) and dBg(0) we have

0

d
avy - — E

W o

r=¢ r=R

and in addition, on dBg(x) one has
8Vy|x—y\ =V, -Vyx—y|=-1.

The well known properties of Hankel functions (see, e.g., [23]) give that
—(n— 1 —(n— 1
(P~ 0221, ,(p)) ==p D) (p).

Taking into account all these facts, we obtain that (n > 2)

" AR n/2 ~(n=-2)/2 (1)
Gy (e=yD) =7 { 51 K==yl H, > (k|x—yl).

Using now the asymptotic behavior of Hi})z(ldx —y|) for small arguments (see, e.g.,
[23])

(1) —i (klx—y\ "
H,l/z(k|X—Y|)N; 5 I'(n/2),

we obtain that on the sphere dB¢(x), one has
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1—n
X—y
8v),G,j(|x—y|)~7| w‘ , n>2.
n

Thus, letting € — 0+, we see that
0~ /BQ (15 ()9, Gy (Ix = y]) = Oy, use (v) G (Ix = y])] do(v)
J . 9 .
[ [5G s~ )6 i) a0t

Wy
and therefore (using the Sommerfeld radiation condition)
we() = [ (120 Gy (=) = e ()G (b —3))] do )
J . pol .
+ /M:R |:usc(y)(9er (e =31) = 5 use (G (I —y):| do(y)
= _/89 [usc()’)a\{vG:ﬂx _y|) - avyusc(y)G,jﬂx—ym dG(y)
[ [0l /R~ G o1/ 4o, 3
V=R

In order to estimate the latter integral in (43.3) we need the following lemma.

Lemma 43.2. For ug from (43.1) it is true that

Proof. The Sommerfeld radiation condition gives

2

0= lim It do(y)

R—+teo Jjy|=r | Or

. / (’ dutc
= lim
R—+eo [y|=R a}’

At the same time, Green’s identity for Dg := Bg(0) \ € implies

— ikuge

2 _
+Ruse(y) 2+ 2KTm (uaa”;» do ().

[ 5d00) = [ ne0)onincGldo0) [ ficts)Py

[ Vel Py
Dg
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This means that for R sufficiently large we have
Jlse —
m [ ()G dol) =1 | ()0 Ao ().
y r 20

We therefore have that

. ausc
lim
R—teo JIy|=R or

This equality completes the proof of the lemma. O

2
Jrkzusc:()’”z) do(y) = 72klm/39 usc(y)avyKU)dG(y).

Taking into account that

1
+ _ _
Gk(|xy)0<R(nl)/2)’ |y|*R*>°°7
and Lemma 43.2, we can easily obtain from (43.3), by letting R — oo, the equality

(43.2). Thus, the theorem is completely proved. (I

Corollary 43.3 (Representation formula for an interior domain). Let Q2 be a
bounded C* domain and u € C*(Q)NC'(Q) a solution of (A +k*)u =0 in Q.
Then for all x € £2 we have

u(x) = /(m [0, u(V)G{ (I = y]) = u(y)9y, Gy (Ix—y1)] do (). (43.4)
Corollary 43.4. Under the conditions of Corollary 43.3, u(x) is real-analytic in

x € Q.

Proof. Since G (|x—y|) for x # y is real-analytic in x € £, the representation for-
mula (43.4) implies that the same is true for u(x). O

Theorem 43.5. Let v € Cz(R’L\ Q)NC(R"\ Q) be a solution of the Helmholtz
equation Av+k*v =0 in R"\ Q satisfying the Sommerfeld radiation condition and
the boundary condition d,v+iAv =0, A(x) >0, on dQ. Then v =0.

Proof. Let Bg(0) contain £ in its interior. Then Green’s identity and the boundary
conditions imply that (9, = % on the spheres)

/M:R (V(y) 82(:) —v(y) az(ry )> do ()

= [ ()2 1) ()2 70) doy) = =2i [ A0 () Pdo(s).

2Q

But this is equivalent to the equalities
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. _, O : _
% / Im <v(y)(y)> do(y) = 2 / Im (7(3) 9, () do (y)
yl=R ar 20 '
—=2i [ A0)O)Pdo0).
2Q
Since A(y) > 0, these equalities lead to

a(
Im/bl ) ar —Im/ )9 7()do (y)
- / y)Pda(y) > 0. (43.5)

We have proved in Lemma 43.2 that

) ( ovl|?
lim /
R+t J|y=r \ | OF

20| )dc :—2k1m/ )y v()do(y). (43.6)

But the inequality (43.5) implies that

. &V 2 2 2
im ek ( 5, T )dc(y) =0

and

Im / ), v(y)do (y) = 0. @3.7)
Thus, we have from (43.5) and (43.7) (compare with Lemma 43.2)

lim v(y)|?do(y) =0
A f Mol

and

A A()v(y)[Pda(y) =0.
Q

This implies that v =0 and dyv = 0 on d£2. These two facts and the representa-
tion formula (43.2) for the scattering solution provide that v(x) =0 in R"\ Q. The
theorem is proved. U

Corollary 43.6. If the solution of the scattering problem (43.1) exists, then it is
unique.

Proof. 1f two solutions u; and u; of (43.1) exist, then their difference v =u; —uy =

ug(l:) — u@ satisfies the hypothesis of Theorem 43.5. Hence v=0, i.e., u; = up. U

Theorem 43.7 (Rellich’s lemma). Let u € C*(R"\ Q) be a solution of the
Helmholtz equation satisfying
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lim u(y)|[>do(y) = 0.
Aim_J g M0II7do0)

Thenu=0inR"\ Q.

Proof. Letr > 1 and let

Ul = [ uro)p(0)d6,

where u is a solution of the Helmholtz equation and ¢ is an arbitrary eigenfunction
of the Laplacian Ag on the unit sphere, i.e.,

(As+u?)e=0, p>=mm+n—-2), m=0,1,2,....,

where s
J n—129 1

A=+ 2 4 CAs

8r2+ r 8r+r2 5

It follows that U (r) satisfies the ordinary differential equation

n—1

U’ (r)+ U/(r)—i-(kz—/.iz/rz)U:O.

But the general solution of this equation is given by

U(r) = Kir 228 (k) + Ko~ 22 (kr),
where K; and K, are arbitrary constants, Hél’z) are Hankel functions of order v with

H‘(,z) = Hy) and v? = u? + (%52%)2. Since the hypothesis of this theorem implies

that U(r) = o(1/r"~1)/2), we deduce that K| and K, are equal to zero and hence
U(r) = 0 for all r > Ry. The same is true for u(r0) due to the completeness of
the eigenfunctions of Ag on S"~1: see [34]. The claim follows now from the real
analyticity of every solution of the Helmholtz equation. d

Theorem 43.8. Let v € C>(R"\ Q) NC(R"\ Q) be a solution of the Helmholtz
equation satisfying the Sommerfeld radiation condition at infinity. Let 9y (up+ v)
converge uniformly as x — 92 and let

im [ v(3)dyv()do(y) = 0.
2Q

Thenv=0inR"\ Q.

Proof. This follows immediately from (43.6) and Rellich’s lemma
(Theorem 43.7). U
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Remark 43.9. All the results of Theorems 43.1-43.8 and their corollaries remain
true if we consider instead of C?(R"\ Q) NC(R"\ Q) the Sobolev spaces H°.
Namely, we may assume that the problem (43.1) is considered in the space H?(R"\
Q)NH¥?(R"\ Q).

Here we have considered mostly uniqueness results for these boundary value
problems. The solvability is provided using the results of Chapters 41 and 42 as
follows. As we know, the single layer potential

we)i= [ o)G; (k—y)do(r). reR\0Q,  @3)

with continuous density ¢ satisfies the Sommerfeld radiation condition at infinity, is
a solution of the Helmholtz equation in R\ d€2, is continuous in R”, and satisfies
the discontinuity property (see Theorem 41.21)

dusinelx) = [ 000G} (=)o) F (), €20,

Let us note that these properties of the single layer potential are also valid for ¢ €
H~'/2(9Q), where the integrals are interpreted in the sense of duality pairing [22,
25]. Thus, (43.8) will solve the scattering problem (43.1), provided that

)=2 [ 00)90.G; (x=yDdo () ~2A(x) | _@0)G{ (lx=y)do(y)

=2(dvup(x) +id(x)up(x)), x€dQ, (43.9)
where uy(x) = eik(x.6) Hence, to establish the existence for the problem (43.1), it
suffices to show the existence of a solution to (43.9) in the normed space C(d£2). To
this end, we first recall that the integral operators in (43.9) are compact on C(d€2)
(see Theorem 34.9). Hence, by Riesz’s theorem (see Theorem 41.29), it suffices to
show that the homogeneous equation (corresponding to (43.9)) has only the trivial
solution.

