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Preface

This fifth edition of Introductory Methods of Numerical Analysis contains
eleven chapters on numerical methods which could be used by scientists
and engineers to solve problems arising in research and industry. It also
covers the syllabus prescribed for engineering and science students at
undergraduate and graduate levels in Indian Universities. The present edition
includes the following features:

1.

Most of the illustrative examples and problems in exercises have
been modified and a number of new problems are included in every
chapter. This edition contains 511 problems including the illustrative
examples and exercises for homework.

Many minor changes and refinements are made in the presentation
of material in some chapters of the text. Because of their increasing
importance in applications, the spline functions are discussed in a
separate chapter. Their applications are considered in the appropriate
chapters of the text.

Algorithms, computational steps or flow charts are provided for
some of the numerical methods and these can easily be transformed
into a computer program by including suitable input/output statements.
Also, problems have been set to design algorithms or write flow-
charts for their computation.

Answers have been provided for all the problems in exercises.
Instructors Manual 1s also available for teachers which provides
relevant information concerning each chapter and also solutions to
317 problems in the exercises.

Four model question papers on numerical methods are provided at
the end of the book.

xiii



Xiv Preface

All the essential features of the previous editions like the over-all easy-
to-understand presentation and organization of the material and the choice
of suitable illustrative examples are retained in this edition.

Although our primary objective has been to provide the student with an
introduction to the methods of numerical analysis, we have also strived to
make this book as student-friendly as possible. It 1s hoped that this edition
will serve this purpose and meet the requirements of students and teachers
in numerical analysis.

The author is indebted to Sri Asoke K. Ghosh, Chairman and Managing
Director, PHI Learning, for his courteous cooperation in bringing out this
new edition.

Any information concerning corrections or errors in this book will be
gratefully received.

S.S. SASTRY



Chapter

Errors in Numerical Calculations

1.1 INTRODUCTION

In practical applications, an engineer would finally obtain results in a numerical
form. For example, from a set of tabulated data derived from an experiment,
inferences may have to be drawn; or, a system of linear algebraic equations
is to be solved. The aim of numerical analysis is to provide efficient methods
for obtaining numerical answers to such problems. This book deals with
methods of numerical analysis rather than the analysis of numerical methods,
because our main concern is to provide computer-oriented, efficient and
reliable numerical methods for solving problems arising in different areas of
higher mathematics. The areas of numerical mathematics, addressed in this
book, are:

(a) Algebraic and transcendental equations: The problem of solving
nonlinear equations of the type f(x) = 0is frequently encountered
in engineering. For example, the equation

Mo = g(Utgiug (1.1)
MO —Uft

is a nonlinear equation for ¢ when M, g, u, u;and u, are given.
Equations of this type occur in rocket studies.

(b) Interpolation: Given a set of data values (x;, y,), i=0,12,...,n, of
a function y = f(x), where the explicit nature of f(x) is not known,
it is often required to find the value of y for a given value of x,
where x, < x < x,. This process is called interpolation. If this process

1
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()

(d)

(e)

(f)

(2)

is carried out for functions of several variables, it is called multivariate
interpolation.

Curve fitting: This is a special case where the data points are
subject to errors, both round off and systematic. In such a case,
interpolation formulae yield unsatisfactory solutions. Experimental
results are often subject to errors and, in such cases, the method
is to fit a curve which passes through the data points and then use
the curve to predict the intermediate values. This problem is usually
referred to as data smoothing.

Numerical differentiation and integration: It is often required to
determine the numerical values of
. dy d? : :
©) —y,—y,._,, for a certain value of x inxy< x < x,, and
dx ' dx?

i) 1=["yox

where the set of data values (x;, v,), i = 0, 1, ..., nis given, but the
explicit nature of y(x) is not known. For example, if the data consist
of the angle 6 (in radians) of a rotating rod for values of time ¢ (in
seconds), then its angular velocity and angular acceleration at any
time can be computed by numerical differentiation formulae.

Matrices and linear systems: The problem of solving systems of
linear algebraic equations and the determination of eigenvalues and
eigenvectors of matrices are major problems of disciplines such as
differential equations, fluid mechanics, theory of structures, etc.

Ordinary and partial differential equations: Engineering problems
are often formulated in terms of an ordinary or a partial differential
equation. For example, the mathematical formulation of a falling
body involves an ordinary differential equation and the problem of
determining the steady-state distribution of temperature on a heated
plate is formulated in terms of a partial differential equation. In most
cases, exact solutions are not possible and a numerical method has
to be adopted. In addition to the finite difference methods, this book
also presents a brief introduction to the cubic spline method for
solving certain partial differential equations.

Integral equations: An equation in which the unknown function
appears under the integral sign is known as an integral equation.
Equations of this type occur in several areas of higher mathematics
such as aerodynamics, elasticity, electrostatics, etc. A short account
of some well-known methods is given.

In the numerical solution of problems, we usually start with some
initial data and then compute, after some intermediate steps, the
final results. The given numerical data are only approximate because
they may be true to two, three or more figures. In addition, the
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methods used may also be approximate and therefore the error in
a computed result may be due to the errors in the data, or the errors
in the method, or both. In Section 1.3, we discuss some basic ideas
concerning errors and their analyses, since such an understanding
is essential for an effective use of numerical methods. Before discussing
about errors in computations, we shall first look into some important
computer languages and software.

1.1.1 Computer and Numerical Software

It is well known that computers and mathematics are two important tools
of numerical methods. Prior to 1950, numerical methods could only be
implemented by manual computations, but the rapid technological advances
resulted in the production of computing machines which are faster, economical
and smaller in size. Today’s engineers have access to several types of computing
systems, viz., mainframe computers, personal computers and super computers.
Of these, the personal computer is a smaller machine which is useful, less
expensive and, as the name implies, can easily be possessed and used by
individuals. Nevertheless, mere possession of a computer is not of great
consequence; it can be used effectively only by providing suitable instructions
to it. These instructions are known as software. It is therefore imperative
that we develop suitable software for an effective implementation of numerical
methods on computers.

Essentially, there are three phases in the development of numerical software
for solving a problem. In the first phase, the problem to be solved must be
formulated mathematically indicating the input and outputs and also the checks
to be made on the solution. The second phase consists of choosing an
algorithm, i.e., a suitable numerical procedure to solve the mathematical
problem. An algorithm is a set of instructions leading to the solution of the
mathematical problem, and also contains information regarding the accuracy
required and computation of error in the solution. In the final phase, the
algorithm must be transformed into a computer program (called code) which
is a set of step-by-step instructions to the computer written in a computer
language. Usually, it may be preferable to prepare a flowchart first and then
transform the flowchart into a computer program. The flowchart consists
of the step-by-step procedures, in block form, which the computer will
follow and which can easily be understood by others who wish to know
about the program. It is easy to see that the flowchart enables a programmer
to develop a quality computer program using one of the computer languages
listed in the next section. However, experienced programmers often transform
a detailed algorithm into an efficient computer program.

1.1.2 Computer Languages

Several computer languages have so far been developed and there are limitations
on every language. The question of preferring a particular language over
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others depends on the problem and its requirements. We list below some
important problem-solving languages, which are currently in use:

(a) FORTRAN: Standing for FORmula TRANslation, FORTRAN was
introduced by IBM in 1957. Since then, it has undergone many
changes and the present version, called FORTRAN 90, is favoured
by most scientists and engineers. It is readily available on almost all
computers and one of its important features is that it allows a
programmer to express the mathematical algorithm more precisely. It
has special features like extended double precision, special mathematical
functions and complex variables. Besides, FORTRAN is the language
used in numerically oriented subprograms developed by many software
libraries. For example, (IMSL) (International Mathematical and
Statistical Library, Inc.) consists of FORTRAN subroutines and
functions in applied mathematics, statistics and special functions.
FORTRAN programs are also available in the book, Numerical Recipes,
published by the Cambridge University Press, for most of the standard
numerical methods.

(b) C: This is a high-level programming language developed by Bell
Telephone Laboratories in 1972. Presently, it is being taught at
several engineering colleges as the first computer language and is
therefore used by a large number of engineers and scientists. Computer
programs in C for standard numerical methods are available in the
book, Numerical Recipes in C, published by the Cambridge University
Press.

(c) BASIC: Originally developed by John Kemeny and Thomas Kurtz in
1960, BASIC was used in the first few years only for instruction
purposes. Over the years, it has grown tremendously and the present
version is called Visual Basic. One of its important applications is
in the development of software on personal computers. It is easy
to use.

1.1.3 Software Packages

It is well known that the programming effort is considerably reduced by
using standard functions and subroutines. Several software packages for
numerical methods are available in the form of ‘functions’ and these are
being extensively used by engineering students. One such package is MATLAB,
standing for MATrices LABoratory. It was developed by Cleve Moler and John
N. Little. As the name implies, it was originally founded to develop a matrix
package but now it incorporates several numerical methods such as root-
finding of polynomials, cubic spline interpolation, discrete Fourier transforms,
numerical differentiation and integration, ordinary differential equations and
eigenvalue problems. Besides, MATLAB has excellent display capabilities
which can be used in the case of two-dimensional problems. Using the
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MATLAB functions, it is possible to implement most of the numerical methods
on personal computers and hence it has become one of the most
popular packages in most laboratories and technical colleges. MATLAB has
its own programming language and this is described in detail in the text by
Stephen J. Chapman.*

1.2 MATHEMATICAL PRELIMINARIES

In this section we state, without proof, certain mathematical results which
would be useful in the sequel.

Theorem 1.1 If f(x) is continuous ina < x < b, and if f(a) and f(b) are of
opposite signs, then /(&) = 0 for at least one number & such thata < & < b.

Theorem 1.2 (Rolle’s theorem) If f(x) is continuous ina < x < b, f'(x)
exists in a <x <b and f(a) = f(b) = 0, then, there exists at least one value
of x, say & such that f(§) =0, a < & < b.

Theorem 1.3 (Generalized Rolle’s theorem) Let f(x) be a function which
is n times differentiable on [a, b]. If f(x) vanishes at the (n+ 1) distinct
points xg, Xy,..., X, in (a, b), then there exists a number & in (a, b) such that

1 = o.
Theorem 1.4 (Intermediate value theorem) Let f(x) be continuous in

[a, b] and let £ be any number between f(a) and f(b). Then there exists
a number £ in (a, b) such that f(£) = k (see Fig. 1.1).

y ]
y=f(x) i
Ey=k
J (o)!
(@) | :
O al é 6 X

Figure 1.1 Intermediate value theorem.

Theorem 1.5 (Mean-value theorem for derivatives) If f(x) is continuous
in [a, b] and f”(x) exists in (a, b), then there exists at least one value of x,
say &, between a and b such that

re)=10-1@ (bg:;(a), a<g<b.

*Published by Thomson Asia Pte. Ltd., Singapore (2002).
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Setting b = a + h, this theorem takes the form
f(a+h)=f(a)+hf’(a+6h), 0<6 <1

Theorem 1.6 (1aylor’s series for a function of one variable) If f(x) is
continuous and possesses continuous derivatives of order » in an interval
that includes X=a, then in that interval

f(x)=f(a)+(x—a)f’(a)+(x_a)2f”(a)+---+(x A" o D(a)+R, (x),
2! (n—1!

where R, (x), the remainder term, can be expressed in the form
_a n
R0 =10, aceax
Theorem 1.7 (Maclaurin’s expansion) It states
G x"
f(x)= f(0)+xf’(0)+?f”(0)+---+—|f(”)(0)+---
! n!

Theorem 1.8 (Taylor’s series for a function of two variables) It states

of of
f (X +AXy, Xo + AXo) = T (X1, Xo) + —AX; + —AX
(% + AXq, Xo 2) =%, Xx2) ax, Mt o, 2
2 2 2¢
+1 a—Z(Axl)2+2 o°f Axle2+a (sz)
2 aXl axlaX a 2

This can easily be generalized.

