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Sturm-Liouville Eigenvalue Problems

6.1 Introduction

In the last chapters we have explored the solution of boundary value problems
that led to trigonometric eigenfunctions. Such functions can be used to repre-
sent functions in Fourier series expansions. We would like to generalize some
of those techniques in order to solve other boundary value problems. A class of
problems to which our previous examples belong and which have eigenfunc-
tions with similar properties are the Sturm-Liouville Eigenvalue Problems.
These problems involve self-adjoint (differential) operators which play an im-
portant role in the spectral theory of linear operators and the existence of the
eigenfunctions we described in Section 4.3.2. These ideas will be introduced
in this chapter.

In physics many problems arise in the form of boundary value problems
involving second order ordinary differential equations. For example, we might
want to solve the equation

a2(x)y′′ + a1(x)y′ + a0(x)y = f(x) (6.1)

subject to boundary conditions. We can write such an equation in operator
form by defining the differential operator

L = a2(x)
d2

dx2
+ a1(x)

d

dx
+ a0(x).

Then, Equation (6.1) takes the form

Ly = f.

As we saw in the general boundary value problem (4.20) in Section 4.3.2,
we can solve some equations using eigenvalue expansions. Namely, we seek
solutions to the eigenvalue problem

Lφ = λφ
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with homogeneous boundary conditions and then seek a solution as an expan-
sion of the eigenfunctions. Formally, we let

y =
∞
∑

n=1

cnφn.

However, we are not guaranteed a nice set of eigenfunctions. We need an
appropriate set to form a basis in the function space. Also, it would be nice
to have orthogonality so that we can easily solve for the expansion coefficients
as was done in Section 4.3.2. [Otherwise, we would have to solve a infinite
coupled system of algebraic equations instead of an uncoupled and diagonal
system.]

It turns out that any linear second order operator can be turned into an
operator that possesses just the right properties (self-adjointedness to carry
out this procedure. The resulting operator is referred to as a Sturm-Liouville
operator. We will highlight some of the properties of such operators and prove
a few key theorems, though this will not be an extensive review of Sturm-
Liouville theory. The interested reader can review the literature and more
advanced texts for a more in depth analysis.

We define the Sturm-Liouville operator as

L =
d

dx
p(x)

d

dx
+ q(x). (6.2)

The Sturm-Liouville eigenvalue problem is given by the differential equation

Lu = −λσ(x)u,

or
d

dx

(

p(x)
du

dx

)

+ q(x)u + λσ(x)u = 0, (6.3)

for x ∈ (a, b). The functions p(x), p′(x), q(x) and σ(x) are assumed to be
continuous on (a, b) and p(x) > 0, σ(x) > 0 on [a, b]. If the interval is finite
and these assumptions on the coefficients are true on [a, b], then the problem
is said to be regular. Otherwise, it is called singular.

We also need to impose the set of homogeneous boundary conditions

α1u(a) + β1u
′(a) = 0,

α2u(b) + β2u
′(b) = 0. (6.4)

The α’s and β’s are constants. For different values, one has special types of
boundary conditions. For βi = 0, we have what are called Dirichlet boundary
conditions. Namely, u(a) = 0 and u(b) = 0. For αi = 0, we have Neumann
boundary conditions. In this case, u′(a) = 0 and u′(b) = 0. In terms of the
heat equation example, Dirichlet conditions correspond to maintaining a fixed
temperature at the ends of the rod. The Neumann boundary conditions would
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correspond to no heat flow across the ends, or insulating conditions, as there
would be no temperature gradient at those points. The more general boundary
conditions allow for partially insulated boundaries.

Another type of boundary condition that is often encountered is the pe-
riodic boundary condition. Consider the heated rod that has been bent to
form a circle. Then the two end points are physically the same. So, we would
expect that the temperature and the temperature gradient should agree at
those points. For this case we write u(a) = u(b) and u′(a) = u′(b). Boundary
value problems using these conditions have to be handled differently than the
above homogeneous conditions. These conditions leads to different types of
eigenfunctions and eigenvalues.

As previously mentioned, equations of the form (6.1) occur often. We now
show that Equation (6.1) can be turned into a differential equation of Sturm-
Liouville form:

d

dx

(

p(x)
dy

dx

)

+ q(x)y = F (x). (6.5)

Another way to phrase this is provided in the theorem:

Theorem 6.1. Any second order linear operator can be put into the form of
the Sturm-Liouville operator (6.2).