Let ¢ be a solution of this homogeneous equation. Then us. from (43.8) will
be a solution of (43.9) with ug set equal to zero, and hence, by Theorem 43.5 and
Corollary 43.6, we have that this us(x) is equal to zero for x € R"\ Q. By the
continuity of (43.8) across 9, u(x) is a solution of the Helmholtz equation in
as well, and u(x) = 0 on the boundary dQ. If we assume now that k> > 0 is not
a Dirichlet eigenvalue for —A in €, then us.(x) = 0 in 2, and by the discontinuity
properties of the single layer potential we have that

0=0y_us (X) - av+ Usc (x) = (p(x)>

i.e., the homogeneous equation under consideration has only the trivial
solution ¢ = 0. Hence by Riesz’s theorem (Theorem 41.29), the corresponding
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inhomogeneous equation (43.9) has a unique solution that depends continuously
on the right-hand side.

If k2 > 0 is a Dirichlet eigenvalue of —A in €2, then Riesz’s theorem cannot be
applied (it is not valid in this case), and the whole procedure mentioned above does
not work. To obtain an integral equation that is uniquely solvable for all values of
the number k> > 0 we need to modify the kernel of the representation (43.8). For
the two-dimensional case such a modification is shown in [6, (3.51)]. The same idea
can be considered for higher dimensions with the use of spherical harmonics. So,
we have proved now the following solvability result, valid for all dimensions n > 2.

Theorem 43.10. If k> > 0 is not a Dirichlet eigenvalue of —A in the domain Q C
R", then there exists a unique solution of the scattering problem (43.1) that depends
continuously on up(x) = ekx0),

It is quite often necessary to consider the scattering problem (43.1) in Sobolev
spaces H*®. In that case we define

Hioe(R"\ Q) := {u:u € H'(Br(0)\ )}
with an arbitrary ball Bg(0) of radius R > 0 centered at the origin and containing

Q. We recall that H5(9€),0 < 5 < o is the dual space of H*(9€2). Then, for
f € H'2(3Q), a weak solution of

Au+ku=0, xeR"\Q, (43.10)
U=uy+us, uy= eik(x’e), 6esS,

d
rgg}wr(nfl)/Z (;;C —ikusc> == 07 r= ‘X‘7

dvu(x)+idu(x) =0, x€dQ,

is defined as a function u € H\ .(R"\ Q) such that
/ ~(Vu-Vv—kuv)dx — i/ Auvdo (x) = 7/ fvdo(x) 43.11)
RM\Q 0Q oQ

for all v € H'(R"\ Q) that are identically equal to zero outside some ball Bg(0)
with radius R > O sufficiently large. In that case the analogue of Theorem 43.10 for
Sobolev spaces can be proved (see [6, Chapter 8] for details).



Chapter 44
Some Inverse Scattering Problems for the
Schrodinger Operator

The classical inverse scattering problem is to reconstruct the potential ¢(x) from the
knowledge of the far field data (scattering amplitude, see p. 232) A(k, 6’,0), when
k, 6, and 0 are restricted to some given set.

If g € L'(R"), then g(y)u(y,k,0) € L'(R") uniformly with respect to 6 € S"~!
due to

o i .
q()u(y.k.0) = g() () +use(3,k,60)) = g(»)e" ) + 1|2 - g usc (3, %, 6)

and Holder’s inequality. We may therefore conclude that the scattering amplitude
A(k,0’,0) is well defined and continuous. Also, the following representation holds:

A(k,0',6) = /R e O g(y) (MO 1 uge)dy

N Rne_ikw'_e’”q(y)dwl?(k,9’,9)
= (2m)"2(Fq)(k(6' ~ 6)) +R(k,6'.6),

where R(k,0’,0) — 0 as k — oo uniformly with respect to 8’ and 6. This fact
implies that
Alk,6',0) ~ (2m)"*(F q) (k(6' - 0)),

q(x) = (2m) "7 (AK,0',6)) (x),

where the inverse Fourier transform must be understood in some special sense.
Let us introduce the cylinders My = R x S"~! and M = M x S"~!, and the mea-
sures Ug and (1 on My and M, respectively, as
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1
dug(k,0") = Z|k\”’1dk\6 —0'|*de’,

du(k,0',0) = ——dodug(k,0’),

IS” [sm=1]
where [S"~!| = 2”( /> is the area of the unit sphere S"~!, and d@ and d@’ denote the

usual Lebesgue measures on S"~!. We shall define the inverse Fourier transform on
My and M as

— 1 —ik(6—0' x
(Fagy 91 (x) = 2n)yn /M e MO0 o, (k,0")dpe,
0
1 06
(Za 00 = o [, 48,0 0)an.

If we write & = k(6 — 6'), then k and 6’ are obtained by

, 0'=0-2(6,8)C, Egl. (44.1)

Exercise 44.1. Let ug(k,0’) be the coordinate mapping My — R" given as
Ug (k7 9/) = k(e - 6/)7

where 0 is considered a fixed parameter. Prove that

(1) the formulas (44.1) for k and 6’ hold;
(2) the following is true:

0 oug(k, 0')dug(k,0') = / o(x)dx
Mo Rn
if ¢ € Sis even and

| @ous.6)au(k.0".0)= [ p(x)ar

ifpes;
(3) in addition,
Fa (@oug) =F o

if ¢ € Sis even and

Ypoug)=F "o
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if @ € S. Here .# ! is the usual inverse Fourier transform in R”.

Exercise 44.2. Prove that

(1) A(_ka 9/’ 9) = A(k7 Gla 9),

@) Ak,0',0)=A(k,—6,—0").

The approximation ¢(x) ~ (27) 2.7 ~' (A(k,8’,60)(x)) for all 6’ and 6 and for suf-

ficiently large k allows us to introduce the following definitions.

Definition 44.1. The inverse Born approximations g§ (x) and gg (x) of the potential
q(x) are defined by

—n - 1 —ik(6—6' x
) = @0 TGN W = s [ e MO A ' 0)dg
0
and
-n - 1 —ik(6—6'x
a5() = 2m) (T A)0) = g [ €O 0A K6 )

in the sense of distributions.

n

Theorem 44.2 (Uniqueness). Assume that the potential g(x ) belongs L (R"), 5
p < oo, n >3, and has the special behavior |q(x)| <
infinity. Then the knowledge of qg (x) with O restricted to an (n — 2)-dimensi0nal
hemisphere determines q(x) uniquely.

Hooat

Proof. 1t is not difficult to check that if g(x) satisfies the conditions of the present
theorem, then g(x) will satisfy the conditions of Theorem 23.5:

S

1
q € LP(R"), *<p§n42r ,

[\

or

| 1
gel@®), "l p<qo o111
2 2p

Now we can represent g§ (x) in the form

i) = 7 /M e KO0 4(k,0',0)dpt ()
0

= g Jy, o) [ OO g v)ulr k. 0)ay

_lk 0-0"x—y q(y)e_ikw’y)u(yak?e)dy7

dug
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where u(y,k, 0) is the solution of the Lippmann-Schwinger equation. Setting

v(y,k,0) := e *Oy(y k. 6)

and making the change of variables & = k(6 — 6’), we obtain

4h(x) = 27r / / " >V<’2(§|§)’9>dy'

The usual Fourier transform of ¢§(x) is equal to

BE) =(E) +2m) 2 [ HElg0) [(y 2 7e>—1] @

and it implies that

43 -a®I<em " [ 140)]

where the function v(y, k, 0) solves the equation

vk, 0) =1— / e HEOGE(|x—y])e OO g(y)v(y. k, 6)dy,
JRn
ie., R

yv=1- ék(qv),

x—y,0)

where ék = ik G,j. For k sufficiently large we obtain that

v=(I+Gg) ' (1),
or
v=1-G,(q), (44.2)

—ik(x—y,0)

where éq is an integral operator with kernel 5,1 =e G, and the integral

operator 6,1 with this kernel also satisfies the equation (H — k2)6q =I. In order to
prove (44.2), we recall that R L
Gq = Gk — quGq,

and therefore, N =N PN
Gq = Gk - ququ
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or

~

G, = (1+qu) 1Gk

The last equality implies that

~

Gylg) = (I+Grq) ' Gulq) = —(v—1),

because R R
(I+Grg) "' Grlg) = —(v—1)

is equivalent to

~

Gilq) = —(I+Geg)(v—1) = —(v— 1) — (Gxg)(v) + (Geg) (1)
= v+ 1—14v+Gilqg) = G(q).