Theorem 1.9 (Taylor’s series for a function of several variables)

f (X +AXq, X0 + AXgy.ony Xy + AX,)

zf(xli X21---,Xn)+af AX1+a—fAX2+ +a_fAX
o 0X, X,
2¢ 2
+1 il Z(Axl) +- +—(Axn) +2 of AXg AXy+-+-
Xl axn axl X2
2
+28—fon_1Axn -

0X;,_10%p,
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1.3 ERRORS AND THEIR COMPUTATIONS

There are two kinds of numbers, exact and approximate numbers. Examples
of exact numbers are 1,2,3, ..., 1/2,3/2, ,\/5717 e, etc., written in this
manner. Approximate numbers are those that represent the numbers to a
certain degree of accuracy. Thus, an approximate value of wis 3.1416, or
if we desire a better approximation, it is 3.14159265. But we cannot write
the exact value of 7.

The digits that are used to express a number are called significant digits
or significant figures. Thus, the numbers 3.1416, 0.66667 and 4.0687 contain
five significant digits each. The number 0.00023 has, however, only two
significant digits, viz., 2 and 3, since the zeros serve only to fix the position
of the decimal point. Similarly, the numbers 0.00145, 0.000145 and 0.0000145 all
have three significant digits. In case of ambiguity, the scientific notation should
be used. For example, in the number 25,600, the number of significant figures
is uncertain, whereas the numbers 2.56><104, 2.560%10* and 2.5600x10%
have three, four and five significant digits, respectively.

In numerical computations, we come across numbers which have large
number of digits and it will be necessary to cut them to a usuable number of
figures. This process is called rounding off. It is usual to round-off numbers
according to the following rule:

To round-off a number to » significant digits, discard all digits to the
right of the nth digit, and if this discarded number is

(a) less than half a unit in the nth place, leave the nth digit unaltered;

(b) greater than half a unit in the nth place, increase the nth digit by

unity;

(¢) exactly half a unit in the nth place, increase the nth digit by unity

if it is odd; otherwise, leave it unchanged.

The number thus rounded-off is said to be correct to »n significant
figures.

Example 1.1 The numbers given below are rounded-off to four significant
figures:

1.6583 to 1.658
30.0567 to 30.06

0.859378 to 0.8594

3.14159 to 3.142

In hand computations, the round-off error can be reduced by carrying
out the computations to more significant figures at each step of the
computation. A useful rule is: at each step of the computation, retain at least
one more significant figure than that given in the data, perform the last
operation and then round-off. However, most computers allow more number
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of significant figures than are usually required in engineering computations.
Thus, there are computers which allow a precision of seven significant
figures in the range of about 107** to 10°°. Arithmetic carried out with this
precision is called single precision arithmetic, and several computers implement
double precision arithmetic, which could be used in problems requiring
greater accuracy. Usually, the double precision arithmetic is carried out to
15 decimals with a range of about 107% to 10°°®. In MATLAB, there is a
provision to use double precision arithmetic.

In addition to the round-off error discussed above, there is another type
of error which can be caused by using approximate formulae in computations,
—such as the one that arises when a fruncated infinite series is used. This
type of error is called truncation error and its study is naturally associated
with the problem of convergence. Truncation error in a problem can be
evaluated and we are often required to make it as small as possible. Sections 1.4
and 1.5 will be devoted to a discussion of these errors.

Absolute, relative and percentage errors

Absolute error is the numerical difference between the true value of a quantity
and its approximate value. Thus, if X is the true value of a quantity and X;
is its approximate value, then the absolute error £, is given by

Ea=X-X;=6X. (1.2)
The relative error Eg is defined by
E,=£a_9%X (1.3)
X X
and the percentage error (Ep) by
Ep =100 Eg. (1.4)
Let AX be a number such that
| X1— X |<AX. (1.5)

Then AXis an upper limit on the magnitude of the absolute error and is said
to measure absolute accuracy. Similarly, the quantity

AX_AX
IXT Xl

measures the relative accuracy.

It is easy to deduce that if two numbers are added or subtracted, then
the magnitude of the absolute error in the result is the sum of the magnitudes
of the absolute errors in the two numbers. More generally, if EL , Ei,..., EX
are the absolute errors in » numbers, then the magnitude of the absolute
error in their sum is given by

1 2
|EA|+|EAl++|EAl
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Note: While adding up several numbers of different absolute accuracies, the
following procedure may be adopted:

(i) Isolate the number with the greatest absolute error,

(i) Round-off all other numbers retaining in them one digit more than
in the isolated number,

(iii) Add up, and
(iv) Round-off the sum by discarding one digit.

To find the absolute error, £, in a product of two numbers a and b,
we write Ep=(a+ E,lA) (b+ Ei)—ab, where E,lA and Ei are the absolute
errors in a and b respectively. Thus,

En=aE% +bER +ELEA
= bE,ﬁ + aE,i, approximately (1.6)

Similarly, the absolute error in the quotient a/b is given by

a+Ex a bDER-aEA

b+E2 b b(b+E2)

bEX —aE X
" b2(1+E2/b)

1 2
bE, —aE, . 20 . . :
= b—2 assumingthat E , /b is small in comparison with 1

EL EZ
a
5% o | a9

Example 1.2 1f the number X is rounded to N decimal places, then
AX = % @M.

If X =0.51 and is correct to 2 decimal places, then AX = 0.005, and the

percentage accuracy is given by %x100=0.98%.

Example 1.3 An approximate value of x is given by X;=22/7=3.1428571
and its true value is X =3.1415926. Find the absolute and relative errors.
We have

Eap= X — X; =—0.0012645
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and

—0.0012645 _

R= =-0.000402.
3.1415926

Example 1.4 Three approximate values of the number 1/3 are given as
0.30, 0.33 and 0.34. Which of these three values is the best approximation?
We have

1 0301
3 30
1 033200t 1
3 3 300
1 034]=002_ 1
3 3 150

It follows that 0.33 is the best approximation for 1/3.
Example 1.5 Find the relative error of the number 8.6 if both of its digits
are correct.

Here
Hence

Er =2 _0.0058.
8.6

Example 1.6 Evaluate the sum S =\/§ +\/§ +\/7 to 4 significant digits
and find its absolute and relative errors.

We have
J3=1732, \/5=2.236 and \/7=2.646

Hence S=6.614. Then

Ea =0.0005+0.0005+ 0.0005=0.0015
The total absolute error shows that the sum is correct to 3 significant
figures only. Hence we take S=6.61 and then

£ 0.0015

. =0.0002.

Example 1.7 Sum the following numbers:
0.1532, 15.45, 0.000354, 305.1, 8.12, 143.3, 0.0212, 0.643 and 0.1734,

where in each of which all the given digits are correct.
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Here we have two numbers which have the greatest absolute error. These
are 305.1 and 143.3, and the absolute error in both these numbers is 0.05.
Hence, we round-off all the other numbers to two decimal digits. These are:

0.15, 15.45, 0.00, 8.12, 0.02, 0.64 and 0.17.
The sum S is given by
S$=305.1+143.3+0.15+15.45+0.00+8.12+0.02+0.64 + 0.17
=472.95
=473

To determine the absolute error, we note that the first-two numbers have
each an absolute error of 0.05 and the remaining seven numbers have an
absolute error of 0.005 each. Thus, the absolute error in all the 9 numbers is

E =2(0.05) +7(0.005)
=0.1+0.035
=0.135
=0.14

In addition to the above absolute error, we have to take into account the
rounding error in the above and this is 0.01. Hence the total absolute error
is $=0.14+0.01=0.15. Thus,

S=472.95+0.15.
Example 1.8 Find the difference

\6.37 —/6.36
to three significant figures.
We have
J6.37 = 2.523885893

and

J636 = 2.521904043

Therefore, +/6.37 —/6.36 = 0.001981850

= 0.00198, correct to three significant figures.
Alternatively, we have

6.37 — 6.36
V637 636 = —n "
J6.37 ++/6.36
~ 0.01
2524 +2.522

=0.198 x 10‘2, which is the same result as obtained before.

Example 1.9 Two numbers are given as 2.5 and 48.289, both of which
being correct to the significant figures given. Find their product.
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Here the number 2.5 is the one with the greatest absolute error. Hence,
we round-off the second number to three significant digits, i.e., 48.3. The
required product is given by

P=48.3x25
=1.2x10?

In the product, we retained only two significant digits, since one of the
given numbers, viz. 2.5, contained only two significant digits.

1.4 A GENERAL ERROR FORMULA

We now derive a general formula for the error committed in using a certain
formula or a functional relation. Let

u=fk,y 2) (1.8)

and let the errors in x, y, z be Ax, Ay and Az, respectively. Then the error Au
in u is given by

utAu=f(x+ A,y + Ay, z + Az) (1.9)
Expanding the right-side of Eq. (1.9) by Taylor’s series, we obtain
ou ou ou
+ Au = f(x, y, z) +— AX+—Ay + —Az
" u=f 2 ox ay y 0z

+ terms involving higher powers of Ax, Ay and Az (1.10)

Assuming that the errors Ax, Ay, Az are small, their higher powers can be
neglected and Eq. (1.10) becomes

ou Ju ou
AU=—AX+—Ay + —A
. oX X+8y y+az ’ (1.11)

The relative error in u is then given by

_Bu_usx dusy duaz

R™u " oxu dy u 9dzu

(1.12)

Example 1.10 Find the value of

where a = 6.54 £ 0.01, b = 48.64 £ 0.02, and ¢ = 13.5 + 0.03.

Also, find the relative error in the result.
We have

@ = 42.7716,b = 6.9742 and & = 2460.375
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Therefore,
- 42.7716x6.9742 —012124.
2460.375
=0.121
Also,
1
logs = 2loga + Elogb — 3log ¢
= Aas 32E +1A—b +3£ =2(—0'01)+1( 0.02 )+3(0'03)
] al 2|b C 6.54) 2\48.64 13.5
= 0.009931
Example 1.11 Given that
2
z

find the relative error at x = y = z = 1 when the errors in each of x, y, z is
0.001.

We have
u 5y® ou 10xy . du  15xy?
—=2  —-ad—=—""1
ox 23 ay 23 0z z4
Then
2 2
Au= 53’3 AX+ 10?’ Ay - 15)?’ Az.

z z z

In general, the errors Ax, Ay and Az may be positive or negative. Hence,
we take the absolute values of the terms on the right side. We then obtain

2
|10;(y Ay‘ . |15xy A7

5y2
(Au)maX=|23 Ax+| , | /4

but Ax = Ay = Az = 0.001 and x = y = z = 1. Then, the relative maximum
error (ER)max 1S given by

Al
(ER )max = ( ul)Jmax

= 003 = 0.006.
5
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1.5 ERROR IN A SERIES APPROXIMATION

The truncated error committed in a series approximation can be evaluated by
using Taylor’s series stated in Theorem 1.6. If x; and x;.; are two successive
values of x, then we have

f (%40)=F06)+ (X —%) f '(Xi)‘ir""ir(an;,xi)n £ 04)+Ryy1 (%), (1.13)
where

n+l
(Xizln;ii))' f (+1) &), X <& <X (1.14)

Rn+1(xi+1) =

In Eq. (1.13), the last term, R,,4(Xj;1), is called the remainder term
which, for a convergent series, tends to zero as N —eco. Thus, if f(Xj,) is
approximated by the first-n terms of the series given in Eq. (1.13), then the
maximum error committed by using this approximation (called the nth order
approximation) is given by the remainder term R, ,;(X;,1). Conversely, if the
accuracy required is specified in advance, then it would be possible to find
n, the number of terms, such that the finite series yields the required accuracy.