The proof of this is straight forward, as we shall soon show. Consider the
equation (6.1). If a1(x) = a′

2(x), then we can write the equation in the form

f(x) = a2(x)y′′ + a1(x)y′ + a0(x)y

= (a2(x)y′)′ + a0(x)y. (6.6)

This is in the correct form. We just identify p(x) = a2(x) and q(x) = a0(x).
However, consider the differential equation

x2y′′ + xy′ + 2y = 0.

In this case a2(x) = x2 and a′
2(x) = 2x 6= a1(x). The linear differential

operator in this equation is not of Sturm-Liouville type. But, we can change
it to a Sturm Liouville operator.

In the Sturm Liouville operator the derivative terms are gathered together
into one perfect derivative. This is similar to what we saw in the first chap-
ter when we solved linear first order equations. In that case we sought an
integrating factor. We can do the same thing here. We seek a multiplicative
function µ(x) that we can multiply through (6.1) so that it can be written in
Sturm-Liouville form. We first divide out the a2(x), giving

y′′ +
a1(x)

a2(x)
y′ +

a0(x)

a2(x)
y =

f(x)

a2(x)
.

Now, we multiply the differential equation by µ :
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µ(x)y′′ + µ(x)
a1(x)

a2(x)
y′ + µ(x)

a0(x)

a2(x)
y = µ(x)

f(x)

a2(x)
.

The first two terms can now be combined into an exact derivative (µy′)′ if
µ(x) satisfies

dµ

dx
= µ(x)

a1(x)

a2(x)
.

This is formally solved to give

µ(x) = e

∫

a1(x)

a2(x)
dx

.

Thus, the original equation can be multiplied by factor

µ(x)

a2(x)
=

1

a2(x)
e

∫

a1(x)

a2(x)
dx

to turn it into Sturm-Liouville form.
In summary,

Equation (6.1),

a2(x)y′′ + a1(x)y′ + a0(x)y = f(x), (6.7)

can be put into the Sturm-Liouville form

d

dx

(

p(x)
dy

dx

)

+ q(x)y = F (x), (6.8)

where

p(x) = e

∫

a1(x)

a2(x)
dx

,

q(x) = p(x)
a0(x)

a2(x)
,

F (x) = p(x)
f(x)

a2(x)
. (6.9)

Example 6.2. For the example above,

x2y′′ + xy′ + 2y = 0.

We need only multiply this equation by

1

x2
e
∫

dx

x =
1

x
,

to put the equation in Sturm-Liouville form:

0 = xy′′ + y′ +
2

x
y

= (xy′)′ +
2

x
y. (6.10)
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6.2 Properties of Sturm-Liouville Eigenvalue Problems

There are several properties that can be proven for the (regular) Sturm-
Liouville eigenvalue problem. However, we will not prove them all here. We
will merely list some of the important facts and focus on a few of the proper-
ties.

1. The eigenvalues are real, countable, ordered and there is a smallest eigen-
value. Thus, we can write them as λ1 < λ2 < . . . . However, there is no
largest eigenvalue and n → ∞, λn → ∞.

2. For each eigenvalue λn there exists an eigenfunction φn with n − 1 zeros
on (a, b).

3. Eigenfunctions corresponding to different eigenvalues are orthogonal with
respect to the weight function, σ(x). Defining the inner product of f(x)
and g(x) as

< f, g >=

∫ b

a

f(x)g(x)σ(x) dx, (6.11)

then the orthogonality of the eigenfunctios can be written in the form

< φn, φm >=< φn, φn > δnm, n, m = 1, 2, . . . . (6.12)

4. The set of eigenfunctions is complete; i.e., any piecewise smooth func-
tion can be represented by a generalized Fourier series expansion of the
eigenfunctions,

f(x) ∼
∞
∑

n=1

cnφn(x),

where

cn =
< f, φn >

< φn, φn >
.

Actually, one needs f(x) ∈ L2
σ[a, b], the set of square integrable functions

over [a, b] with weight function σ(x). By square integrable, we mean that
< f, f >< ∞. One can show that such a space is isomorphic to a Hilbert
space, a complete inner product space.