We may therefore apply Theorem 23.5 to obtain

[[v—=1]] T =Gyl 2

2 < HQH 220
(Rn) n =l

0'/2 —6/2 0'/2

where 7, p, and o are as in that theorem. It remains only to check that the potential

€ LP (R") with the special behavior at infinity belongs to L" “ R™). But that is a
q loc p y g c/2
very simple exercise. Hence, the latter inequality leads to

P > Y
B -a@)l <CllglP 5 ('(5’9)'>, £40

Lé’;rzl (R") |§ |
with the same y. If ¢ and ¢, are as ¢, then

G1(E) (&) = |31 (8) — g + a8 — B(E)] < 31 (&) — g8l + 4§ — (&)
) )

( (
> Y > Y

r p

<Clail? ('(5@ ') FCllasl? sy (% ') 0
Ly (r) Ly (R

if (E, 0) = 0. Thus, this theorem is proved, because (E, 0) = 0 precisely as 0 runs
through an (n — 2)-dimensional hemisphere see [31, 32]. O

Theorem 44.3 (Saito’s formula). Under the same assumptions for q(x) as in
Theorem 44.2,

lim k" l/ / —1/(9 G,x) (k 6/ e)dedel (277,') / ( )dy
k—-+o0 S m Jre =yt
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where the limit holds in the classical sense for n < p < oo and in the sense of distri-
butions for 5 < p < n.

Proof. Let us consider only the case n < p < 0. The proof for 5 < p < n requires
some changes.
By definition of the scattering amplitude,

I::k”*l/ ]/ Ak, 0',0)e 4004040’
S}’l* S)l*

— ! q(y)dy/ / eik(@—@’,y—x)dedel
R sn—1 Jgn—1

+&71 [ g(y)dy / 1 / le‘ik(el*y)R(y,k,G)e_ikw_e,”‘)dede' =1 +Dh,
R)l Sn* S?l*
where R(y,k, 0) is given by
R(y,k,0) / G{ (ly—2l)q(z)u(z,k, 8)dz

and u(z,k, 6) is the solution of the Lippmann—-Schwinger equation. Since

2
/ / eik(e—@',y—x)dedel — / eik(e’y_x>d6
sn—1 Jgn—1 sn—1

1 2
47"~ (/n eik\y—x\ cosl,l/(sin W)n—Zdw>
0

G
T )
O

we have that I; can be represented in the form

=k [ IO sy

n o — [ 2/

We consider two cases: k|x —y| < I and k|x—y| > 1. In the first case, using Holder’s
inequality the integral /] over {y : k|x—y| < 1} can be estimated by

lqg(y)|(klx—y[)"—*

Jp—yl<t = y2

1 v ﬁ
< CKk*~ (/ |Q(Y)|Pd)’> (/ l-dy)
k=<3 Jh—yl<t
1 1
—o ( / |q<y>ﬂdy) "k ( [ |q<y>|f’dy) "o
r—y|< } —yl<t

k

11| < Ck

dy



44 Some Inverse Scattering Problems for the Schrodinger Operator 499

as k — 4o, since n < p < oo, This means that for every fixed x (or even uniformly
with respect to x) I{ approaches zero as k — . Hence, we have only to estimate the
integral I} over {y : k|x —y| > 1}. The asymptotic behavior of the Bessel function
Jy(+) for large argument implies that

q(y)

—y> 1 Jr—y[=2

2
2 nt 1
————cos (klx—y| — = + = )| d
x[ nk|x_y|cos(|x ¥l 4+4)+0<(kx_y|)3/2)] y
(

I = (2n)"k

q(y)
—y> 1 e —y[r2

y [Zcosz(k|x—y|_rf+z)+0< ! )]dy
(

_ (@n)" / q(y)dy
|

2m)"'k

N N
(2m)" / q(y) ( nmon
+ I os (2k|x — f—+—)d
A P N (e =y )@
1 lq(y)[o(1)

.M 42, 50
ool oyl dy=:1,"+1," +1".

It is clear that

() _ (27:)"/ q(y)dy

lim /| g
k—-oo T Jre |x—yn
and

lim 1) = 0.
k— oo

The latter fact follows from the following arguments. Since g belongs to L” (R") for
p > n and has the special behavior at infinity, we may conclude that the L' norm of

the function —2U ,?, r is uniformly bounded with respect to x. Hence it follows from

[x=y|
the Riemann—Lebesgue lemma that 1 1(2) approaches zero uniformly with respect to

x as k — +oo. For 11(3) we have the estimate

|I<3)\< c / lq(y)|dy
L= n

1-6 |x_y|n—8'

If we choose & such that 1 > & > 7 then Jgn ‘xqg f,?f 5 will be uniformly bounded
(3)

with respect to x. Therefore, I;,”" — 0 as k — oo uniformly with respect to x. If we
collect all estimates, we obtain that
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27)" d
lim 7, — %) / q(y)yl'
Re [x—y|"~

Our next task is to prove that I, — 0 as k — oo. Since

L=k" / q(y dy/ / (e HOIR(y k. 0)e MO0 Y apde,
sn=1 Jsn—

where
R(y,k,0) = / G (ly—z2)q(z)ulz.k, 0)dz = —Gi(qu),

one can check that R(y,k,0) = —Gq(qeik(evz)). Hence, I, can be represented as
s q(y)dy eik(@’,xfy)de/ . é\q Q(Z)/ eik(@,zfx)de
R® sn—1 sn—1

Tz (=) [ Jua(kx—z])
=y [ a6, <q<z>2ﬂ> @

(klx—y]) =" (Klx—z])"2
(27)"k ( )J%(k‘x—ﬂ) z <| | L e z(k\x z)) .
B 1) === P4y,
anz (|x_y|)T q q (|x_z|) Ly

where I?q is an integral operator with kernel
1
Ky(x,y) = =1g(0)|2 Gy (k,x,y)q 1 (v)-

It follows from Theorem 23.5 that K,, : L?(R") — L?(R") with the norm estimate

C
HK 22 < o

where 7 is as in that theorem. We can therefore estimate /> using Holder’s inequality

as
)12k“x y|)
I I —dy.
I < ok [ la0) =y

By the same arguments as in the proof for /; we can obtain that

J% 2(k|x—y|)
\CI( )\W

dy < oo

uniformly with respect to x. This implies that



44 Some Inverse Scattering Problems for the Schrodinger Operator 501
C
LI <——0
Bl < & —

as k — oo, O

Remark 44.4. This proof holds also for n = 2. In dimension n = 1 there is an analo-
gous result in which we replace the double integral on the left-hand side by the sum
of four values of the integrand at 6 = +1 and 6’ = +1.

Theorem 44.5. Let us assume that n > 2. Under the same assumptions for qi(x)
and qy(x) as in Theorem 44.3 let us assume that the corresponding scattering am-
plitudes A,, and A,, coincide for some sequence kj — o and for all 6',0 € Skt
Then q1(x) = g2(x) in the sense of LP for n < p < e and in the sense of distributions
for 3 <p<n.

Proof. Saito’s formula shows that we have only to prove that the homogeneous

equation
o gly)dy
vio= [ pP

has only the trivial solution ¢(y) = 0. Let us assume that n < p < . Introduce the
space Sp(R") of all functions from the Schwartz space that vanish in some neigh-
borhood of the origin. Due to the conditions for the potential g(x) we may conclude
(as before) that y € L*(R"), and v defines a tempered distribution. Then for every
function ¢ € So(R") it follows that

0= (y,9) =GCu{IE]7'q(&), ) = Ca(a(&). 1€ ).