Defining the interval length,
Xi+1—Xi=h, (115)

Equation (1.13) may be written as

2 n
f(xm):f(xi)+hf'(xi)+%f"(xi)+.-.+%f(“)(xi)+0(h”+1), (1.16)

where O(4""") means that the truncation error is of the order of 4", i.e.,
it is proportional to #"*!. The meaning of this statement will be made clearer
now.

Let the series be truncated after the first term. This gives the zero-order
approximation:

f(Xi )= f(x)+0O(h), (1.17)
which means that halving the interval length / will also halve the error in the

approximate solution. Similarly, the first-order Taylor series approximation is
given by

f(Xi,q)= f(%)+hf’(%)+0(h?), (1.18)

which means that halving the interval length, h will quarter the error in
the approximation. In such a case we say that approximation has a



Section 1.5: Error in a Series Approximation 15

second-order of convergence. We illustrate these facts through numerical
examples.

Example 1.12 Evaluate f(1) using Taylor’s series for f(x), where

f(x)= x3 —3x? +5x—10.

It is easily seen that /(1) = —7 but it will be instructive to see how the
Taylor series approximations of orders 0 to 3 improve the accuracy of /(1)
gradually.

Let h=1, ;=0 and x4 =1. We then require f(x,4). The derivatives
of f(x) are given by

f/(x) =3x2 —6x+5, f”(X)=6x—6, f”/(x)=6,
fiv(x) and higher derivatives being all zero. Hence
f’(x) = f'(0) =5, f7(x)=f"(0)=-6, f”’(0)=6.
Also,
f(x) = f(0)=-10.

Hence, Taylor’s series gives

h? h3 .
fF(Xi1) = (%) +hf'(x) > (%) iy (%) ()

From Eq. (i), the zero-order approximation is given by
f (%) = £ (%) +O(h), (i)

and, therefore,
f (@)= f(0)+0O(h)=-10,

the error in which is —7+10, i.e., 3 units.
For the first approximation, we have

f(%42) = () +hf (%) +O(h?), (iii)
and, therefore,

f(1)=-10+5+0(h?) = -5,

the error in which is —=7+5, i.e., =2 units.
Again, the second-order Taylor approximation is given by

2
) = () + i 05)+ - () + O(h°), (iv)
and, therefore,
F (1) =—10+5+%(—6)+O(h3) ~_8,

in which the error is -7 + 8, i.e., 1 unit.
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Finally, the third-order Taylor series approximation is given by

3
f (Xi4q) = f(x)+hf (x)+ f”(x)+h—f”’(x) )

and, therefore,
h? h3
f (1) = f(0)+hf’(xp) +7 (%) +? (%)
1 1
=-10+5+=(-6)+—=(6
2( ) 6( )

=7,

which is the exact value of f(1).

This example demonstrates that if the given function is a polynomial of
third degree, then its third-order Taylor series approximation gives exact
results.

Example 1.13 Given f(x)=sin X, construct the Taylor series approximations
of orders 0 to 7 at X=x/3 and state their absolute errors.

Let X4y =7/3 and x; =7x/6 so that h=n/3-7/6=7r/6. We then have
2 3 4
(S GG (G e ()@
3 6 6) 2 6) 6 6) 24 6

5 6 . 7 .
LY ( )+h—fv'(£)+h—fv"(£)+0(h8) (i)
120 \6) 720 \6) 5040 |6

Since f(x)=sin x, Eq. (i) becomes:
1(rn} b4
+=| = || —cos—
6| 6 6

ol (e Eeef 1l
a5 (5% il ) (% ol 8 (0%

2 3 4 5 6

o5+ X g tm (Y 1fz) Y3y 1 (z
12 436 12\ 6 48\ 6 240\ 6 1440\ 6
_ﬂ(ﬁj

10080

o|
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The different orders of approximation can now be evaluated successively.

Thus, the zero-order approximation is 0.5; the first-order approximation is

0.5+7r\/§/12, i.e., 0.953449841; and the second-order approximation is
3 =w

05+ -——
12 144

which simplifies to 0.884910921. Similarly, the successive approximations
are evaluated and the respective absolute errors can be calculated since the
exact value of sin (7/3) is 0.866025403. Table 1.1 gives the approximate
values of sin (7/3) for the orders 0 to 7 as also the absolute errors in these
approximations. The results show that the error decreases with an increase
in the order of approximation.

Table 1.1 Taylor's Series Approximations of f(x) =sin x

Order of approximation Computed value of sinz/3 Absolute error
0 0.5 0.366025403
1 0.953449841 0.087424438
2 0.884910921 0.018885518
3 0.864191613 0.00183379
4 0.865757474 0.000267929
5 0.86604149 0.000016087
6 0.86602718 0.000001777
7 0.866025326 0.000000077

We next demonstrate the effect of halving the interval length on any approximate
value. For this, we consider the first-order approximation in the form:

f (x+h) = f(x)+hf’(x)+E(h), (ii)

where E(/) is the absolute error of the first-order approximation with interval
h. Taking f(x)=sin x and x=7r/6, we obtain

sin| Z+h |=sinZ+hcos Z+E(h). (iii)
6 6 6

Putting h=m/6 in (iii), we get

sin% =05+ ”f +E(h) =0.953449841+ E(h).

Since sin (/3) =0.866025403, the above equation gives

E(h) =-0.087424438.
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Now, let the interval be halved so that we now take h=7/12. Then, (iii) gives:

sin(£+lj=o_5+l£+ E(ﬂ) (iv)
6

2

where E(h/2) is the absolute error with interval length A/2. Since

sinf 2+ —sinl—i
6 12 4 J2
Equation (iv) gives

E(ﬂ) S NE —0.019618139,

2) |2 24
and then
_E()_ =4.45630633.
E (h/2)
In a similar way, we obtain the values
E(h/2) =4.263856931
E(h/4)
and
E(h/4)

= 4.141353027.
E(h/8)

The h*-order of convergence is quite revealing in the above results.

Example 1.14 The Maclaurin expansion for e is given by

2 3 n-1 n
e mlexai X g X XS
2! 3l (n=1)! n!

' 0<é&é<x

We shall find n, the number of terms, such that their sum yields the value
of ¢* correct to 8 decimal places at x=1.

Clearly, the error term (i.e. the remainder term) is (x"/n!) e‘g, so that
at £ =x, this gives the maximum absolute error, and hence the maximum
relative error is x"/n! For an 8 decimal accuracy at x =1, we must have

11

—<=@1078
n! 2( )

which gives n=12. Thus, we need to take 12 terms of the exponential
series in order that its sum is correct to 8 decimal places.
Example 1.15 Derive the series

1+Xx X ox°
loge —=2| X+ —+—+--
1-x 3 5
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and use it to compute the value of log,(1.2), correct to seven decimal places.
If, instead, the series for log,(1 + x) is used, how many terms must be taken
to obtain the same accuracy for log,(1.2)?

We have
2 3 4 5
X X X X .
loge I+ X)=X——+———+——-- )
%e 1+%) 2 3 4 5
and
2 3 4 5
X X X X ..
log. 1-X)=—X—-—————————... (i)
%e 1) 2 3 4 5
Therefore,
|og 1+_X—2 X+X_3+X_5+...
®1-x 3 5 (iif)

Putting x:% in Eq. (iii), we obtain

Iogel.2=2i+ 13+ 15+---
11 311° 5(11)

=2 i+L3+—5 ,since%=7.33x10‘9.
11 331° 5(11) 7(11)
Hence we obtain

log, 1.2 =2[0.09090909 + 0.00025044 + 0.00000124 |
=0.1823216

On the other hand, if we use series (i), we have

n
X <ox1077
n
n
= &<2x10’7
n
= n>9.

Thus, 9 terms of the series (i) have to be taken in order to obtain a seven
decimal accuracy.

EXERCISES

1.1 Explain the term ‘round-off error’ and round-off the following numbers
to two decimal places:

48.21416, 2.3742, 52.275, 2.375, 2.385, 81.255
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1.2 Round-off the following numbers to four significant figures:
38.46235, 0.70029, 0.0022218, 19.235101, 2.36425

1.3 Calculate the value ofy/102 —+/101 correct to four significant figures.

1.4 If p = 3¢® — 6¢%, find the percentage error in p at ¢ = 1, if the error
in ¢ is 0.05.

1.5 Find the absolute error in the sum of the numbers 105.6, 27.28, 5.63,
0.1467, 0.000523, 208.5, 0.0235, 0.432 and 0.0467, where each number
is correct to the digits given.

1.6 Ifz= %xy3, find the percentage error in z when x = 3.14 £ 0.0016 and
y = 4.5 £ 0.05.

1.7 Find the absolute error in the product uwv if u = 56.54 + 0.005 and
v = 12.4 £ 0.05.

1.8 Prove that the relative error in a product of three nonzero numbers
does not exceed the sum of the relative errors of the given numbers.

1.9 Find the relative error in the quotient 4.536/1.32, the numbers being
correct to the digits given.

1.10 The exponential series is given by

23 4
e =lax oy X
2131 4l
Find the number of terms of the above series such that their sum gives
the value of e correct to five decimal places.

1.11 Compute the value of In 3 correct to five decimal places.

T

1.12 Write down the Taylor’s series expansion of f(x) = cosx at x =3 in
terms of f(x), and its derivatives at x = . Compute the approximations
from the zeroth order to the fifth order and also state the absolute error
in each case.

1.13 The Maclaurin expansion of sinx is given by

. X x® X
SiNX=X——+"——-"—+
3 51 71

where x is in radians. Use the series to compute the value of sin 25°
to an accuracy of 0.001.
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1.1

1.2
1.3
1.4
1.5
1.6
1.7
1.9
1.10
1.11
1.12

1.13

Answers to Exercises

Required values are:
48.21, 2.37, 52.28, 2.38, 2.38 and 81.26
38.46, 0.7003, 0.002222, 19.24, 2.364
0.04963
10%
S =347.7 £ 0.15
3%
2.9
0.004
n=9
In 3 = 1.09861

Successive approximations are

0.707106781, 0521986658, 0.497754491, 0.499869146, 0.500007551,

0.423



Chapter

Solution of Algebraic and
Transcendental Equations

2.1 INTRODUCTION

In scientific and engineering studies, a frequently occurring problem is to find
the roots of equations of the form

J(x)=0 2.1

If f(x) is a quadratic, cubic or a biquadratic expression, then algebraic
formulae are available for expressing the roots in terms of the coefficients. On
the other hand, when f'(x) is a polynomial of higher degree or an expression
involving transcendental functions, algebraic methods are not available, and
recourse must be taken to find the roots by approximate methods.

This chapter is concerned with the description of several numerical
methods for the solution of equations of the form given in Eq. (2.1), where f(x)
is algebraic or transcendental or a combination of both. Now, algebraic
functions of the form

Jilx) = ap” + apd ' + ax"? + -+, x + a, (2.2)

are called polynomials and we discuss some special methods for determining
their roots. A non-algebraic function is called a transcendental function,
e.g.,f(x) =Inx*>—0.7 ¢(x) = e — 5x, y(x) = sin’x — x> -2, etc. The roots
of Eq. (2.1) may be either real or complex. We discuss methods of finding a
real root of algebraic or transcendental equations and also methods of
determining all real and complex roots of polynomials. Solution of systems of
nonlinear equations will be considered at the end of the chapter.

22
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If f(x) is a polynomial of the form Eq. (2.2), the following results, from
the theory of equations would be useful in locating its roots.

(i) Every polynomial equation of the nth degree has » and only » roots.

(ii)) If n is odd, the polynomial equation has atleast one real root whose
sign is opposite to that of the last term.

(iii) If n is even and the constant term is negative, then the equation has
atleast one positive root and atleast one negative root.

(iv) If the polynomial equation has (a) real coefficients, then imaginary
roots occur in pairs and (b) rational coefficients, then irrational roots
occur in pairs.

(v) Descartes’ Rule of Signs

(a) A polynomial equation f(x) = 0 cannot have more number of
positive real roots than the number of changes of sign in the
coefficients of f(x).