5. Multiply the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrate. Solve this result for λn, to find the Rayleigh Quotient

λn =

−pφn
dφn

dx
|ba −

∫ b

a

[

p
(

dφn

dx

)2

− qφ2
n

]

dx

< φn, φn >

The Rayleigh quotient is useful for getting estimates of eigenvalues and
proving some of the other properties.
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Example 6.3. We seek the eigenfunctions of the operator found in Example
6.2. Namely, we want to solve the eigenvalue problem

Ly = (xy′)′ +
2

x
y = −λσy (6.13)

subject to a set of boundary conditions. Let’s use the boundary conditions

y′(1) = 0, y′(2) = 0.

[Note that we do not know σ(x) yet, but will choose an appropriate function
to obtain solutions.]

Expanding the derivative, we have

xy′′ + y′ +
2

x
y = −λσy.

Multiply through by x to obtain

x2y′′ + xy′ + (2 + λxσ) y = 0.

Notice that if we choose σ(x) = x−1, then this equation can be made a
Cauchy-Euler type equation. Thus, we have

x2y′′ + xy′ + (λ + 2) y = 0.

The characteristic equation is

r2 + λ + 2 = 0.

For oscillatory solutions, we need λ + 2 > 0. Thus, the general solution is

y(x) = c1 cos(
√

λ + 2 ln |x|) + c2 sin(
√

λ + 2 ln |x|). (6.14)

Next we apply the boundary conditions. y′(1) = 0 forces c2 = 0. This
leaves

y(x) = c1 cos(
√

λ + 2 lnx).

The second condition, y′(2) = 0, yields

sin(
√

λ + 2 ln 2) = 0.

This will give nontrivial solutions when

√
λ + 2 ln 2 = nπ, n = 0, 1, 2, 3 . . . .

In summary, the eigenfunctions for this eigenvalue problem are

yn(x) = cos
( nπ

ln 2
lnx
)

, 1 ≤ x ≤ 2
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and the eigenvalues are λn = 2 +
(

nπ
ln 2

)2
for n = 0, 1, 2, . . . .

Note: We include the n = 0 case because y(x) = constant is a solution
of the λ = −2 case. More specifically, in this case the characteristic equation
reduces to r2 = 0. Thus, the general solution of this Cauchy-Euler equation is

y(x) = c1 + c2 ln |x|.

Setting y′(1) = 0, forces c2 = 0. y′(2) automatically vanishes, leaving the
solution in this case as y(x) = c1.

We note that some of the properties listed in the beginning of the section
hold for this example. The eigenvalues are seen to be real, countable and
ordered. There is a least one, λ = 2. Next, one can find the zeros of each
eigenfunction on [1,2]. Then the argument of the cosine, nπ

ln 2 lnx, takes values
0 to nπ for x ∈ [1, 2]. The cosine function has n − 1 roots on this interval.

Orthogonality can be checked as well. We set up the integral and use the
substitution y = π lnx/ ln 2. This gives

< yn, ym > =

∫ 2

1

cos
( nπ

ln 2
lnx
)

cos
(mπ

ln 2
lnx
) dx

x

=
ln 2

π

∫ π

0

cosny cosmy dy

=
ln 2

2
δn,m. (6.15)

6.2.1 Adjoint Operators

In the study of the spectral theory of matrices, one learns about the adjoint of
the matrix, A†, and the role that self-adjoint, or Hermitian, matrices play in
diagonalization. also, one needs the concept of adjoint to discuss the existence
of solutions to the matrix problem y = Ax. In the same spirit, one is interested
in the existence of solutions of the operator equation Lu = f and solutions of
the corresponding eigenvalue problem. The study of linear operator on Hilbert
spaces is a generalization of what the reader had seen in a linear algebra course.

Just as one can find a basis of eigenvectors and diagonalize Hermitian, or
self-adjoint, matrices (or, real symmetric in the case of real matrices), we will
see that the Sturm-Liouville operator is self-adjoint. In this section we will
define the domain of an operator and introduce the notion of adjoint operators.
In the last section we discuss the role the adjpoint plays in the existence of
solutions to the operator equation Lu = f.

We first introduce some definitions.

Definition 6.4. The domain of a differential operator L is the set of all u ∈
L2

σ[a, b] satisfying a given set of homogeneous boundary conditions.

Definition 6.5. The adjoint, L†, of operator L satisfies
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< u, Lv >=< L†u, v >

for all v in the domain of L and u in the domain of L†.