Since @(&) € So(R"), we have || !¢ € So(R") also. Hence, for every h € So(R")
the following equation holds:

This means that the support of g(&) is at most at the origin, and therefore g(£) can

be represented as
q(&) = z CoyD%$6.

o <m

Hence, ¢(x) is a polynomial. But due to the behavior at infinity we must conclude
that ¢ = 0. This proves Theorem 44.5. a

Let us return now to the Born approximation of ¢(x). Repeated use of the Lippmann—
Schwinger equation leads to the following representation for the scattering ampli-
tude A(k,0’,0):
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/ . —ik(0' ) S0 ik(x.0)
Ak, 0",0) =3 | e q (nK-(Jg|2e")(y)dy

k(o' Sm 1
+ | e Mgy ()K" (]2 (u(x,k, €)) ()dy,

where u(x,k,0) is the solution of the Lippmann—Schwinger equation and K is an
integral operator with kernel

K(x,3) = g0 G (i =)a, ().

The equality for A can be reformulated in the sense of integral operators in L>(S"~!)
as

A=Y @ (k)sgngK’ dy(k) + D (k) sgngK" ' D (k),

~.
Ragh

where @y and @ (k) are defined by (23.9) and (23.10), and @j is the L?- adjoint of
Dy.
Using this equality and the definition of Born’s potential ¢gp(x), we obtain

a8(0) = Y, Fy' | @5(K)senakI@o(k)] + 7" @5 (k) sen g™ 0 (k)|
j=0

where the inverse Fourier transform is applied to the kernels of the corresponding
integral operators. If we rewrite the latter formula as

Z q;(x) + g1 (x),
then the term ¢; has the form

010 = it ([ a1 02 [ gy a0y )

Fia' (@ sangk!(|q2eH0')))

1 o N -
= (2n)"/ o ik(6—0 7x)du(k, 0',0) (q>gsganJ(|q|%elk<e ,y)))’
M

and a similar formula holds for ¢+ with obvious changes.

In order to formulate the result about the reconstruction of singularities of the
unknown potential g(x), let us set A(k,0’,0) = 0 for |k| < ko, where ko > 0 is arbi-
trarily large.

Theorem 44.6. Assume that the potential q belongs to Ly« (R") L' (R") with (3n—
3)/2<p<eo,n>2 and 26 > 1— (n+1)/(2p). Then for all j > 2 the terms
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qj(x) and q(x) in the Born series belong to the Hélder class C*(R") for all o0 <
[~ (3n—3)/(2p).

Proof. For x1,x; € R" we have (see [31])

4;(1) —q;(x) =C |k\"*1dk/ dG/ d6'(1—(6,0"))
‘k‘Zko sn—1 sn—1

« @ sgn (q)RIy(k, 6, 0) (e KO0/ x) _ k00"

(44.3)

For [ = 1,2 let us define ¢;(8) = &X(®1) ¢ [2(S"~1) and E;(0) = ;0 € (L>(S* 1))
Then the latter difference is equal to

C ok |k|n71dk ((61 ) (I’S sgn (q)l?fcboa )L2(§n71) — (ea, Cbg sgn (‘Z)I/(\jq’oez)y(gnq)
=Ko
_ (El , (DE)k sgn (q)l?j(DOEl )LZ(S”*I) + (E27 (Dg sgn (q)kj(DOEZ)Ig(Sn—I)) )
(44.4)
Since ||El 7E2||L2(Snfl) = ||€] 762”1‘2(8"71) and ||el||i2<S"*|> — ‘Sn71|’ we obtain

from (44.3)—(44.4) the estimate

4i00) = aj(x2)| S Cu [ k" ler —eall o) |06 sen (4) K7 | dk.

|k[>ko

Note that (see [43])

le1 = exlfagrry = [ (2= eh@mm) — HOn=m)qp
S

n/2ln=2) 2 (k| |x: —le)>
(k| |x1 —x2]) (=22 )7

—2(jer - ¢

where Jy is the Bessel function of order v. By Lemma 23.13 and Theorem 23.5 we
get
ch*sgn( K/ @ H < __c
0 q 0| = K[ Fn=2”
where y=1—(n—1)/(2p).
If we set r = |x; — x|, we have to estimate the integral

~ k! n—1 11/2‘](”*2)/2(]”.) 2
/ko kyG+1)+n—2 <S | = (2m) (kr)(nZ)/Z) dk.

We split this integral into two parts: over 1/r < k < oo and over kg < k < 1/r. By
the asymptotics of the Bessel functions for large argument, the first part can be
estimated from above by
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T (j+1)—2
St ——————dk < C, VT~
| | 1/r kyG+D)+n=2"" ="

where j is chosen so large that y(j+ 1) > 2. For the second part of the integral we
use the asymptotics of the Bessel functions for small argument [23], namely,

x=2)/2

Jn-2)/2(x) = WF(;@/Z)(I +0(x*), x—0.

Since |[S"~!| = 27"/%/I"(n/2), we may estimate the second part from above by

Cr 1/’, kndk /l/r dk < Crmin(l,y(j+1)—2)'
o kY

ko  kYUFDAn=2 j+H-2 =

To finish the proof we use the fact that ¢; € L*(R"), which holds since

71
) <€ s ez b+ [Nz 1)k <

for y(j+ 1) > 2. The latter condition implies, for y=1—(n—1)/(2p) and j > 2,
that (3n —3)/2 < p < eo. For g the proof is the same with obvious changes. This
completes the proof. m]

The first nonlinear term g; (x) can be rewritten as

['(n/2)

32 Jon G(y —x,z—x)q(y)q(z)dydz, (44.5)

q1(x) = —

where G is the tempered distribution

/ / / |y Zl ik(6,2)—ik(6"y) ‘k|” 1|6 9|2dkd9d9/
sn—1 Jgn—1
Lemma 44.7. The 2n-dimensional Fourier transform of G equals
c &n)
& :
G&m) = ~Crigamp

where C,, is a positive constant depending only on n.

Proof. The 2n-dimensional Fourier transform of G becomes

G(&.m) //]/, K1l — Q‘dedeG/ ~0)+E+19) gy
N sn

x / G (|s])ei(1409)gs,
JR
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Using the fact that

we may approximate G in the topology of §'(R?") by (/;; given by

@:// / K110 — 0/ 2dkdodo’
0 sn—1 Jgn—1

KO0 ny)  Gi(K(O-0)-E-1)
X/" |n|2_2k(9an)_18+|n|2+2k(63n)+18 Y

If we define the variable { = k(0 — ') with the Jacobian $k"~1|0 — 6'|?, then k6
depends on { as
P o

2(¢,6")

Since the Fourier transform of 1 equals (27)"d, it follows that

Gaem=200r [ [

) S(C-E-m . s(+E+m) aca

2 / . 2(n.o' .
P —2(8,0) + 5T —ie N2 +2(8.0) — B e

) , 1 1 '
=2(2m) /S1 (f,0°) ((& o) _ie(£,0) " (5,6) +ie(/, 90) 4

where f =& 41 and g = |E|>(E + 1) — |E +n|*E. This expression leads us to

k6 =¢—

et e s, [ B8 e (0 (E)
G(éan)_}:_)oGS(éan) 4(2”) p- './Sn—l (g,O’)de Ca |g|2 C"|§‘2‘n‘2’

where we have used the precise value of the principal value integral; see [30, proof
of Lemma 2.4]. O

Lemma 44.8. Assume that the potential q satisfies all conditions of Theorem 44.6.
Then the first nonlinear term q admits the representation

C/ ) g(y)dy

N =G Rn |x —y|"

with some positive constant C,, depending only on n.
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Proof. The representation (44.5) and Lemma 44.7 imply that

() = 75 (| f;f;)'za(é)a(n)) (5.2) = o7y (ﬂ‘??, ”ﬁ;ﬂ?) )

where ﬁzjll denotes the 2n-dimensional inverse Fourier transform. The claim fol-
lows now from .7 ~1 (£ /|E|?) = Cux/|x|". O

Lemma 44.9. Under the same assumptions on q as in Theorem 44.6 we have that

(1) for3(n—1)/2 < p <o, q1 belongs to (WI}72571(R"))2 with1—(n+1)/(2p) <
26 <n—n/p;
(2) for p = oo, q belongs to the Holder space C' (R").