(b) In (a) above, f(x) = 0 cannot have more number of negative
real roots than the number of changes of sign in the coefficients

of f(—x).

2.2 BISECTION METHOD

This method is based on Theorem 1.1 which states that if a function f(x) is
continuous between a and b, and f'(a) and f(b) are of opposite signs, then there
exists at least one root between a and b. For definiteness, let f(a) be negative
and f'(b) be positive. Then the root lies between a and b and let its approximate
value be given by xo = (a + b)/2. If f(xy) = 0, we conclude that x is a root of
the equation f(x) = 0. Otherwise, the root lies either between x, and b, or
between x, and a depending on whether f(x,) is negative or positive. We
designate this new interval as [a;, b;] whose length is |b — a|/2. As before, this
is bisected at x; and the new interval will be exactly half the length of the
previous one. We repeat this process until the latest interval (which contains
the root) is as small as desired, say &. It is clear that the interval width is
reduced by a factor of one-half at each step and at the end of the nth step, the

new interval will be [a,, b,] of length |b—a]/2". We then have
M S g,
2n

which gives on simplification

log.(|b—alle)
>_YeM 7
nz log, 2 (2.3)

Equation (2.3) gives the number of iterations required to achieve an accuracy
€. For example, if |5 —a| =1 and € = 0.001, then it can be seen that

n> 10 (2.4)
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The method is shown graphically in Fig. 2.1.

[b, f(b)]

Ol--————=——=—=

[a, f(a)]

Figure 2.1 Graphical representation of the bisection method.

It should be noted that this method always succeeds. If there are more roots
than one in the interval, bisection method finds one of the roots. It can be easily
programmed using the following computational steps:

Choose two real numbers a and b such that f(a) f(b) < 0.

Set x, = (a + b)/2.

(a) If f(a) f(x,) < 0,the root lies in the interval (a, x,). Then, set
b =x, and go to step 2 above.

(b) If f(a) f(x,) > 0, the root lies in the interval (x,, b). Then, set
a =x, and go to step 2.

(c) If f(a) f(x,) = 0,it means that x, is a root of the equation
f(x) = 0 and the computation may be terminated.

In practical problems, the roots may not be exact so that condition (c)
above is never satisfied. In such a case, we need to adopt a criterion for
deciding when to terminate the computations.

A convenient criterion is to compute the percentage error €. defined by

Xp — Xy

& = % 100%. 2.5)

’
Xr

where x; is the new value of x,. The computations can be terminated when &,
becomes less than a prescribed tolerance, say g,. In addition, the maximum
number of iterations may also be specified in advance.

Example 2.1  Find a real root of the equation f(x) = x> —x — 1 = 0.

Since f(1) is negative and f(2) positive, a root lies between 1 and 2 and,
therefore, we take x, = 3/2. Then

f(xg) = % - % = %, which is positive.
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Hence the root lies between 1 and 1.5 and we obtain
_1+15

X, =1.25

We find f(x;) = —19/64, which is negative. We, therefore, conclude that the root
lies between 1.25 and 1.5. If follows that

125415

X, =1.375

The procedure is repeated and the successive approximations are
x; = 1.3125, x4 = 1.34375, x5 = 1.328125, etc.
Example 2.2 Find a real root of the equationx®> — 2x — 5 = 0.
Let f(x) = x> — 2x — 5. Then
f(2)=-1 and f(3) = 16.
Hence a root lies between 2 and 3 and we take
2
Since f(x;) = f(2.5) = 5.6250, the root lies between 2 and 2.25.
Hence

2.5

X, = 2 +22'5 =225

Now, f(x,) = 1.890625, the root lies between 2 and 2.25.
Therefore,

2+2.25
X3 =

Since f(x3) = 0.3457, the root lies between 2 and 2.125.
Therefore,

=2.125

242125

X4 =2.0625

Proceeding in this way, we obtain the successive approximations:

x5 = 2.09375, xs =2.10938, x; = 2.10156,
Xg = 2.09766,  xo = 2.09570,  x,0 = 2.09473,
X = 2.09424, ...

We find
X111 — X190 = —00005,
and

lelx_ al I %100 = 20609?254 %100 = 0.02%
11 '

Hence a root, correct to three decimal places, is 2.094.
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Example 2.3 Find a real root of f(x) = x> + x> + x + 7 = 0 correct to three
decimal places.

The given equation is a cubic and the last term is positive. Hence,
f(x) = 0 will have a negative real root. We find that

fE1) =6, f(-2)=1 and f(-3) = -14.

Therefore, a real root lies between -3 and —2.
We take

Since f(-2.5) = —4.875, the root lies between —2 and —2.5, and then

—2-25
X2 =

=-225

Now f(x,) = —1.5781, and, therefore, the root lies between —2 and —2.25.
It follows that
-4.2
X3 = Ts =-2.125

Successive approximations are given by
x4y = —2.0625, x5 = —2.0938, Xg = —2.1094,
x; = -2.1016, xg = —2.1055, X9 = —2.1035,
X190 = —2.1045, x11 = —2.1050, ...

The difference between x;q and x;; is 0.0005. Hence, we conclude that the root
is given by x = —2.105, correct to three decimal places.

Example 2.4 Find the positive root, between 0 and 1, of the equation
x = ¢ to a tolerance of 0.05%.
Let
fx)=xe"-1=0

We have, f(0) = -1 and f(1) = e — 1, which is positive. Hence, a root exists

between 0 and 1, and

_0+1
2

Because, f(x;) = —0.1756, the root lies between 0.5 and 1.0.
Then

Xq 0.5

_05+1.0

Xo 0.75
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Now, the tolerance g is given by

Xg =X

X9

= 025 %100 =33.33%
75

x 100

since f(x,) = 0.5878, the root lies between 0.5 and 0.75.

Therefore,
Xg = 0.5+0.75 0,675
also,
& = % %100 = 20%.

Proceeding in this way, successive approximations and tolerances are obtained:
x4 = 05625, & = 11.11%; x5 = 0.5938, g = 526%;

xg = 05781, & =2.71%; x; = 05703, g = 137%;
xg = 0.5664, & = 0.69%; Xo = 0.5684, g = 0.35%;
X10= 0.5674, & = 0.18%; X = 0.5669, £, = 0.09%;

X2 = 05671, & = 0.035%

Since &; = 0.035% < 0.05%, the required root is 0.567, correct to three
decimal places.

Example 2.5 Find a root, correct to three decimal places and lying between
0 and 0.5, of the equation
4e*sinx—1=0
Let
f(x) =4e* sinx — 1

We have f(0) = —1 and f(0.5) = 0.163145
Therefore,
x; =0.25
Since £(0.25) = —0.22929, it follows that the root lies between 0.25 and 0.5.

Therefore,

xp = 212 _0.375
2

The successive approximations are given by
x; = 0.3125, x; = 0.3438, x5 = 0.3594,
x¢ = 0.3672, x7 = 03711, xg = 0.3692,
x9 = 0.3702, x10 = 0.3706, x;1= 0.3704
x1, = 0.3705, ...

Hence the required root is 0.371, correct to three decimal places.
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2.3 METHOD OF FALSE POSITION

This is the oldest method for finding the real root of a nonlinear equation
f(x) = 0 and closely resembles the bisection method. In this method, also
known as regula—falsi or the method of chords, we choose two points a and
b such that f(a) and f(b) are of opposite signs. Hence, a root must lie in
between these points. Now, the equation of the chord joining the two points

[a, f(a)] and [b, f(b)] is given by

y—f(a) _ f(b)-f(a)
X—a b-a

(2.6)

The method consists in replacing the part of the curve between the points
[a, f(a)] and [b, f(b)] by means of the chord joining these points, and taking
the point of intersection of the chord with the x-axis as an approximation to
the root. The point of intersection in the present case is obtained by putting
y=0 in Eq. (2.6). Thus, we obtain

=a—— @ gy 2T0)=b(@)
f(b)- f(a) f(b)-f(a)

which is the first approximation to the root of f(x) = 0.If now f(x;) and
f(a) are of opposite signs, then the root lies between a and x;, and we
replace b by x; in Eq. (2.7), and obtain the next approximation. Otherwise, we
replace a by x; and generate the next approximation. The procedure is repeated
till the root is obtained to the desired accuracy. Figure 2.2 gives
a graphical representation of the method. The error criterion Eq. (2.5) can be
used in this case also.

2.7)

Y
y=£(x)
%B[b, f(b)]
(0] X1 S
® Xy X

Ala, f(a)]
Figure 2.2 Method of false position.

Example 2.6 Find a real root of the equation:

f(x)=x-2x-5=0.

We find f(2) = -1 and f(3) = 16. Hence a = 2, b = 3, and a root lies
between 2 and 3. Equation (2.7) gives
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L _206)-3(-1) _35

. =2.058823529.
16—-(-1) 17

Now, f(x;) =—-0.390799917 and hence the root lies between 2.058823529 and
3.0. Using formula (2.7), we obtain

= 2.058823529(16) —3(-0.390799917) _, o1opace
16.390799917

Since f(x,) = —0.147204057, it follows that the root lies between 2.08126366
and 3.0. Hence, we have

_ 2.08126366(16) —3(~0.147204057) _ ,, 1oq699911.
16.147204057

X3
Proceeding in this way, we obtain successively:
x4 = 2.092739575, x5 = 2.09388371,
Xg = 2.094305452, X7 = 2.094460846,...

The correct value is 2.0945..., so that x; is correct to five significant figures.

Example 2.7 Given that the equation x*> = 69 has a root between 5 and 8.
Use the method of regula—falsi to determine it.

Let f(x) = x*? — 69. We find
7(5) = —34.50675846 and f(8) = 28.00586026.

Hence

_ 5(28.00586026) — 8(—34.50675846)
28.00586026 + 34.50675846

=6.655990062.

X

Now, f(x;) = —4.275625415 and therefore, the root lies between 6.655990062
and 8.0. We obtain

X, = 6.83400179, x3 = 6.850669653.

The correct root is 6.8523651..., so that x3 is correct to three significant
figures.

Example 2.8 The equation 2x = log;ox + 7 has a root between 3 and 4. Find
this root, correct to three decimal places, by regula—falsi method.
Let
f(x) =2x —logjox — 7, a=3 and b = 4.
Then we find
f(3) =-1.4771 and f(4) = 0.3979.
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Hence
af (b) —bf (a)
X =—
f(b)-f(a)
_ 3(0.3979) — 4(-1.4771)
0.3979+1.4771
_ 71021
1.8750

Therefore, the root lies between 3 and 3.7878. Now, we take « = 3 and b = 3.7878
Then,

=3.7878.

f(b) = 2(3.7878) — log;y 3.7878 — 7 = —0.002787
Hence,

Xp = 3(-0.002787) — 3.7878(-1.4771)
-0.002787 +1.4771
=3.7893,
and
f (%) =2(3.7893) — log;q (3.7893) - 7
=0.000041,

which shows that x = 3.789 is the root correct to three decimal places.

Example 2.9 Find a root of the equation 4e¢ ™ sin x — 1 = 0 by regular—falsi
method given that the root lies between 0 and 0.5.

Let
fx)=4e*sinx—-1,a=0,b=0.5.
We have
f(a) =—1 and £(b) = 4¢°° sin 0.5 — 1 = 0.163145

Therefore,

‘- 0(0.163145) — 0.5(—1)

1 1.163145

05 0.4298690
1.163145

Now, we take
a=0 and b = 0.4298690

Then
f(x) = 0.08454
Therefore,
o = 0(0.08454) — 0.42987(-1)
2 1.08454
=0.39636
Now,

a=0, b=03936 and f(b) = 0.038919
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Hence
o = 0(0.038919) — 0.39636(-1)

3 1.038919
=0.381512,

and
f(x3) = 0.016934
Taking @ = 0 and » = 0.381512, we obtain
X, = 0(0.016934) —0.381512(-1)

1.016934
=0.375159,

and
f(x4) = 0.0071873
Proceeding as above, we obtain

xs = 037248,  x¢ = 0.37136,
x; = 037089,  xg = 0.370697

It follows that the required root is 0.371, correct to three decimal places.