Example 6.6. As an example, we find the adjoint of second order linear differ-

ential operator L = a2(x) d2

dx2 + a1(x) d
dx

+ a0(x).
In order to find the adjoint, we place the operator under an integral. So,

we consider the inner product

< u, Lv >=

∫ b

a

u(a2v
′′ + a1v

′ + a0v) dx.

We have to move the operator L from v and determine what operator is acting
on u in order to formally preserve the inner product. For a simple operator like
L = d

dx
, this is easily done using integration by parts. For the given operator,

we will need to apply several integrations by parts to the individual terms.
We will consider the individual terms.

First we consider the a1v
′ term. Integration by parts yields

∫ b

a

u(x)a1(x)v′(x) dx = a1(x)u(x)v(x)
∣

∣

∣

b

a
−
∫ b

a

(u(x)a1(x))′v(x) dx. (6.16)

Now, we consider the a2v
′′ term. In this case it will take two integrations

by parts:

∫ b

a

u(x)a2(x)v′′(x) dx = a2(x)u(x)v′(x)
∣

∣

∣

b

a
−
∫ b

a

(u(x)a2(x))′v(x)′ dx

= [a2(x)u(x)v′(x) − (a2(x)u(x))′v(x)]
∣

∣

∣

b

a

+

∫ b

a

(u(x)a2(x))′′v(x) dx. (6.17)

Combining these results, we obtain

< u, Lv > =

∫ b

a

u(a2v
′′ + a1v

′ + a0v) dx

= [a1(x)u(x)v(x) + a2(x)u(x)v′(x) − (a2(x)u(x))′v(x)]
∣

∣

∣

b

a

+

∫ b

a

[(a2u)′′ − (a1u)′ + a0u] v dx. (6.18)

Inserting the boundary conditions for v, one has to determine boundary
conditions for u such that

[a1(x)u(x)v(x) + a2(x)u(x)v′(x) − (a2(x)u(x))′v(x)]
∣

∣

∣

b

a
= 0.
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This leaves

< u, Lv >=

∫ b

a

[(a2u)′′ − (a1u)′ + a0u] v dx ≡< L†u, v > .

Therefore,

L† =
d2

dx2
a2(x) − d

dx
a1(x) + a0(x). (6.19)

When L† = L, the operator is called formally self-adjoint. When the do-
main of L is the same as the domain of L†, the term self-adjoint is used.
As the domain is important in establishing self-adjointness, we need to do a
complete example in which the domain of the adjoint is found.

Example 6.7. Determine L† and its domain for operator Lu = du
dx

where u
satisfies the boundary conditions u(0) = 2u(1) on [0, 1].

We need to find the adjoint operator satisfying < v, Lu >=< L†v, u > .
Therefore, we rewrite the integral

< v, Lu >=

∫ 1

0

v
du

dx
dx = uv|10 −

∫ 1

0

u
dv

dx
dx =< L†v, u > .

From this we have the adjoint problem consisting of an adjoint operator and
the associated boundary condition:

1. L† = − d
dx

.

2. uv
∣

∣

∣

1

0
= 0 ⇒ 0 = u(1)[v(1) − 2v(0)] ⇒ v(1) = 2v(0).

6.2.2 Lagrange’s and Green’s Identities

Before turning to the proofs that the eigenvalues of a Sturm-Liouville problem
are real and the associated eigenfunctions orthogonal, we will first need to
introduce two important identities. For the Sturm-Liouville operator,

L =
d

dx

(

p
d

dx

)

+ q,

we have the two identities:

Lagrange’s Identity uLv − vLu = [p(uv′ − vu′)]′.

Green’s Identity
∫ b

a
(uLv − vLu) dx = [p(uv′ − vu′)]|ba.

Proof. The proof of Lagrange’s identity follows by a simple manipulations of
the operator:
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uLv − vLu = u

[

d

dx

(

p
dv

dx

)

+ qv

]

− v

[

d

dx

(

p
du

dx

)

+ qu

]

= u
d

dx

(

p
dv

dx

)

− v
d

dx

(

p
du

dx

)

= u
d

dx

(

p
dv

dx

)

+ p
du

dx

dv

dx
− v

d

dx

(

p
du

dx

)

− p
du

dx

dv

dx

=
d

dx

[

pu
dv

dx
− pv

du

dx

]

. (6.20)

Green’s identity is simply proven by integrating Lagrange’s identity.