Proof. We introduce the Riesz potential / ~1 and Riesz transform R (see [37] and
Chapter 21) as

) =7 @‘?) (W), Rf)=7" (fé?) (x).

Note that VI~! = R is bounded in L” (R") for all 1 < p < oo; see [37]. From [27] we
know that

—1.qp
1 'L6+1

(R") — L& (R")
for —n/p < 0 <n—1—n/p. This proves (1). Part (2) can be proved like [31, Lemma
2.2]. O

The latter steps lead to the following main result.

Theorem 44.10 (Reconstruction of singularities). Assume that the potential q be-
longs to LYs(R") N L' (R") with p and & as in Theorem 44.6. Then

(1) formax(3(n—1)/2,n) < p < e the difference qg — q is a continuous function
in R";

(2) for3(n—1)/2 < p <max(3(n—1)/2,n) the difference qg — q — q1 is a contin-
uous function in R”".

Proof. The proof of this theorem follows immediately from Lemmas 44.7, 44.8, and
44.9 and the Sobolev embedding theorem. O

The statement of Theorem 44.10 means that all singularities and jumps of the
unknown potential can be recovered by the Born approximation. In particular, if
the potential is the characteristic function of an arbitrary bounded domain, then this
domain can be uniquely determined from the scattering data using a linear method.



Chapter 45
The Heat Operator

We turn our attention now to the heat operator
L=0 —A,, (xt)eR"xR.

The heat operator is a prototype of parabolic operators. These are operators of the
form

O+ Y ag(x1)df,

|| <2m

where the sum satisfies the strong ellipticity condition

(=)™ Y aalx,n&* > vIE[",

la|=2m

for all (x,7) € R" x R and & € R"\ {0} with v > 0 constant.
We begin by considering the initial value problem

du—Au=0, inR"x(0,),
u(x,0) = f(x).

This problem is a reasonable problem both physically and mathematically.
Assuming for the moment that f € S, the Schwartz space, and taking the Fourier
transform with respect to x only, we obtain

! 45.1)

(&, 1)+ |EPu(g, 1) =0,
u(G,0) = f(&)-
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If we solve the ordinary differential equation (45.1), we obtain

(&, =e S e,

Thus (at least formally)

u(x,t) = 7! (eflé\sz(g)) — (2n) "2 e ! (ef\ﬂzf) (x,1) = f K (x),

where .
K(x) = 2n) 27! (e—|5‘2’> = (4nr) e 150, (45.2)

is called the Gaussian kernel. We define K;(x) = 0 for ¢ <O0.
Exercise 45.1. Prove (45.2).

Let us first prove that

K,(x)dx =1.
JR"

Indeed, using polar coordinates, we have

NG hed 2
e—%dx:(ma)—"/z/ r"—le—mr/ de
0

x)dx = -/
K (x)dx = (471) 2/ -

n

]Rn
00 72
:(on(47rt)_”/2/ P le T dr
0
— o, (dmt) 2 / Tas) T e tva
0 2 s
= Dl [T e
2 0
_ 12
- 2T(n/2)

- %n*"/zr(n/z)

n "’ (n)2) = 1.

Theorem 45.1. Suppose that f € L= (R") is uniformly continuous. Then u(x,t) :=
(f *K;)(x) satisfies dyu — Au =0 and

[lu(50) = F Ol L=y = O

ast — 0+.
Proof. For fixedt > 0,

i bl (x=y* n
A (x—y) = (d47) "% (' = 2t)

and for fixed |x —y| # 0,
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o o (x—=y* n
K (x—y) = (4mr) "% (' — —2,)

Therefore, (dy — Ay)K; (x —y) = 0.

But we can differentiate (with respect to x and ¢) under the integral sign, since
this integral will be absolutely convergent for all # > 0. We may therefore conclude
that

du(x,t) — Awu(x,t) = 0.

It remains only to verify the initial condition. We have

) = £(0) = (F+K) ) = 100 = [ FOI(x=)dy= 1 (x)

_/fx 2)Ki(z dz—/f VK (z

= [ (fx=2) = f(x))Ki(2)dz

The assumptions on f imply that

(e, )= FOI < sup | Flx—nvE) - / Ki(n

x€R™|n|<R

P2l [ Ki(m)dn < e/24e)2

for small ¢ and for R large enough. So we can see that u(x,7) is continuous (even
uniformly continuous and bounded) for (x,7) € R” x [0,e0) and u(x,0) = f(x). O

Corollary 45.2. u(x,t) € C*(R" xR,).

Proof. We can differentiate under the integral sign defining u as often as we please,
because the exponential function increases at infinity faster than any polynomial.
Thus, the heat equation takes arbitrary initial data (bounded and uniformly continu-
ous) and smooths them out. O

Corollary 45.3. Suppose f € LP(R"), 1 < p < oo. Then u(x,t) := (f K¢ ) (x) satis-
fies du— Au= 0 and
(1) = F ) llp ey = O

ast — 0+. And again u(x,1) € C*(R" x R,).

Theorem 45.4 (Uniqueness). Suppose u(x,t) € C*(R" x R, ) NC(R" x R.) satis-
fies diu—Au=0fort >0 and u(x,0) =0. If for every € > 0 there exists ce > 0 such
that
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lu(x,1)] < e, Vol 1)| < cee P, (45.3)

then u = 0.

Proof. For two smooth functions ¢ and v, it is true that

-

Py —AY)+ (Ao +A0) =Y, 9;(Wdip— diy)+ 9 (oY) = Vi, - F,
j=1

where F = (y0,Q — @1V, ..., W@ — I, w, o). Given xg € R” and o > 0, let

us take
v(x,1) =u(x,t), @(x,1) :Kl()*l(x*xo)'

Then
dy—Ay=0, t>0,
Go+Ap=0, t<i.
If we apply the divergence theorem in the region

Q={(x)) eR"XR, : x| <r0<a<t<b<ty},

we obtain

/ F-vdo = /‘x|<r u(x,b) Ky —p(x — x0)dx — u(x,a)Kiy—q(x — x0)dx

el <r

+/ d;/m Z (5,1)jKiy -1 (v = x0) = Ky -1 (r—0) u(x,1)) “Ldor ()

Letting » — oo, the last sum vanishes by assumptions (45.3). We therefore have

0= - u(x,b)Kyy—p(x — xo)dx — /]R" u(x,a)Kyy—q(x —xo)dx.

Let us prove that

lim Kiy—b(x — x0)u(x,b)dx = u(xo,0)

b—ty— JRn
and
lim Kiy—a(x—x0)u(x,a)dx = 0.
a—0+ JRn
Since

. Kiy—p(x—x0)dx =1,
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we have after a change of variables that

/ Kiy—b(x —x0)u(x,b)dx — u(xo,t0)
Rn

= | Ky—p(x—x0)[u(x,b) —u(xo,t)]dx
R

= | Kz (2)[u(x0 + 2,70+ T) — u(xo,10)]dz.

We divide the latter integral into two parts: |z| < & and |z| > &. The first part can be
estimated from above by

sup |u(xp +z,70 + T) — u(xo0,%) / K:(z

|z]<é

< sup |u(xo+z,70+7) — u(xo,70)| — 0
lz]<8

as T — 0 and 6 — 0 due to the continuity of u(x,#) at the point (xg,%). The second
part can be estimated from above by (see (45.3))

/

c Ko(z)efotdPq, < % / eI/ el g,
© Jupa (4w7)2 Ji>5

/
CS

__ % _wp ~yP/a+etly?
(4moy2’ -/\y|>6/ﬁ ) w0

as T — 0. Thus the first limit is justified.
For the second limit we may first rewrite the integral as

/lRiK,O,a(x—xo)u(x,a)dxz/RKZO,a(z)u(xo—i-z,a)dz

= Kiy—a(2)u(xo +2z,a)dz+ Kiy—a(2)u(x0 +2,a)dz.

lz|<R |zZ|>R

The first term in the latter sum can be estimated from above by

sup |u(xo +2z,a) / Kiy—a(z)dz < sup |u(xo+z,a)] — 0
‘z|<R |Z‘<R

as a — 0+, since u(x,t) is continuous up to the boundary (¢t = 0) and therefore
uniformly continuous on compact subsets there due to the fact that u(xy+z,0) = 0.
The second term can be estimated from above by

Ce

W ‘/‘ e_|Z\2/(4(t0—a))+£‘x()+z|2dZ o
o —a))" Z|>R

asR — 4+ anda — 0. O
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Theorem 45.5. The kernel K, (x) is a fundamental solution for the heat operator.