2.4 ITERATION METHOD

We have so far discussed root-finding methods which require an interval in
which the root lies. We now describe methods which require one or more
approximate values to start the solution and these values need not necessarily
bracket the root. The first is the iteration method which requires one starting
value of x.

To describe this method for finding a root of the equation

J(x) =0, (2.1)
we rewrite this equation in the form
x=¢x (2.8)

There are many ways of doing this. For example, the equation
¥ +x*-2=0

can be expressed in different forms

X = % x=42-%3, x=(2-x*)"3 etc.
1+ x

Now, let x, be an approximate root of Eq. (2.8). Then, substituting in
Eq. (2.8), we get the first approximation as

x1 = ¢ (xo)

Successive substitutions give the approximations

X2 = ¢(x1)7 X3 = ¢(x2)7 (R} Xn = ¢(xnfl)'
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The preceding sequence may not converge to a definite number. But if the
sequence converges to a definite number &, then £ will be a root of the equation
x = ¢ (x). To show this, let

Xpt1 = ¢(xn) (29)
be the relation between the nth and (n + 1)th approximations. As »n increases,
X, — & and if ¢ (x) is a continuous function, then ¢ (x,,) — ¢ (). Hence, in
the limit, we obtain

E=0(, (2.10)

which shows that £ is a root of the equation x = ¢ (x).
To establish the condition of convergence of Eq. (2.8), we proceed in the
following way:
From Eq. (2.9), we have
X1 = ¢ (xo) (2.11)
From Egs. (2.10) and (2.11), we get

& =% =0(8) - 9(X)

=(E-%)9'E) %<b< &12)
on using Theorem 1.5. Similarly, we obtain
E—x=(E—x) ¢'(&), x; <& <& (2.13)
éj x3 = (& - X2) ¢"(§2), X <&H<§ (2.14)
E—Xp1 = (E—x) (8 X, <& <& (2.15)
If we assume
0" (&)| < k (for all i), (2.16)
then Egs. (2.12) to (2.15) give
1€ —x1| < k1 — xol
1€ = x| <k 1E—x
€ — Xl S k|G —xi (2.17)

|§ - xn+1| <k |§ - xn|
Multiplying the corresponding sides of the above equations, we obtain
1§ = Xl S B IE — x| (2.18)

If k <1, i.e., if |¢’(&)| < 1, then the right side of Eq. (2.18) tends to zero
and the sequence of approximations xo, x|, X», ... converges to the root &. Thus,
when we express the equation f(x) = 0 in the form x = ¢ (x), then ¢ (x) must
be such that

[’ ()| <1
in an immediate neighbourhood of the root. It follows that if the initial
approximation x, is chosen in an interval containing the root & then the
sequence of approximations converges to the root &.
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Now, we show that the root so obtained is unigue. To prove this, let & and
&, be two roots of the equation x = ¢ (x). Then, we must have

Si=¢(&) and & = (&)

1&1—c21 =19(51) - 0(S) |
=& -8219'M), ne (61, 82)

& = &I [1—¢(m]=0 (2.19)
Since |¢'(n)| < 1, it follows that &, = &,, which proves that the root obtained
is unique.
Finally, we shall find the error in the root obtained. We have
Ié_xn ISklé_Xn—ll
=K[ & — Xy + Xy = Xy |

Sk[|§—Xn|+|Xn _Xn—ll]

Therefore,

Hence,

k k _
= |§—xn|sm|xn—xn_1|=nk”1|xl—xo|

n
1-k
which shows that the convergence would be faster for smaller values of k.
Now, let € be the specified accuracy so that

|f—x,,|$£

<

% =X, (2.20)

Then, Eq. (2.20) gives
1-k
|Xn_Xn—1|STEa (2.21)
which can be used to find the difference between two successive approxima-
tions (or iterations) to achieve a prescribed accuracy.

Example 2.10  Find a real root of the equation x> = 1 — x° on the interval [0, 1]
with an accuracy of 10°*.
We rewrite the equation as

1
X=—— .
Jx+1 ()
Here
1 172
00 = === (x+1)
JX+1
Therefore,
, 1 -3/2 1 .
P(X)=—=(x+1) " =—————_<1in]0,1].
2 2(x+1)°
Also,
max|¢'(x)|=i:L=k <0.2

28 42
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Therefore, Eq. (2.21) gives

1-0.2

[ Xy = Xpq | < £ =4x107* =0.0004.

Taking x, = 0.75, we find
1
J1.75
oo L
2= /175593
o1
37 1.75465

Now, |x3 — x,| = 0.00028 < 0.0004. Hence, the required root is 0.7549,
correct to four decimal places.

X]_:

=0.75593,
=0.75465,

=0.75493.

Example 2.11 Find a real root, correct to three decimal places, of the equation

2x — 3 =cos x

N . 3
lying in the interval | =, =]|.
ying 27|
We rewrite the given equation as

X= %(cos X+ 3)

Here

1 . . |37
‘(X)|==|sinx|<1,in|—=,—=
0001 fsinx<1in| 3, 7.
Choosing x, = 1.5, we obtain successively:

X = %(cos 1.5+ 3)=1.5354,
1

Xo = E(cos 1.5354 + 3) =1.5177,
1

X3 = E(COS 1.5177 + 3) =1.5265,
1

Xg = E(cos 1.5265 + 3) =1.5221,

Xg = %(cos 1.5221+ 3) =1.5243,
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Xg = %(cos 1.5243+ 3) =1.5232,

Xy = 1(cos 1.5232 +3) =1.5238.
2

Now, | x7 —x¢| = 0.0006 < 0.001. Hence, the root, correct to three decimal
places is 1.524.

Example 2.12 Use the method of iteration to find a positive root of the
equation xe* = 1, given that a root lies between 0 and 1.
Writing the equation in the form
x=e",
we find that

p'(x)=—e" =—% for x=1

Therefore,
[P | < 1.

Choosing x, = 0.5, we find
x; = e =0.60653, x, = 0.54524,
x3 = 0.57970, x; = 0.56007,
xs = 0.57117, x¢ = 0.56486,
x7 = 0.56844, xg = 0.56641,
X9 = 0.56756, X190 = 0.56691,
x1; = 0.56728, X1, = 0.56706,
x13 = 0.56719, x4 = 0.56712,
x5 = 0.56716, X1 = 0.56713,
x17 = 0.56715, x13 = 0.56714,

X1 = 0.56714.

It follows that the root, correct to four decimal places, is 0.5671.

Example 2.13 Use the iterative method to find a real root of the equation
sin x = 10(x — 1). Give your answer correct to three decimal places.
Let
f(x) =sinx —10x + 10

We find, from graph, that a root lies between 1 and 7 (The student is
advised to draw the graphs). Rewriting the equation as

X:1+smx,
10
we have
sinx
X)=14+—,
o(x) 10
and

|¢'(x)|=%’x<1inlsxsn.
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Taking x, = 1, we obtain the successive iterates as:

X =1+S'l—ré1=1.0841,

sin1.0841
+—

X, =1 =1.0884,

sin1.0884
+—

Xz =1 —1.0886,

sin1.0886
+—

X, =1 —1.0886.

Hence the required root is 1.089.
Acceleration of convergence: Aitken’s A?-process

From the relation

1€ = Xnsa|=19(8) =@ (X)) <K | & =X, k<1

it is clear that the iteration method is linearly convergent. This slow rate of
convergence can be accelerated by using Aitken’s method, which is described
below.

Let x; 1, x;, x;+; be three successive approximations to the desired root
x = & of the equation x = ¢ (x). From Eq. (2.17), we know that

& =% =k(& %), & =Xy =k —%)
Dividing, we obtain
S—% _&-%4
E—%u &%

which gives on simplification

2
Xiig — Xi
£y - =X (2.22)
Xis1 = 2% + X

If we now define Ax; and A%x; by the relations
AXi = Xiy1 — X and AZXi = A(Axi),
then
A1 =A(AXy)
=A(X —Xi_1)
= AXi — Axi—l
= X1 =% — (4 = Xi1)

= Xiyg = 2% + Xjq.
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Hence Eq. (2.22) can be written in the simpler form

(ax%)* (2.23)
AZXi_l

5 = X1~

which explains the term A%-process.

In any numerical application, the values of the following underlined
quantities must be obtained.

X1
AXi

Xi AZ Xi 1
AX

Xi+1

Example 2.14 We consider again Example 2.11, viz., the equation

x:%(3+cos X)

As before,
Xl =15
0.035
Xy =1.535 —0.052
-0.017
X3 21518
Hence we obtain from Eq. (2.23)
(-0.017)?

X4 =1.518— =1.524,

which corresponds to six normal iterations.

2.5 NEWTON-RAPHSON METHOD

This method is generally used to improve the result obtained by one of the
previous methods. Let x, be an approximate root of f(x) = 0 and let
X1 = xo + h be the correct root so that f(x;) = 0. Expanding f(x, + 4) by
Taylor’s series, we obtain

2
f(x0)+hf’(xo)+%f”(x0)+---=0.
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Neglecting the second and higher-order derivatives, we have
f (%) +hf (%) =0,

which gives
__ o)
(%)
A Dbetter approximation than x, is, therefore, given by x;, where
f (%)
X=X~ —77 2.24
() (2240

Successive approximations are given by x,, x3, ..., X,.1, Where

f(x
Xpag = Xq — /( n), (2.24b)
(%)
which is the Newton—Raphson formula.
If we compare Eq. (2.24b) with the relation

Xpt1 = d)(xn)
of the iterative method [see Eq. (2.9)], we obtain
_,_ fX)
which gives
sy = 100 £7(x) 2.25)
9 () =————= (
[f'(0F°

To examine the convergence we assume that f(x), f'(x) and /" (x) are
continuous and bounded on any interval containing the root x = & of the
equation £ (x) = 0. If £ is a simple root, then f’(x) # 0. Further since f’(x) is
continuous, | f’(x) | = & for some £ > 0 in a suitable neighbourhood of &.
Within this neighbourhood we can select an interval such that | £ (x) /" (x) |
< & and this is possible since f(£) = 0 and since f(x) is continuously twice
differentiable. Hence, in this interval we have

| ()| < 1. (2.26)

Therefore, Newton—Raphson formula given in Eq. (2.24b) converges,
provided that the initial approximation x, is chosen sufficiently close to &.
When & is a multiple root, the Newton—Raphson method still converges but
slowly. Convergence can, however, be made faster by modifying Eq. (2.24b).
This will be discussed later.

To obtain the rate of convergence of the method, we note that /(&) = 0
so that Taylor’s expansion gives

(%) + (E — %) f'(xn)%(é —Xg)? (%) + - =0,
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from which we obtain
f(x 1 f7(x
- ,( n) =(§—xn)+—(§—xn)2# (2.27)
F(xy) 2 F706)
From Eqgs. (2.24b) and (2.27), we have
1 2 T7(%,)
Xo g —E == (X, —&)F —n2 (2.28)
n+1 6 2( n 5) f’(xn)
Setting
£y =X, =&, (2.29)
Equation (2.28) gives
1 52 17() (2.30)

En1 = 2£n f,(é)’

so that the Newton—Raphson process has a second-order or quadratic

convergence.

Geometrically, the method consists in replacing the part of the curve
between the point [x,, f(x()] and the x-axis by means of the tangent to the
curve at the point, and is described graphically in Fig. 2.3. It can be used for
solving both algebraic and transcendental equations and it can also be used

when the roots are complex.

y

P (Xo» Yo)

0 X1 Xo

Figure 2.3 Newton—Raphson method.