6.2.3 Orthogonality and Reality

We are now ready to prove that the eigenvalues of a Sturm-Liouville problem
are real and the corresponding eigenfunctions are orthogonal. These are easily
established using Green’s identity, which in turn is a statement about the
Sturm-Liouville operator being self-adjoint.

Theorem 6.8. The eigenvalues of the Sturm-Liouville problem are real.

Proof. Let φn(x) be a solution of the eigenvalue problem associated with λn:

Lφn = −λnσφn.

The complex conjugate of this equation is

Lφn = −λnσφn.

Now, multiply the first equation by φn and the second equation by φn and
then subtract the results. We obtain

φnLφn − φnLφn = (λn − λn)σφnφn.

Integrate both sides of this equation:
∫ b

a

(

φnLφn − φnLφn

)

dx = (λn − λn)

∫ b

a

σφnφn dx.

Apply Green’s identity to the left hand side to find

[p(φnφ′
n − φnφ

′

n)]|ba = (λn − λn)

∫ b

a

σφnφn dx.

Using the homogeneous boundary conditions for a self-adjoint operator, the
left side vanishes to give

0 = (λn − λn)

∫ b

a

σ‖φn‖2 dx.

The integral is nonnegative, so we must have λn = λn. Therefore, the eigen-
values are real.
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Theorem 6.9. The eigenfunctions corresponding to different eigenvalues of
the Sturm-Liouville problem are orthogonal.

Proof. This is proven similar to the last theorem. Let φn(x) be a solution of
the eigenvalue problem associated with λn,

Lφn = −λnσφn,

and let φm(x) be a solution of the eigenvalue problem associated with λm 6=
λn,

Lφm = −λmσφm,

Now, multiply the first equation by φm and the second equation by φn. Sub-
tracting the results, we obtain

φmLφn − φnLφm = (λm − λn)σφnφm

Similar to the previous prooof, we integrate both sides of the equation and
use Green’s identity and the boundary conditions for a self-adjoint operator.
This leaves

0 = (λm − λn)

∫ b

a

σφnφm dx.

Since the eigenvalues are distinct, we can divide by λm − λn, leaving the
desired result,

∫ b

a

σφnφm dx = 0.

Therefore, the eigenfunctions are orthogonal with respect to the weight func-
tion σ(x).

6.2.4 The Rayleigh Quotient

The Rayleigh quotient is useful for getting estimates of eigenvalues and prov-
ing some of the other properties associated with Sturm-Liouville eigenvalue
problems. We begin by multiplying the eigenvalue problem

Lφn = −λnσ(x)φn

by φn and integrating. This gives

∫ b

a

[

φn

d

dx

(

p
dφn

dx

)

+ qφ2
n

]

dx = −λ

∫ b

a

φ2
n dx.

One can solve the last equation for λ to find

λ =
−
∫ b

a

[

φn
d
dx

(

pdφn

dx

)

+ qφ2
n

]

dx
∫ b

a
φ2

nσ dx
.
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It appears that we have solved for the eigenvalue and have not needed the
machinery we had developed in Chapter 4 for studying boundary value prob-
lems. However, we really cannot evaluate this expression because we do not
know the eigenfunctions, φn(x) yet. Nevertheless, we will see what we can
determine.

One can rewrite this result by performing an integration by parts on the

first term in the numerator. Namely, pick u = φn and dv = d
dx

(

pdφn

dx

)

dx for

the standard integration by parts formula. Then, we have

∫ b

a

φn

d

dx

(

p
dφn

dx

)

dx = pφn

dφn

dx

∣

∣

∣

b

a
−
∫ b

a

[

p

(

dφn

dx

)2

− qφ2
n

]

dx.

Inserting the new formula into the expression for λ, leads to the Rayleigh
Quotient

λn =

−pφn
dφn

dx

∣

∣

∣

b

a
+
∫ b

a

[

p
(

dφn

dx

)2

− qφ2
n

]

dx

∫ b

a
φ2

nσ dx
. (6.21)

In many applications the sign of the eigenvalue is important. As we had
seen in the solution of the heat equation, T ′ + kλT = 0. Since we expect
the heat energy to diffuse, the solutions should decay in time. Thus, we would
expect λ > 0. In studying the wave equation, one expects vibrations and these
are only possible with the correct sign of the eigenvalue (positive again). Thus,
in order to have nonnegative eigenvalues, we see from (6.21) that

a. q(x) ≤ 0, and
b. −pφn

dφn

dx
|ba ≥ 0.