Proof. Given € > 0, set

Ki(x), t>¢€,
Kg(x’t):{ot() 1<e

Clearly K¢ (x,t) — K;(x) as € — 0 in the sense of distributions. Even more is true,
namely, K¢ (x,7) — K;(x) pointwise as € — 0 and

/ IKe (x,1)| dx = / Ke(x,1)dx < / K(x)dx=1.
Rll Rn Rn
We can therefore apply the dominated convergence theorem and obtain

lim Ke(x,0)dx= | K (x)dx.
e—0+ JRn R”

So it remains to show that as € — 0,
01 Ke (x,1) — AxKe (x,1) — O(x,1),

or
(0Ke — AKe, @) — 9(0), @ € Cy (R,

Using integration by parts, we obtain

(OKe = AKe,9) = (Ke, =00 = 40) = [ at [ Ki(x)(~0—2)plx.0ax
_ f/Rndx/:Kt(x)z?,(p(x,t)dt
- /g dr /R nK,(x)Axw(x,tfx
=/R Ke(w)o(re)ds+ [ dr [ aKi(x)g(r)ds
~ [ nAxlq(x)w(m)jx
:/Ran(x)go(x,S)dx—f—/g dt/Rn(B,—A)Kt(x)qo(x,t)dx

— [ Ke@)o(x,e)dx — 9(0,0), &—0,
. Rll

as we know from the proof of Theorem 45.1. (]

Theorem 45.6. If f € L' (R""!), then
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.t n
)= (F oK) = [ a5 [ Kosle=yfus)dy

is well defined almost everywhere and is a distributional solution of dyu — Au = f.
Exercise 45.2. Prove Theorem 45.6.

Let us now consider the heat operator in a bounded domain 2 C R” over a time
interval 7 € [0,T], 0 < T < . In this case, it is necessary to specify the initial

temperature u(x,0), x € £, and also to prescribe a boundary condition on 92 x
[0,T], see Figure 45.1.

- = tr=0

Fig. 45.1 Geometry of the boundary value problem for the Heat equation in 2 and 0 <t <T.

The first basic result concerning such problems is the maximum principle.

Theorem 45.7. Let Q be a bounded domain in R" and 0 < T < oo. Suppose u
is a real-valued continuous function on Q x [0,T| that satisfies du — Au =0 in
Q x (0,T). Then u assumes its maximum and minimum either on Q x {0} or on
22 x[0,7].

Proof. Given & > 0, set v(x,t) := u(x,t) + £|x|*>. Then 9,y — Av = —2ne. Suppose
0 < T’ < T. If the maximum of v in © x [0,7'] occurs at an interior point of € x
(0,T"), then the first derivatives V,,v vanish there and the second derivative afv
for all j =1,2,...,n is nonpositive (consider v(x,#) a function of one variable x;,
j=1,2,...,n). In particular, d;v = 0 and Av < 0, which contradicts d;v — Av =
—2ne < 0and Av =2ne > 0.

Likewise, if the maximum occurs in £ x {7}, then we have d,v(x,T’) > 0 and
Av(x,T") <0, which contradicts d,v — Av < 0. Therefore,

“max u< max v< max u+ e max x|,
axpr]  axer]  (@x{0Hu(dQx[0.T]) Q
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It follows that fore = Qand T/ — T,

max u < max u < max u.
ax07]  (@x{0Hu(@ex[0,1])  — @x[0.7]

Replacing u by —u, we can obtain the same result for the minimum. (]

Corollary 45.8 (Uniqueness). There is at most one continuous function u(x,t) in
Qx[0,T], 0 <T < oo, that agrees with a given continuous function f(x) in Q x {0},
with g(x,1) on dQ x [0,T) and satisfies dju — Au = 0.

Let us look now more closely at the following problem:

du—Au=0, inQ x(0,00),
u(x,0) = f(x), inQ, (45.4)
u(x,t) =0, ondQ x (0,00).

This problem can be solved by the method of separation of variables. We begin by
looking for a solution of the form

u(x,t) = F(x)G(t).

Then
u—Au=FG —GAF =0
if and only if
G AF
i S—
G F ’
or

G +2’G=0, AF+A*F=0,
for some constant A. The first equation has the general solution
G(1) = ce ™,

where c is an arbitrary constant. Without loss of generality we assume that c = 1. It
follows from (45.4) that

AF =—A%F, inQ
{ AF, inQ, (45.5)

F =0, ondQ,

because u(x,t) = F(x)G(t) and G(0) = 1.
It remains to solve (45.5), which is an eigenvalue (spectral) problem for the
Laplacian with Dirichlet boundary condition. It is known that the problem (45.5) has
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. The numbers

infinitely many solutions {F j(x)};o:l with corresponding {Ajz}m 1

=
—?sz are called eigenvalues, and the Fj(x) are called eigenfunctions of the Lapla-
cian. It is also known that A; >0, j=1,2,..., l]? — oo, and {Fj(x)};o:l can be
chosen as a complete orthonormal set in L*(£2) (or {F;(x) }7:1 forms an orthonor-

mal basis of L?(£2)). This fact allows us to represent f(x) in terms of Fourier series:
Fl) =X fiF(x), (45.6)
=1

where fj = (f,Fj);2(q) are called the Fourier coefficients of f with respect to

{Fj};o:r
If we take now

ulx,t) =3 fiFi e, (45.7)
j=1
then we may conclude (at least formally) that
u = 3 APF; 7M’—m . . A
=" Zfl)th/(x)e = Zf,AF,(x)e i" = Au,
j=1 =

that is, u(x,) from (45.7) satisfies the heat equation and u(x,7) =0 on dQ x (0, o).
It remains to prove that u(x,) satisfies the initial condition and to determine for
which functions f(x) the series (45.6) converges and in what sense. This is the main
question in the Fourier method.

It is clear that the series (45.6) and (45.7) (for t > 0) converge in the sense of
L%(Q).Ttis also clear that if f € C' () vanishes at the boundary, then u will vanish
on d2 x (0,0), and one easily verifies that u is a distributional solution of the heat
equation (r > 0). Hence it is a classical solution, since u(x,7) € C*(£2 x (0,e0)) (see
Corollary 45.3).

Similar considerations apply to the problem

du—Au=0, inQ x(0,e),
u(x,0) = f(x), inQ
dvu(x,t) =0, ondQ x (0,).

This problem boils down to finding an orthonormal basis of eigenfunctions for the
Laplacian with the Neumann boundary condition. Let us remark that for this prob-
lem, {0} is always an eigenvalue and 1 is an eigenfunction.

Exercise 45.3. Prove that u(x,) of the form (45.7) is a distributional solution of
the heat equation in Q x (0,0).



516 Part IV:  Partial Differential Equations

Exercise 45.4. Show that [J |u(x,#)[>dx is a decreasing function of # > 0, where
u(x,t) is the solution of

Uy — Uy =0, O<x<mt>0,
u(0,¢) =u(m,t)=0, >0.



Chapter 46
The Wave Operator

The wave equation is defined as
Pu(x,r) — Au(x,t) =0, (x,1) e R"xR. (46.1)

The wave equation is satisfied exactly by the components of the classical electro-
magnetic field in vacuum.
The characteristic variety of (46.1) is

char,(L) = {(§,7) e R : (£,7) #0,7° = [§*},
and it is called the light cone. Accordingly, we call
{(&,7) echary(L): 7> 0}

and
{(&,7) € chary(L) : T < 0}

the forward and backward light cones, respectively.
The wave operator is a prototype of hyperbolic operators. This means that the

main symbol ‘
z ag(x,1)E%T/
lorl+j=k

has k distinct real roots with respect to 7.