X

Example 2.15 Use the Newton—Raphson method to find a root of the equation

¥ -2x-5=0.

Here f(x) = x> — 2x — 5 and /"(x) = 3x> — 2. Hence Eq. (2.24b) gives:

xﬁ—an -5

Xnl = Xp — 3X2—2
n

@
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Choosing x, = 2, we obtain f'(xg) = —1 and f’(xo) = 10. Putting » = 0 in Eq. (i),

we obtain
X =2 _l)ooa
10
Now,
f(x)=(2.1)°-2(2.1)—5=0.061,
and
f'(x)=3(2.1)% -2=11.23.

Hence

xp = 2.1- 2081 5 hoases,
11.23

This example demonstrates that Newton—Raphson method converges more
rapidly than the methods described in the previous sections, since this requires
fewer iterations to obtain a specified accuracy. But since two function evaluations
are required for each iteration, Newton—Raphson method requires more
computing time.

Example 2.16 Find a root of the equation xSin x+ cos x=0.

We have
f(x)=xsinx +cosx and f’(x)=x cosx.

The iteration formula is, therefore,

Xq SIN X, +COS X,
Xn+1 = *n — :
X, COS Xy,

With x, = 7, the successive iterates are given below

n Xn f(Xp) Xn+1

0 3.1416 -1.0 2.8233
1 2.8233 -0.0662 2.7986
2 2.7986 —0.0006 2.7984
3 2.7984 0.0 2.7984

Example 2.17 Find a real root of the equation x = ¢, using the Newton—
Raphson method.

We write the equation in the form
f(x)=xe*-1=0 (i)
Let xo = 1. Then

x =1-81-1(1,1)_ 06830397
2e 2 e
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Now
f(x;) = 0.3553424, and f’(x;) = 3.337012,
so that
X9 =0.6839397 — —0'3553424 =0.5774545
3.337012

Proceeding in this way, we obtain

x; = 0.5672297 and x4 = 0.5671433.

Example 2.18 Using Newton—Raphson method, find a real root, correct to
3 decimal places, of the equation sin x = x/2 given that the root lies between
/2 and .
Let X
f(x) =sinx — —

Then 2

() = 1
f'(x) = cos x >

. T .
Choosing x, = ER we obtain

. T T
. SInE—Z
e M
2
X, =2-M2=1 1 g010,
cos2 — =

X3 =1.9010 — sin1.9010 — 0.9505 18955
c0s1.9010-0.5

Similarly, x, = 1.8954, x5 = 1.8955, ... . Hence the required root is x = 1.896.

Example 2.19 Given the equation 4¢ ™ sinx — 1 = 0, find the root between
0 and 0.5 correct to three decimal places.

Let f(x) =4e* sinx — 1 and x5 = 0.2.
Then
f(xg) = —0.349373236,
and
f'(xp) = 2.559015826.
Therefore,
0.349373236
X% =024+ ———
2.559015826

=0.336526406 = 0.33653.
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Now,
f(x;) =—0.056587
and
f'(x)) = 1.753305735
= 1.75330
Therefore,
Xo =0.33653 + M =0.36880
1.75330

For the next approximation, we find f(x,) = —0.00277514755 and
f'(xy) = 1.583028705. This gives

x; = 0.36880 — 0.00175 = 0.37055

since f(x3) = —0.00001274, it follows that the required root is given by
x = 0.370.

Generalized Newton’s method

If £is a root of f(x) = 0 with multiplicity p, then the iteration formula
corresponding to Eq. (2.24) is taken as

f (%)) 2.31)
(%)
which means that (1/p) f”(x,,) is the slope of the straight line passing through
(x,» v, and intersecting the x-axis at the point (x,;, 0).

Equation (2.31) is called the generalized Newton’s formula and reduces
to Eq. (2.24) for p=1.Since £ is a root of f(x) = 0 with multiplicity p,
it follows that £ is also a root of f(x) = 0 with multiplicity (p — 1), of
f”(x) = 0 with multiplicity (p — 2), and so on. Hence the expressions

f (%) (%) _p_of ()
o)’ oo 0T T700)

must have the same value if there is a root with multiplicity p, provided that
the initial approximation x, is chosen sufficiently close to the root.

X1 =X — P

Xo— P X —(p-1)

Example 2.20 Find a double root of the equation f(x) = x> —x> —x + 1 = 0.
Choosing xo = 0.8, we have
f(x)=3x>-2x—1, and f”(x) = 6x — 2.
With x, = 0.8, we obtain
o) _pg- 2072
(%) ~(0.68)

Xo —2 =1.012,

and

f'(xg) _08 (-0.68)

. - =1.043.
f7(%)
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The closeness of these values indicates that there is a double root near to
unity. For the next approximation, we choose x; = 1.01 and obtain

xl—2ﬂ=1.01—0.0099=1.0001,
f'(x)
and
Q- f,,(xl) =1.01-0.0099 =1.0001.
f7(x)

We conclude, therefore, that there is a double root atx = 1.0001 which is
sufficiently close to the actual root unity.

On the other hand, if we apply Newton—Raphson method with x, = 0.8,
we obtain

x; = 0.8+ 0.106 = 091, and x, =091 + 0.046 = 0.96.

It is clear that the generalized Newton’s method converges more rapidly than
the Newton—Raphson procedure.

2.6 RAMANUJAN’S METHOD

Srinivasa Ramanujan (1887—-1920) described an iterative procedure* to
determine the smallest root of the equation

J(x) =0, 2.1
where f(x) is of the form

F)=1—(a1x + ax® + a® + ) (2.32)
To explain the method of procedure, we consider the quadratic equation
() = ap® + ax + a, = 0,
with the roots x; and x,, such that |x;| < |x,|. Then the equation defined by
O(x)=ax*+ax+ay=0

& a 2 0

= 1+ —=X+—=x"=
will have roots i and i such that i>i
X X2 x| %]
Now,
1 a a -
—=(1+—1x+—2x2)
9(x) a a

*See Berndt [1985], p. 41.
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can be written as

1
1By By J ko ke
8 @

1 1
X—— X-—
X X2

—kq X -k, x
- T K%

Cl-xg 1-x0
=k (L= 206) ™ = KpXo (1= x5) ™

o 2
=Y bx', whereb == k™t
i=0

r=1
Then,

ki [ x !
b kd tkoxy o ke lX 1
bj

T it i+1 i+1
ko + KoXs kl(xlj 1 Xo

X2

. X .
Since —L <1, it follows that
X2

which is the smallest root. This is the basis of Ramanujan’s method

which is outlined below.
To find the smallest root of /(x) = 0, we consider f(x) in the form

F)=1-(apx + ax® + azx® + ),
and then write

2 3 -1 2
[1—(alx+a2x + azX +~~~)] =b +byx +byx° +--- (2.33)

= 1+ (ax+ax®+ax + )+ (ax + ax + ape® + )P+
= by + box + byx® + - (2.34)
To find b;,, we equate coeffecients of like powers of x on both sides of
Eq. (2.34). We then obtain
b =1
b, = a; = a1b;, since by =1

b3 = ap + Cl]2 = a2b1 + albz, since b2 = a (2 35)

by = aibyy + axby + -+ + aj b,
= by + agaby T+ agby
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b;_ . .
The ratios i)—l called the convergents, approach, in the limit, the smallest
i

root of f(x) = 0. The method is demonstrated in the following examples.

Example 2.21 Find the smallest root of the equation
f(x)=x—9x* +26x —24 =0

We have
f(x)=1—§x+ix2 —ix3
24 24 24
1o [By 3Ly
12 8 24
Here
a E a 3 a —i y=a=--=0
17 2T g BTy MBS
Now,
b] =1
13
b, =a, =—=1.0833,
2=A=75
Therefore,
&=E=0.923
b, 13
by = a1by + ayb,
= E (1.0833) — §(1) =0.7986
12 8
Therefore,
b—2= 1.0833 =1.356
b; 0.7986
b4 = a1b3 + a2b2 + a3b1
= 1.0833 (0.7986) + 3 1.0833 +i1
= 1. (0.7986) g (1.0833) + - (1)
= 0.5007
Therefore,
g=1.595
by
bs = 3y, + ahs +agh,

=1.0833(0.5007) + (—gj (0.7986) + 2—14(1.0833)

=0.2880
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Therefore,
b—4: 0.5007 =1.7382.
bs 0.2880
bﬁ = a1b5 + a2b4 + a3b3
=0.1575
Therefore,
5 =1.8286.
b
b; = 0.0835
Therefore,
b—6 =1.8862.
by
bg = 0.0434
Therefore,
ﬁ =1.9240.
bg
by = 0.0223
Therefore,
% =1.9462.

The roots of the given equation are 2, 3 and 4 and it can be seen that the
successive convergents approach the value 2.

Example 2.22 Find a root of the equation xe™ = 1.
Let
xe* = (i)
Expanding ¢* in ascending powers of x and simplifying, we can rewrite
Eq. (i) as

1:x+x2+x—3+ﬁ+£+--- (i)
2 6 24
which is of the form of the right side of Eq. (2.32).
Here,
1 1 1
a=1, a=1, a3= 5" a, = 5" as = TR
We then have
by =1,
by=a, =1,
by=ab, +aby=1+1=2
by = aiby + axby + azhy =2 + 1 + % = g,
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b5 = Cl]b4 + (12[93 + a3b2 + Cl4b1

7 1 1
=—+4+2+=-4+=
2 2 6
=£=6.1667,
6
bs =@=10.8750;
24
Hence, we obtain
b]/bz = ],
bz/b3 = 05,

b3/b4 = 05714,
b4/b5 = 05676,
bs/bé = 0.5670.

It can be seen that Newton’s method (see Example 2.17) gives the value
0.5671433 to this root.

Example 2.23 Find the smallest root, correct to 4 decimal places, of the
equation
f(x)=3x—-cosx—-1=0.
We have
f(x) =1-3x+cosx

2 4 6
_1—3x+l—X—+X——X—
21 41 6!
2 4 6
21 41 6!
2 4 6 8
=2 1_§X_X_+X__X_+ X —
2 4 48 1440 80640

-1

2 4 6 8

1- Ex+X——X—+X—— X =b1+b2x+b3x2+---
2 4 48 1440 80640

1
, a3=0, ay =——,
3 4 8
1 1

=——, a;=0, ag=———, ...
1440 80640

FNg
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we then obtain,

bl = 1, b2 = 15,
b3 = 25, b4 = 4125,
bs = 6.79167, bg = 11.18750,
b; = 18.42778, bg = 30.35365
The successive convergents are
b =0.66667; by =0.60000,
> b
by =0.60606; by =0.60736,
by 5
b—5 =0.60708; b—e =0.60710,
6 by
by
—=0.607102
3

Hence the required root, correct to four decimal places, is 0.6071.

Example 2.24 Using Ramanujan’s method, find a real root of the equation

x? X x* _

e @ @

Let
1=1x- x22+ X32_ X42+"' =0 (1)
[4) N 1) R 1))
we have
a =1 a, :—ﬁ, a3=W,
A=, a = — Bg = —— .
(4° (5Y? (61
Then we obtain
by =1; b, = a; = 1;
by = a;b, + axby :l—ﬁz%
by = ajbs + arby + azb,
_3. 1,1 _19,
4 4 36 36
21

b5 —%,...
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The successive convergents are:
b _,. by

=1.3333...

w| s

b, by
b _27 1 410,
b, 19
5 _1 4408

5

where the last result is correct to three significant figures.

2.7 SECANT METHOD

We have seen that the Newton—Raphson method requires the evaluation of
derivatives of the function and this is not always possible, particularly in the
case of functions arising in practical problems. In the secant method, the
derivative at x; is approximated by the formula

PLICORLIC)

X — X1
which can be written as
e fi - fi—ly (2.36)
X — X1

where f; = f(x;). Hence, the Newton—Raphson formula becomes

_ Gl =%ia) - Xiafi—%ifia (2.37)
fi—fia fi—fi

Xiy1 = Xi
It should be noted that this formula requires two initial approximations to the
root.