Furthermore, if λ is a zero eigenvalue, then q(x) ≡ 0 and α1 = α2 = 0
in the homogeneous boundary conditions. This can be seen by setting the
numerator equal to zero. Then, q(x) = 0 and φ′

n(x) = 0. The second of these
conditions inserted into the boundary conditions forces the restriction on the
type of boundary conditions.

One of the (unproven here) properties of Sturm-Liouville eigenvalue prob-
lems with homogeneous boundary conditions is that the eigenvalues are or-
dered, λ1 < λ2 < . . . . Thus, there is a smallest eigenvalue. It turns out that
for any continuous function, y(x),

λ1 = min
y(x)

−py dy

dx
|ba +

∫ b

a

[

p
(

dy

dx

)2

− qy2

]

dx

∫ b

a
y2σ dx

(6.22)

and this minimum is obtained when y(x) = φ1(x). This result can be used to
get estimates of the minimum eigenvalue by using trial functions which are
continuous and satisfy the boundary conditions, but do not necessarily satisfy
the differential equation.
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Example 6.10. We have already solved the eigenvalue problem φ′′ + λφ = 0,
φ(0) = 0, φ(1) = 0. In this case, the lowest eigenvalue is λ1 = π2. We can
pick a nice function satisfying the boundary conditions, say y(x) = x − x2.
Inserting this into Equation (6.22), we find

λ1 ≤
∫ 1

0
(1 − 2x)2 dx

∫ 1

0 (x − x2)2 dx
= 10.

Indeed, 10 ≥ π2.

6.3 The Eigenfunction Expansion Method

In section 4.3.2 we saw generally how one can use the eigenfunctions of a
differential operator to solve a nonhomogeneous boundary value problem. In
this chapter we have seen that Sturm-Liouville eigenvalue problems have the
requisite set of orthogonal eigenfunctions. In this section we will apply the
eigenfunction expansion method to solve a particular nonhomogenous bound-
ary value problem.

Recall that one starts with a nonhomogeneous differential equation

Ly = f,

where y(x) is to satisfy given homogeneous boundary conditions. The method
makes use of the eigenfunctions satisfying the eigenvalue problem

Lφn = −λnσφn

subject to the given boundary conditions. Then, one assumes that y(x) can
be written as an expansion in the eigenfunctions,

y(x) =

∞
∑

n=1

cnφn(x),

and inserts the expansion into the nonhomogeneous equation. This gives

f(x) = L
(

∞
∑

n=1

cnφn(x)

)

= −
∞
∑

n=1

cnλnσ(x)φn(x).

The expansion coefficients are then found by making use of the orthogo-
nality of the eigenfunctions. Namely, we multiply the last equation by φm(x)
and integrate. We obtain

∫ b

a

f(x)φm(x) dx = −
∞
∑

n=1

cnλn

∫ b

a

φn(x)φm(x)σ(x) dx.
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Orthogonality yields

∫ b

a

f(x)φm(x) dx = −cmλm

∫ b

a

φ2
m(x)σ(x) dx.

Solving for cm, we have

cm = −
∫ b

a
f(x)φm(x) dx

λm

∫ b

a
φ2

m(x)σ(x) dx
.

Example 6.11. As an example, we consider the solution of the boundary value
problem

(xy′)′ +
y

x
=

1

x
, x ∈ [1, e], (6.23)

y(1) = 0 = y(e). (6.24)

This equation is already in self-adjoint form. So, we know that the associ-
ated Sturm-Liouville eigenvalue problem has an orthogonal set of eigenfunc-
tions. We first determine this set. Namely, we need to solve

(xφ′)′ +
φ

x
= −λσφ, φ(1) = 0 = φ(e). (6.25)

Rearranging the terms and multiplying by x, we have that

x2φ′′ + xφ′ + (1 + λσx)φ = 0.

This is almost an equation of Cauchy-Euler type. Picking the weight function
σ(x) = 1

x
, we have

x2φ′′ + xφ′ + (1 + λ)φ = 0.

This is easily solved. The characteristic equation is

r2 + (1 + λ) = 0.