Theorem 46.1. Suppose u(x,t) is a C* function and that d>u — Au = 0. Suppose
also that u =0 and dyu = 0 on the ball B={(x,0) : |x —xo| <to} in the hyperplane
t =0. Then u =0 in the region Q = {(x,t) : 0 <t <19, |x—x0| <t9—1}.

(© Springer International Publishing AG 2017 517
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Proof. By considering real and imaginary parts we may assume that u is real. Define
By = {x: |x—xo| < to—t}. Let us consider the following integral:

E0) =5 [ (w0 V) a

which represents the energy of the wave in B; at time 7. Next,

E'(t) = /B (u,u,, + i 8ju(8ju),> dx

J=1

1
5 ) ((ut)2 + |qu|2) do(x) =1+ 1.

t

Straightforward calculations using the divergence theorem show us that

Jj= J=1

11:/ (Z& [(dju)u;] — zauu,+utun>dx
B

n
= | wu u)dx+ (dju)vjudo
Bt t( tt 331‘1:21 Y ()

1 2 2
< < — =—D.
< /83, lus| |[Vyuldo(x) < 3 ./83, (|u,| +|Viy )dG(x) b

HenCe
dt '

But E(¢) > 0 and E(0) = 0 due to the Cauchy data. Therefore, E(1) =0if 0 <t <t
and thus V, ,u = 0 in Q. Since u(x,0) = 0, it follows that u(x,r) =0 also in Q. O

(X(),l‘o)

7 N

Fig. 46.1 Geometric illustration of the backward light cone at (xo,%).
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Remark 46.2. This theorem shows that the value of u at (xg,#y) depends only on the
Cauchy data of u in the ball {(x,0) : |x —xo| < 1y}, see Figure 46.1.

Conversely, the Cauchy data in a region R in the initial (r = 0) hyperplane influ-
ence only those points inside the forward light cones issuing from points of R.
A similar result holds when the hyperplane r = 0 is replaced by a spacelike hyper-
surface S = {(x,7) : = @(x)}. A surface S is called spacelike if its normal vector
v = (V/,v) satisfies |vg| > |V'| at every point of S, i.e., if v lies inside the light
cone. This means that [Ve| < 1.

Let us consider the Cauchy problem for the wave equation:

Pu—Au=0 R"¢r>0
{,u u , XE€ , >0, (46.2)

M(X,O) :f(x)a 8,u(x,0) = g(x)'

Definition 46.3. If ¢ is a continuous function on R” and » > 0, we define the spher-
ical mean My (x,r) as follows:

Moter) =g [ p@do) =5 [ ottty

Lemma 46.4. If ¢ is a C? function on R", then My(x,0) = ¢(x) and

n—1

AMy(x,r) = <8r2 + 8r> My (x,r).

Proof. Ttis clear that

Mp(x0)= o [ 040 () = (r).

For the second part we have by the divergence theorem that

1 “ 1
o) = o [ Svidiptermaot) = [ ragt
n Y= j: =

Wy
: Ap(x+2)d
= — X
r"*la)n < ¢ <)daz
1 LA
= " d/ Ap(x+py)do(y).
o o0 [ detrpydoty)
We therefore have
n—1

dr ("9 My (x,r)) =

AQ(x+ry)do(y) =" AMy (x, 7).
@n Jlyl=1
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This implies that

(n—1)7"20,My(x,r) + "' 9* My (x,r) = r" ' AMep(x, 1),
which proves the claim. (]
Corollary 46.5. Suppose u(x,t) is a C? function on R"*! and let

1

My(x,r,t) = T
n

1
/‘X_Z‘:ru(z,t)do(z) = gn/ly\zl u(x+ry,t)do(y).

Then u(x,t) satisfies the wave equation if and only if

<ar2 + "; ! ) M, (x,r,t) = 02 My (x,r,1). (46.3)

Lemma 46.6. If ¢ € C*T(R), k > 1, then

2 (1) () - (2) o),

Proof. We employ induction on k. If k = 1, then

1 k—1
%#(10) (P 00) =) =alp-+re) =2+ "

(%)k(r%""): (%)( ') =20 +r¢".
2(1)" (o) (2) )

and

Assume that
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) ((2k+1)r2k(p’+r2k(r(p’)’)

k
) ((2k+ 1)r2k(p/+r2k(p/+r2k+1(p//)

(2k + 2)r2k(p/ 42k (p”)

By the principle of induction, the proof is complete. (]

Corollary 46.5 gives that if u(x,?) is a solution of the wave equation (46.1) in
R" x R, then M, (x,r,t) satisfies (46.3), i.e.,

(af + ! a,) My = M,

with initial conditions

M, (x,r,0) =M (x,r), I M,(x,r,0) = Mg(x,r), (46.4)
since u(x,0) = f(x) and dyu(x,0) = g(x).
Let us set
n-3
u(x,rt) = o) (r"m,) =TM,
PR . r u) — us (46'5)
flx,r):=TMys, g(x,r):=TM,,
forn=2k+1,k=1,2,....
Lemma 46.7. The following is true:
2~ 92~
U= (46.6)
M|t=0 = f, at’/i|t=0 =g,

where u, ﬁ and g are defined in (46.5).

Proof. Since n =2k—+ 1, we have % —=k—1and n—2 =2k — 1. Hence we obtain
from Lemmas 46.4 and 46.6 that

9% = IPTM, = 9> (‘i’)k_l (r2k—1Mu) - (i’)k (rzkarMu>

k—1
_ (‘9’) (2kr2’<*zarMu+r2’<*1a3Mu)

r
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k—1 k=1
() (2 (o)) = (2) 7 (o)
r r r
k—1
=} (‘i) (P'm,) = i

Moreover, the initial conditions are satisfied due to (46.4) and (46.5). ([l

But now, since (46.6) is a one-dimensional problem, we may conclude that
u(x,r,t) from Lemma 46.7 is equal to

1 ~ ~ r+t
u(x,nt) = 3 {f(x,r+t) +f(x,r—t) +/7 §(x,s)ds}. (46.7)

Lemma 46.8. Ifn=2k+1,k=1,2,..., then

. u(x,ne)
(1) = Mu(x,0,1) = lim 7=

where (n—2)!1'=1-3-5---(n—2) is the solution of (46.2). We have even more,
namely,

1 T
w0 = o (9l +&0x0)) (46.8)

Proof. By (46.5) we have

d(x,rt) = (‘Z’)kl G (9,)“ (k=) m, + 20,

r

= (2k—1)(2k—3)---1-M,r+0(r?), r—0,

or

u(x,nt)
WZMMJFO(V), r—0.

Hence i )
u(x,rt

M, (x,0,1) = lim ————.

ulx0.0) = lim

But by definition of M,, we have that M,,(x,0,7) = u(x,t), where u(x,t) is the solution
of (46.2). The initial conditions in (46.2) are satisfied due to (46.5). Next, since
u(x, r,t) satisfies (46.7), we have
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im u(x,rt) 1 lim (f(x,r—H) + f(x,r—t) +1/r+t§(x,s)ds>

r—0 (n—2)!"r  2(n—2)!1r—0 r rJr

1

= m (arﬂr:t +arﬂr:71 +§(X,t) —g;(x7 —l)) ,

because f(x,7) and g(x,#) are odd functions of z. We therefore finally obtain

ux,r,t)

lim = _12)” (0Tl +x0)).

r—0 (n—=2)!"r  (n

and the proof is complete. ([

Now we are in a position to prove the main theorem for odd n > 3.

Theorem 46.9. Suppose thatn>3isodd. If f € C En (R andgeC = (R™), then

) = {az (%) N (72 _ s niaoe)

+ (%>? (t"‘2/ylg(x4rty)d6(y))}

solves the Cauchy problem (46.2).

(46.9)

Proof. Due to Lemmas 46.7 and 46.8, u(x,t) given by (46.8) is the solution of the
wave equation. It remains only to check that this u satisfies the initial conditions.
But (46.9) gives us for small ¢ that

u(x,t) = My(x,t) +tMg(x,1) + O(t%),
which implies that
u(x,0) = My(x,0) = f(x), du(x,0) = My (x,0)+M;(x,0) = g(x).

The last equality follows from the fact that My (x,1) is even in ¢, and so its derivative
vanishes at t = 0.