Example 2.25 Find a real root of the equation x* — 2x — 5 = 0 using secant
method.

Let the two initial approximations be given by

X1 = 2 and Xo = 3
We have

f)=fi=8-9=-1, and f(xp) =fy =27 - 11 = 16.
Putting i =0 in Eq. (2.37), we obtain

g =206 =31 _35_, 1eggr3509,
! 17 17
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Also,
f(x)) = f;1 =-0.390799923.

Putting i = 1 in Eq. (2.37), we obtain

X fp—xfy 3(-0.390799923) — 2.058823529 (16)
fi—fo —-16.390799923

Xo =2.08126366.

Again
f () = f» = =0.147204057.
Setting i = 2 in Eq. (2.37), and simplifying, we get x; = 2.094824145, which
is correct to three significant figures.
Example 2.26 Using the secant method, find a real root of the equation

fx)=x"—1=0
We have
f0)=-1 and f(I)=e—1=171828 =f

Therefore, a root lies between 0 and 1.

Let
Xy = 0 and X = 1.
Therefore,
p=ofizhlo 1 46788
fi = fo 2.71828
and
£ = 03678803788 _ |
= — 0.46854.
Hence
X3 = xfp—%f
fo—1f;
_ 1(-0.46854) — 0.36788(1.71828)
—0.46854 —1.71828
= (0.50332
and
3 =-0.16740
Hence
X4 = Xty =Xy =0.57861
fy— 1,
and

£ =0.03198
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Hence
fg =X f
xg =374~ %418 _ 56653,
fo — 13
and
£ =-0.00169
Therefore,
xg = Xafs =%t _ g ga71s
fo— f,

We also find
f(xg) = —0.0001196.

It follows that the required root is 0.5671, correct to four decimal places.

2.8 MULLER’S METHOD

In this method, the given function f'(x) is approximated by a second degree
curve in the vicinity of a root. The roots of the quadratic are then assumed
to be the approximations to the roots of the equation f(x) = 0. The method
is iterative and can be used to compute complex roots. It has quadratic
convergence [see, Muller (1956)].

Let (x;0, ¥i2), (xi_1, ¥i.1) and (x;, ¥;) be three distinct points on the curve
y = f(x) where x, 5, x; 1 and x; are approximations to a root of /(x) = 0. Now,
a second degree curve passing through the three points is given by Lagrange’s
formula (see Section 3.9.1)

=% =%) (K= Xip)(X= %)

-0 (icz = X%)(i2 = %) " 2 (i = Xi_g)(Xig = %) Vi
(X=Xi_p)(X=X1)
(% = %_2)(% —%_1) "' (2.38)
Let
hi = x; — Xiq, hig = X — Xig (2.39)
Then
X=X =x-xtx-x =X -x)t
X=X =x-xtx—x=x-x)+ (hy th) (2.40)
Xio = X = ~hiy,
Xip —%; = —(hiy + hy) and A; =y, — .
Hence
L(x) = (X; Xi +h)(X = %) e (X = +hig + )X = %) -
i1 (i + hy) —hy_ahy
(x =% +h +hi_)(x=X +h)
i (2.41)

hi (hi_y +hy)
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After simplification, the preceding equation can be written as

L(x) = A(x - xi)2 + B(x —x;) + y;
where

(g +h)\h by (2.42)
and B= ﬁ+ Ah;
h:

With these values of 4 and B, the quadratic Eq. (2.38) gives the next

approximation x;;
—B+/B2 - 4Ay;
Xis1 = X + A ' (2.43)

Since Eq. (2.43) leads to inaccurate results, we take the equivalent form

2yi
B +./BZ — 4Ay (2.44)

In Eq. (2.44), the sign in the denominator should be chosen so that the
denominator will be largest in magnitude. With this choice, Eq. (2.44) gives
the next approximation to the root.

Xip1 =X —

Example 2.27 Using Muller’s method, find the root of the equation
f)=x*-x-1=0,

with the initial approximations

X =0, xi,; =1, x;=2.
We have
Yia=-1, yiy=-1, »=5.
Also,
hi=1, h_ =1,
A =6,A,=0.

Hence, Eq. (2.42) gives 4 = 3 and B = 9.

Then
JBZ —4Ay; =21

therefore, Eq. (2.44) gives

2(5) . . . ..
X =2—-——-—, since the sign of B is positive
i+1 9+\/ﬁ g p
= 1.26376.

1.26376 - 2

100 =58%.
1.26376

Error in the above result = ‘
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For the second approximation, we take

1.26376.

Xio =1, xi1 =2, x
The corresponding values of y are
Vio =—1, yi1 =95, y; =-0.24542.
The computed values of 4 and B are

A = 426375 and B = 3.98546.
Then
X1 = 1.32174,

and the error in the above result = 4.39%.
For the third approximation, we take

Xip =2, x;1 = 126376, x; = 132174.
Vio =15, yiq =-0.24542, y; = -0.01266.
Then 4 = 4.58544, B = 4.28035 and x,.; = 1.32469.

Error in the result = 0.22%.
For the next approximation, we have

Xio = 1.26376, x,.; = 1.32174, x; = 1.32469
These values give

A = 3.87920, B = 4.26229 and x;;; = 1.32472.
The error in this result = 0.002%.

Hence the required root is 1.3247, correct to 4 decimal places.

2.9 GRAEFFE’'S ROOT-SQUARING METHOD

This is another method recommended for the numerical solution of polynomial
equations. The method is outlined here by considering a cubic equation.
Let the cubic equation be

A + Aix> + Ayx + A3 = 0, (2.45)
whose roots &, & and &; are such that
&1| > [l > [&5.
The symbol > means “much greater than”. In other words, the ratios
é_zé_:% are very small quantities compared to unity and can be neglected. In
1 62

such a case, we say that the roots are widely separated.
We now consider the relations between the roots and coefficients of
Eq. (2.45).
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G+ +8=- %
&8 +8x83 + 836 = % (2.46)
and §&p83 =- %
Since 5_2,§_3 are negligible, the above relations give
1 62
51}%, 52}% and 53}% (2.47)

Thus, the magnitudes of the roots will be known when once the roots are
widely separated. Now, we shall show the way, the roots are separated by
considering the cubic equation

p(x) = (x — D> - 2)(x — 3) (2.48)
then
p(=x) = (=x — D(—=x = 2)(—x - 3)
= (Dx + D(x + 2)(x + 3) (2.49)
therefore,
pp(—x) = 1’ - DE* - 4> - 9) (2.50)
letting
q2) =(z - 1)z -4z -9), (2.51)

where z = x%, we find that the roots of Eq. (2.51) are the squares of the roots
of Eq. (2.48). By transforming Eq. (2.51) in the same way as above, we get
another equation whose roots are the squares of the roots of Eq. (2.51). This
is the principle underlying this method and due to this reason, this method
is called root-squaring method.

Now, let the given cubic be

f(x) =apxs + axs +ax + a3 =0 (2.52)
with roots ¢, o, and a3 such that
loa| > Jon| > [og|.

Suppose that Eq. (2.52) is transformed ‘m’ times by the root-squaring process
described above, and that the transformed equation is

o) =a™u® +a™u? + a™u +a{™ =0 (2.53)
If u; are the roots of Eq. (2.53), then we have

u=ca", =123 (2.54)
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But ; are given by the coefficients in Eq. (2.53). Hence we have the following
formulae for the roots of Eq. (2.52)

a 1/m
i

These results can easily be generalized to a nth degree polynomial.

It is clear that this method gives approximations to the magnitudes of the
roots. To find the sign of any root, we substitute the root in the original
polynomial and find the result. If the result is very nearly zero, then the root
is positive; otherwise, it is negative.

The root-squaring process can be terminated when two successive
approximations are very nearly the same.

Graeffe’s method has the advantage of providing approximations to all
the roots of a polynomial equation simultaneously. Once the approximate
values to all the roots are known, iterative methods can be used to obtain
accurate value of each zero.

Example 2.28 Using Graeffe’s method, find the real roots of the equation
X -6xr+ 1lx-6=0

Let
f)=x-6x*+1lx-6=0 (i)
then
fx)==x>-6x> - 1lx -6 =0
therefore,

Ff(x) = (1) (° = 14x* + 49%* — 36)
let
o (x) = 23 — 142> + 49z — 36, where z = x°.

Hence, roots of f(x) = 0 are given by

36 49
12 0.857, |~ =1.871 and 4 =3.742
49 14

¢ (=) = 2 — 142> — 49z — 36

Now,

Therefore,
0 (2) ¢(—2) = (=1)°(° — 98z* + 13932% — 1296)

Setting ¢ (1) = ® — 9827 + 1393u — 1296, we obtain the next approximation
to the roots of f(x) = 0 as

1/4 14
12961 _ 0822, (18] ~1.942and (98)* =3.147.
1393 98

It is seen that the approximations are converging to the actual roots 1, 2
and 3, respectively.
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Suppose we use x, = 0.857 and apply Newton’s method.
We obtain

0.35027

X =0.857 + =0.977.

Similarly, better approximations can be obtained for the other two roots.

2.10 LIN-BAIRSTOW’S METHOD

This method is useful in determining a quadratic factor of a polynomial. We
shall explain the mathematical basis of the method by considering a cubic
equation, viz.
F(x) = ax® + ax? + ax + a (2.56)
Let x> + Rx + S be a quadratic factor of f(x) and also let an approximate
factor be x? + rx + s. If we divide £(x) by x*> + rx + s, then both the quotient
and remainder would be linear factors. Hence we write

F(x) = (x> + rx + s)(bsx + by) + bix + by (2.57)
It is clear that if » = R and s = S, i.e., if the quadratic factor is exact, then
the remainder term will be zero, which means that »; = b, = 0. Equating the
coefficients of like powers of x in Eqs. (2.56) and (2.57), we obtain
by = as,
by = ay — rbs,
by = a; — rby — sbs, (2.58)
by = ay — sb,
From Eq. (2.58), we see that the b, are functions of both » and s. If the

factor x> + rx + s is exact, i.e., if x> + rx + s divides exactly the function f(x),
then we must have

bo = bl =0
i.e.,
bo(r, s) =0 and by(r,s) =0 (2.59)
Now, by Taylor’s theorem,
ab ab
b (1, s) = by (fy, S) + —2Afy + —2>Asy =0
o (r, s) =Dy(r, So) or S5 A% (2.60)
and
0 0
by (r, s) =by(rp, So) +a—t;1Aro "‘a_t;lAso =0, (2.61)

where the higher order partial derivatives are neglected and the first order
partial derivatives are calculated at the point (7, s).

If the initial approximation (ry, s¢) is assumed, then a correction
(Arg, Asgy) can be computed from Egs. (2.60) and (2.61), so that we have the
next approximation as
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These relations are

(2.62)

ry =rny + AI"O
and S1:S0+ASO

For the next approximation, we take r, = r; and s, = s, and proceed as
above.

Example 2.29 Find a quadratic factor of the polynomial

f(x)=x>—x-1.
We have
as = 1, a2=0, a :—1, Cl():—]
Let
o = So = 1.0
Then,
b3 = das,
by, = a, — rby = a, — ras,
by =a; — rby — sby = a; — r(a, — raz) — sas
=a; —rap, t r2a3 — sas
by = ag — sby = ay — s(a, — raz)
= qayg — Sa, t sras
Therefore,
aby dby
— =sa;, —=-—2a, +ra
or 3 Os 2 3
oby by
—=-a, +2rag, — =-ag3.
or 2 3 9s 3
Then, Egs. (2.60) and (2.61) give
AT’Q + ASO =0
and
ZA}"O — ASO = 1.
Hence,
1
Ary = 3 = 0.3333
and

Asy = —% = — 0.3333.
It follows that

1
r :}’0+A7’0: 1+ § = ]3333,
and
1
S1 = 98 +ASO =1- g = 0.6667.
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For the second approximation, we get

o= 13333 and s, = 0.6667.