One obtains nontrivial solutions of the eigenvalue problem satisfying the
boundary conditions when λ > −1. The solutions are

φn(x) = A sin(nπ lnx), n = 1, 2, . . . .

where λn = n2π2 − 1.
It is often useful to normalize the eigenfunctions. This means that one

chooses A so that the norm of each eigenfunction is one. Thus, we have

1 =

∫ e

1

φn(x)2σ(x) dx

= A2

∫ e

1

sin(nπ lnx)
1

x
dx

= A2

∫ 1

0

sin(nπy) dy =
1

2
A2. (6.26)
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Thus, A =
√

2.
We now turn towards solving the nonhomogeneous problem, Ly = 1

x
. We

first expand the unknown solution in terms of the eigenfunctions,

y(x) =

∞
∑

n=1

cn

√
2 sin(nπ ln x).

Inserting this solution into the differential equation, we have

1

x
= Ly = −

∞
∑

n=1

cnλn

√
2 sin(nπ lnx)

1

x
.

Next, we make use of orthogonality. Multiplying both sides by φm(x) =√
2 sin(mπ lnx) and integrating, gives

λmcm =

∫ e

1

√
2 sin(mπ lnx)

1

x
dx =

√
2

mπ
[(−1)m − 1].

Solving for cm, we have

cm =

√
2

mπ

[(−1)m − 1]

m2π2 − 1
.

Finally, we insert our coefficients into the expansion for y(x). The solution
is then

y(x) =

∞
∑

n=1

2

nπ

[(−1)n − 1]

n2π2 − 1
sin(nπ ln(x)).

6.4 The Fredholm Alternative Theorem

Given that Ly = f , when can one expect to find a solution? Is it unique? These
questions are answered by the Fredholm Alternative Theorem. This theorem
occurs in many forms from a statement about solutions to systems of algebraic
equations to solutions of boundary value problems and integral equations. The
theorem comes in two parts, thus the term “alternative”. Either the equation
has exactly one solution for all f , or the equation has many solutions for some
f ’s and none for the rest.

The reader is familiar with the statements of the Fredholm Alternative
for the solution of systems of algebraic equations. One seeks solutions of the
system Ax = b for A an n×m matrix. Defining the matrix adjoint, A∗ through
< Ax, y >=< x, A∗y > for all x, y,∈ Cn, then either

Theorem 6.12. First Alternative

The equation Ax = b has a solution if and only if < b, v >= 0 for all v
such that A∗v = 0.
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or

Theorem 6.13. Second Alternative

A solution of Ax = b, if it exists, is unique if and only if x = 0 is the only
solution of Ax = 0.

The second alternative is more familiar when given in the form: The solu-
tion of a nonhomogeneous system of n equations and n unknowns is unique
if the only solution to the homogeneous problem is the zero solution. Or,
equivalently, A is invertible, or has nonzero determinant.

Proof. We prove the second theorem first. Assume that Ax = 0 for x 6= 0
and Ax0 = b. Then A(x0 + αx) = b for all α. Therefore, the solution is not
unique. Conversely, if there are two different solutions, x1 and x2, satisfying
Ax1 = b and Ax2 = b, then one has a nonzero solution x = x1 − x2 such that
Ax = A(x1 − x2) = 0.

The proof of the first part of the first theorem is simple. Let A∗v = 0 and
Ax0 = b. Then we have

< b, v >=< Ax0, v >=< x0, A
∗v >= 0.

For the second part we assume that < b, v >= 0 for all v such that A∗v = 0.
Write b as the sum of a part that is in the range of A and a part that in the
space orthogonal to the range of A, b = bR + bO. Then, 0 =< bO, Ax >=<
A∗b, x > for all x. Thus, A∗bO. Since < b, v >= 0 for all v in the nullspace of
A∗, then < b, bO >= 0. Therefore, < b, v >= 0 implies that 0 =< b,O >=<
bR + bO, bO >=< bO, bO > . This means that bO = 0, giving b = bR is in the
range of A. So, Ax = b has a solution.