Remark 46.10. If n = 3, then (46.9) becomes

) = 3 {o (1 [ rrmaot ) e [ etvrmot)

1
4r

{[ _swrmpomyse | viten)saot)

+ t/ylg(x—kty)dc(y)}.
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The solution of (46.2) for even n is readily derived from the solution for odd n
by the “method of descent”. This is just a trivial observation: if u is a solution of the
wave equation in R”*! x R that does not depend on x,, 1, then u satisfies the wave
equation in R” x R. Thus to solve (46.2) in R" x R with even n, we think of f and g
as functions on R"*! that are independent of x,,; 1.

Theorem 46.11. Suppose that n is even. If f € c' (R") and g € c'F (R™), then
the function

n—2
B # % z n-1 [ M
ust) = (n—1)!" w41 {8t ( ! ) <l i<t mdy
n—2
&1)2 n—1 g(x+ty)
+{ = ! Nk
(l ( /\y\sl Vi=y? ’

solves the Cauchy problem (46.2).

(46.10)

Proof. If nis even, then n+ 1 is odd and n+ 1 > 3. We can therefore apply (46.9)
in R"*! x R to get that

1
(l’l— 1)!!w,,+1

n—2
at>2 7[/‘
X9\ — " 1y +1y,s1)do
{t<t < )’?+~-~+y%+yﬁ+1:1f(x y+in)doB) | @6.11)

a2 [ .
+(;) (tn 1/2 . g(x+ty+tyn+])d6(5f)>},
yl+"'+yl1+yn+1:1

where y = (y,y,11), solves (46.2) in R"*! x R (formally). But if we assume now
that f and g do not depend on x,, |, then u(x,) does not depend on x,,1| either and
solves (46.2) in R" x R. It remains only to calculate the integrals in (46.11) under
this assumption. We have

u(x,r) =

/ v S ode@ = [ e )deG)
y V1= y V1=

—2f flern) 2

bl<t VI=D

because we have the upper and lower hemispheres of the sphere |y|> + yﬁ =1
Similarly for the second integral in (46.11). This proves the theorem.

Remark 46.12. If n = 2, then (46.10) becomes
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1 fx+1y) Coglx+ry)
R r: {@ <t~ i<t ﬂdy> +t-/\y\s1 \/Wdy}'

Now we consider the Cauchy problem for the inhomogeneous wave equation

Pu— A= w(x,t),
(46.12)
{u<x70> — f(x). Au(x,0) = g().
We look for the solution u(x,) of (46.12) as u = u; + up, where
8,2141 —Au1 = 07 (A)
MI(X,O) :f('x)a az‘l'tl(x70) :g(X),
and
dPuy — A_uz =w, B (B)
uz(x,O) = atuz(x,()) =0.

For the problem (B) we will use a method known as Duhamel’s principle.

n

Theorem 46.13. Suppose w € clal+! (R" X R). For s € R let v(x,t;s) be the solu-
tion of

IPv(x,t;5) — A (x,t;5) =0,
v(x,0;5) =0, Jhv(x,0;5) =w(x,s).
Then .
u(x,t) ;= / v(x,t —s;5)ds
0

solves (B).

Proof. By definition of u(x,t) it is clear that u(x,0) = 0. We also have
t
diu(x,t) = v(x,0;t) —|—/ ov(x,t —s;s)ds.
0
This implies that d;u(x,0) = v(x,0;0) = 0. Differentiating once more in 7, we get
1
dFu(x,r) = ;(v(x,0:1)) + dv(x,0:1) —l—/ Ov(x,t — 5;5)ds
0
t
=w(x,1) Jr/ Axv(x,t —s35)ds
0

't
=w(x,1) + Ay / v(x,t —s58)ds = w(x,1) + Acut.
Jo
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Thus u solves (B), and the theorem is proved. U

Let us consider again the homogeneous Cauchy problem (46.2). Applying the
Fourier transform with respect to x gives

{aﬁ(é,r) +[&Pacg.n =o,
0(E,0) = (&), Aal&,0) =F(&).

But this ordinary differential equation with initial conditions can be easily solved to
obtain

a(§,1) = f(&)cos(|€]r) +8(&)

sin([Sr) _ - sin(|&t) _ . sin(|&r)
A ( £ )*g@ Hi

This implies that

e = (Foa 2 ) v 7o (a0 ™)
o2 (1)) o ()
= f40®(x,1) +g* D(x,1), (46.13)

151

The next step is to try to solve the equation

where @ (x,1) = (2m) "2 F ! (M)

OFF (x,1) — AF (x,1) = 8(x)8(1).
By taking the Fourier transform in x we obtain
FF(&,1)+[EPF(§,1) = (2m) "8 ().

Therefore, F must be a solution of 92u+ |€|%u = 0 for ¢ # 0, and so

o [a(@)eos(El) +b(E)sin(E]r), 1<,
F(g’t){c(é)cos(lélt)+d(§)sin(|€|t)7 (>0,

To obtain the delta function at = 0 we require that F is continuous at f = 0, but Q,ﬁ
has a jump of size (27r)~"/% at t = 0. So we have

a()=c(&), [E(d(E)~b(&))=(2m) .

This gives two equations for the four unknown coefficients a,b,c,d. But it is rea-

sonable to require F(x,7) =0 fort < 0. Hence,a=b=c=0andd = (27)~ "/zlé‘
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Therefore,

—n/2sin(€]1)
(&J)—{(zﬂ) g 120 (46.14)

0, t<0.

If we compare (46.13) and (46.14), we may conclude that

F(x,1) = (2m) "7, (Sm'(('f'”) . 1>0,

and
D(x,1), >0,
D, (x,t) =
+(0f) {0, t <0,
is the fundamental solution of the wave equation, i.e., F(x,) with ¢ > 0.
There is one more observation. If we compare (46.9) and (46.10) with (46.13),
then we may conclude that these three formulas are the same. Hence, we may cal-
culate the inverse Fourier transform of

—n/2 Sin(|§|t)
@m) ]

in odd and even dimensions respectively with (46.9) and (46.10). In fact, the result
is presented in these two formulas.

In solving the wave equation in the region Q x (0,e), where Q is a bounded
domain in R”, it is necessary to specify not only the Cauchy data on £ x {0} but also
some conditions on d€2 x (0,°) to tell the wave what to do when it hits the bound-
ary. If the boundary conditions on dQ x (0,c) are independent of ¢, the method of
separation of variables can be used.

Let us (for example) consider the following problem:

Pu—Au=0, in Q x (0,),
u(x,0) = f(x), Ju(x,0)=g(x), in€Q, (46.15)
u(x,t) =0, on Q2 x (0,00).

We can look for a solution u in the form u(x,7) = F(x)G(¢) and get

s
{AF(x)+7L F(x)=0, inQ, (46.16)

F(x)=0, on dQ,

and
G'(1)+A%G(1) =0, 0<1<oo. (46.17)
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The general solution of (46.17) is G(t) = acos(At) + bsin(At). Since (46.16) has

oo

infinitely many solutions { F 1}7:1 with corresponding {;sz} . ljz — 40 (A >0),
4 =

and {F ,'}7:1 that can be chosen as an orthonormal basis in L?(£), the solution
u(x,t) of (46.15) is of the form

oo

u(x,r) =Y Fj(x)(ajcos(A;t) +bjsin(A;t)) . (46.18)
j=1

At the same time, f(x) and g(x) have the L?(Q) representations
109 = AR, 809 = S0, (46.19
Jj= =
where f; = (f,Fj);2 and g; = (g,Fj);2. It follows from (46.15) and (46.18) that
u(x,0) = 2aij(x), u (x,0) = i“lljbij(x). (46.20)
= j=

Since (46.19) must be satisfied also, we obtain a; = f; and b; = %g - Therefore,
J
the solution u(x,#) of (46.15) has the form

oo

u(x,r) =Y Fj(x) (fjcos(ljt) + /,ijgﬁin(lﬂ)) .

Jj=1

The series (46.18), (46.19), and (46.20) converge in Lz(Q), because {Fj}:.o:l is an

orthonormal basis in L? (). It remains only to investigate the convergence of these
series in stronger norms (which depends on f and g, or more precisely, on their
smoothness).

The Neumann problem with d, u(x,1) =0, x € d€2, can be considered in a similar
manner.
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