Example 6.14. Determine the allowed forms of b for a solution of Ax = b to
exist, where

A =

(

1 2
3 6

)

First note that A∗ = A
T
. This is seen by looking at

< Ax,y > = < x, A∗y >
n
∑

i=1

n
∑

j=1

aijxj ȳi =

n
∑

j=1

xj

n
∑

j=1

aijyi

=

n
∑

j=1

xj

n
∑

j=1

(āT )ji yi (6.27)

For this example,

A∗ =

(

1 3
2 6

)
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We next solve A∗v = 0. This means, v1 + 3v2 = 0. So, the nullspace of A∗ is
spanned by v = (3,−1)T . For a solution of Ax = b to exist, b would have to
be orthogonal to v. Therefore, a solution exists when

b = α

(

1
3

)

.

So, what does this say about solutions of boundary value problems? There
is a more general theory for linear operators. The matrix formulations follows,
since matrices are simply representations of linear transformations. A more
general statement would be

Theorem 6.15. If L is a bounded linear operator on a Hilbert space, then
Ly = f has a solution if and only if < f, v >= 0 for every v such that
L†v = 0.

The statement for boundary value problems is similar. However, we need
to be careful to treat the boundary conditions in our statement. As we have
seen, after several integrations by parts we have that

< Lu, v >= S(u, v)+ < u,L†v >,

where S(u, v) involves the boundary conditions on u and v. Note that for
nonhomogeneous boundary conditions, this term may no longer vanish.

Theorem 6.16. The solution of the boundary value problem Lu = f with
boundary conditions Bu = g exists if and only if

< f, v > −S(u, v) = 0

for all v satisfying L†v = 0 and B†v = 0.

Example 6.17. Consider the problem

u′′ + u = f(x), u(0) − u(2π) = α, u′(0) − u′(2π) = β.

Only certain values of α and β will lead to solutions. We first note that L = L†

=
d2

dx2
+ 1.

Solutions of

L†v = 0, v(0) − v(2π) = 0, v′(0) − v′(2π) = 0

are easily found to be linear combinations of v = sinx and v = cosx.
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Next one computes

S(u, v) = [u′v − uv′]
2π

0

= u′(2π)v(2π) − u(2π)v′(2π) − u′(0)v(0) + u(0)v′(0). (6.28)

For v(x) = sin x, this yields

S(u, sinx) = −u(2π) + u(0) = α.

Similarly,
S(u, cosx) = β.

Using < f, v > −S(u, v) = 0, this leads to the conditions

∫ 2π

0

f(x) sin xdx = α,

∫ 2π

0

f(x) cosxdx = β.

Problems

6.1. Find the adjoint operator and its domain for Lu = u′′ +4u′−3u, u′(0)+
4u(0) = 0, u′(1) + 4u(1) = 0.

6.2. Show that a Sturm-Liouville operator with periodic boundary conditions
on [a, b] is self-adjoint if and only if p(a) = p(b). [Recall, periodic boundary
conditions are given as u(a) = u(b) and u′(a) = u′(b).]

6.3. The Hermite differential equation is given by y′′−2xy′+λy = 0. Rewrite
this equation in self-adjoint form. From the Sturm-Liouville form obtained,
verify that the differential operator is self adjoint on (−∞,∞). Give the inte-
gral form for the orthogonality of the eigenfunctions.

6.4. Find the eigenvalues and eigenfunctions of the given Sturm-Liouville
problems.

a. y′′ + λy = 0, y′(0) = 0 = y′(π).
b. (xy′)′ + λ

x
y = 0, y(1) = y(e2) = 0.

6.5. The eigenvalue problem x2y′′ − λxy′ + λy = 0 with y(1) = y(2) = 0 is
not a Sturm-Liouville eigenvalue problem. Show that none of the eigenvalues
are real by solving this eigenvalue problem.

6.6. In Example 6.10 we found a bound on the lowest eigenvalue for the given
eigenvalue problem.

a. Verify the computation in the example.
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b. Apply the method using

y(x) =

{

x, 0 < x < 1
2

1 − x, 1
2 < x < 1.

Is this an upper bound on λ1

c. Use the Rayleigh quotient to obtain a good upper bound for the lowest
eigenvalue of the eigenvalue problem: φ′′ + (λ − x2)φ = 0, φ(0) = 0,
φ′(1) = 0.

6.7. Use the method of eigenfunction expansions to solve the problem:

y′′ + 4y = x2, y(0) = y(1) = 0.

6.8. Determine the solvability conditions for the nonhomogeneous boundary
value problem: u′′ + 4u = f(x), u(0) = α, u′(1) = β.