Then
by =-0.1111 and b, = 0.1110,
M _oee67. 2% _13333 P_neees, o1
ar ds ar ds

With these values, we obtain Ary, = —0.00874 and As, = 0.0877 which
give 1, = 1.3246 and s, = 0.7544, both of which are correct to three decimal
places.

2.11 QUOTIENT-DIFFERENCE METHOD

This is a general method to determine the approximate roots of a polynomial
equation and is described in Henrici [1964]. It is originally due to Rutishauser
[1954]. Only an outline of the method is given here and for details the reader
is referred to Henrici’s book. We consider the cubic equation

F(x) =ap’® + ax® + ax + a3 =0, (2.63)

whose roots x;, x, and x3 are such that 0 < |x;| < |xo| < |x3].
We write f(x) in the form

f(x)=1+a—2x+ﬁx2 +ix3

Now, let

bx', (2.64)

where

h=3 —Kr (2.65)
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The method derives its name from the definitions of quotients
o}

QP = (2.66)
i-1
and differences
. - .
DM =l +) _ W (2.67)
In Ramanujan’s method (Section 2.6), we have seen that the quantity
b
lim ==L
e by (2.68)

tends to the smallest root of the equation f(x) = 0, but the O—D method leads
to the approximations of all the roots. With the initial values of Ql(') and
Dl(') obtained from the definitions, approximations to the roots are computed
by using the formulae:

D§i+1) Qﬁ”l) - Dﬁi) Qgr)1 (2.69)
and
D = Dr(i—+11) +Q _® (2.70)

Ag) = Ag) =0 foralli.

Proofs of these formulae are left as exercises to the reader.
Using Egs. (2.69) and (2.70), a table of quotients and differences can be
generated and a typical table is given below (Table 2.1).

Table 2.1 A Typical Q-D Table

Do Q1 D, Q2 D, Q3 Ds
Qi 0 0

0 p{t) p® 0
o o o

0 p{? pH) 0
o® o® o

When the first two rows are known, the other rows can be constructed by
using Eqgs. (2.69) and (2.70) alternately. The quantities Q(') , Qg') and Q3(')
tend to the reciprocals of the roots of /(x) = 0. Hence, instead of Eq. (2.63),
if we consider the transformed equation

ax® + ax® + ax +ay =0 (2.71)
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and proceed as above, we obtain directly the roots of Eq. (2.63). This procedure
is illustrated in the following example.

Example 2.30 Using the O—D method, find the roots of the cubic equation
f(x) = x> —9x* + 26x — 24 = 0.
To compute the roots directly, we consider the transformed equation
—24x> +26x* = 9x + 1 =0.
We then have
(—=24x> + 26x% — 9x + 1)(by + byx + box? + byx> + --2) = 1.

Comparing the coefficients of like powers of x on both sides of the above
equation, we obtain
by =1; —9bhy + b; = 0;
by — 9b; + 26by = 0;
by — 9b, + 26b; — 24by = 0
The above relations give
bo=1, by =9, by=55 and b; =285,

so that
B _goqW
bo
D2 55 _61111-@
b, 9

and
by _285 ¢ 1515 Q¥
b, 55

We obtain the differences
DY =Q{? — QW =—-2.8889,
and
D@ =Q® - =_0.9293.
To determine Qél) , we have
o _ Do 1.9658.

With Qéo) =0, we can now compute Déo) from the formula

DgO) — Qél) + Dl(l) _Q§O)
=-0.9231.
It follows immediately that Qe(,o) = 0.9231.
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We have thus computed all the elements in the first two rows of Table 2.1.
This enables us to use Egs. (2.69) and (2.70) alternately to generate the
quotients and differences row by row.

To compute Dl(z) we use the elements

D
sz) Qél)
p{®
where
2 2 1 1
Dl( )'Ql( ) =D1()-Q£)
Hence
Dl(z) :—0.9293 x 2.4616 — _0.4415.
5.1818
Similarly,
0.9231)°
Dy = _(09281)7 6 455,
1.9658
Next row is a row of quotients. We have Q1(3) =5.1818.
Also,
Q{?) =1.9658 - 0.4335 + 0.9293
=2.4616,
and

QY =0.9231-0.4335
=1.3566.

Proceeding in this way, the following table of quotients and differences
is formed (Table 2.2).

Table 2.2 Solution of Example 2.30

Dy Q1 Dy Q> D, Qs Ds
9 0 0
0 —2.8889 —-0.9231
6.1111 1.9658 0.9231
0 -0.9293 -0.4335 0
5.1818 2.4616 1.3566
0 -0.4415 -0.2389 0
4.7403 2.6642 1.5955
0 —0.2481 -0.1431 0
4.4922 2.7692 1.7386
0 -0.1529 —0.0898 0
4.3393 2.8323 1.8284
—0.0998 —0.0580 0

4.2395 2.8741 1.8864
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It can be seen that Q;, O, and Q5 are converging to the actual values 4, 3 and
2, respectively.

2.12 SOLUTION TO SYSTEMS OF NONLINEAR EQUATIONS

In this section, we consider two methods for the solution of simultaneous
nonlinear equations: (i) the method of iteration and (ii) Newton—Raphson
method. For simplicity, we consider a system of two equations:

[, ) =0 }
and g(x, ) =0

(2.72)

2.12.1 Method of Iteration

As in the case of a single equation, we assume that Eq. (2.72) may be written
in the form

x=Fx ), y=Gx,y), (2.73)
where the functions F' and G satisfy the following conditions in a closed
neighbourhood R of the root (¢, B):

(i) F and G and their first partial derivatives are continuous in R, and

oF |, |oF %/, o
X| | ay ox| |oy
for all (x, y) in R.

If (xg, yo) is an initial approximation to the root (¢, ), then Eq. (2.73) give
the sequence

(ii) <1 and

+

‘<1, (2.74)

x; = F(xo, yo)s Y1 = G(xo, o)
Xy = Flxy, y1), Y2 = G(xy, y1) 2.75)
Xp+1 = F(xna yn)a Y1 = G(xna yn)

For faster convergence, recently computed values of x; may be used in the
evaluation of y; in Eq. (2.75). Conditions in Eq. (2.74) are sufficient for
convergence and in the limit, we obtain

oa=F, f) and f[=G(a, B) (2.76)
Hence, o and 3 are the roots of Eq. (2.73), and therefore, also of the Eq. (2.72).
The method can obviously be generalized to any number of equations.

Example 2.31 Find a real root of the equations
V¥ -5y+4=0 and

3px? — 10x + 7 = 0,
using the iteration method.
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Clearly, a real root is x = 1 and y = 1.
To apply the iteration method, we rewrite the equations as
X = i(3yx2 +7) i
10 ®
and
1, 5 .
y= g(y +4) (i)
Here

F _6by oF_a¢
ox 10" 9y 10°
% _, 96 _2y

ox 9y 5

Let (0.5, 0.5) be an approximate root. Then

F () =2 (@0C +7),

mxw=$ﬁ+@,

3x2

oy 3
10

10

JF
X

‘BF
+ |—| =
ady

(0.5,0.5)
=0.15+0.075<1

(0.5,0.5)

and
a_G
ox

oG

9G|_ |2y
ay|

5

=0.2<1.
0.5

+

Hence the conditions for convergence are satisfied and the approximations

are given by
Xn1 = i|:3ynxr% + 7] and Ynq 21[)’% + 4]
10 5 '

We obtain successively with x, = 0.5 and y, = 0.5

% :i[§+ 7} =0.7375; V1= l[1+ 4} =0.85
10( 8 5|4
1 2 1 2
_1 =1 (0.85)2+ 4]=0.044
X, 10[3(0.85)(0.7375) +7] Y 5[(0 85)°+ 4 | = 0.9445
—0.8387:

1 2 _1 2 _
Xg = E[3(0.8387) (0.9445) + 7] Y3 = 5[(0.9445) + 4] =0.9784.
= 0.8993;

Successive approximations are
x4 = 0.9374, vy = 0.9914
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x5 = 0.9613, y5 = 0.9966
xg = 0.9763, 5 = 0.9986
x; = 0.9855, 7 = 0.9994.

Convergence to the root (1, 1) is obvious.

2.12.2 Newton-Raphson Method

Let (xg, y9) be an initial approximation to the root of Eq. (2.72). If
(xo + h, yo + k) is the root of the system, then we must have

f&o+ h oyo + k) =0, gxo+ h,yo + k) =0 (2.77)

Assuming that f'and g are sufficiently differentiable, we expand both the
functions in Eq. (2.77) by Taylor’s series to obtain

f0+ha_f+ka_f+...=0
dX o
(2.78)
go+ha_g+ka_g+...:0,
X 9o
where
of of
— == , To = T(Xg, Vo), etc.
o [ax]x:xo o= f(X, Yo)

Neglecting the second and higher-order derivative terms, we obtain the following
system of linear equations:

of of

h—+k—=-1
X o
(2.79)
and ha_g +k a_g =-0p
dX o
Equation (2.79) possesses a unique solution if
of  of
%o o
D= #0.
% 99 250
%o o
By Cramer’s rule, the solution of Eq. (2.79) is given by
W LA
X
h=> Yo| and k =20 2.81)
D dg D|dg
=00 B v =00

o dXo
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The new approximations are, therefore,

X1=xyth and y; =y t+k (2.82)
The process is to be repeated till we obtain the roots to the desired accuracy.
As in the case of a single equation, the convergence is of second order.

Example 2.32 Solve the system given in Example 2.31 by Newton—Raphson
method.

We have
fxX) =3 —10x+7=0
gx) =y =5y +4=0
Then,
a—f=6yx—10, I 3,
ox oy
a_g = O’ a_g = 2y _
ox oy
Taking xo = yo = 0.5, we obtain
of of
—=-8.5, —=0.75, =
% e fo = 2.375,
ag ag
—=0, —=-4, =
aXO ayo £20 1.75
Hence,
-85 0.75
D= =34.
0 -4
Therefore,
-2.375 0.75
h= £l =0.3180,
34| -1.75 -4
and
-8.5 -2.375
k =i =0.4375.
341 0 -1.75

It follows that

x; = 0.5+ 0.3180 = 0.8180
and

y; = 0.5 + 0.4375 = 0.9375

For the second approximation, we have

f1 = 0.7019, g, = 0.1914,
LI —5.3988, a* 2.0074,
axl ayl

9 _y, 9 _ 315,

X Y
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Therefore,
-5.3988 2.0074
D= =16.8712.
0 -3.125
Hence,
1 -0.7019 2.0074
h= =0.1528,
16.8712 |-0.1914 -3.125
and
1 -5.3918 -0.7019
k = =0.0612.
16.8712 0 -0.1914

It follows that

x, = 0.8180 + 0.1528 = 0.9708
and

v, = 0.9375 + 0.0612 = 0.9987

Example 2.33 Solve the system x> + »* = 1 and y = x> by Newton—Raphson
method.
Let
f=x+y -1
From the graphs of the curves, we find that there are two points of
intersection, one each in the first and second quadrants. We shall approximate
to the solution in the first quadrant. We have

of of

and g=y—x°.

—=2 ’ —=2 )
oX X ay y
a—g=—2x, a—gzl.

X ay

We start with xy = yo = 0.7071 obtained from the approximation y = x.
Then we compute

N a4, I 1 a4,
g o
99 _ 4142, %y
Xo %o
Therefore,
14142 14142
- =3.4142; f,=0,
-1.4142 1
Hence,
0 1.4142
he_ 1 —0.0858,
3.4142|-0.2071 1
and
1 [1.4142 0
K = =-0.0858,
3.4142 |-1.4142  -0.2071
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It follows, therefore,

x; = 0.7071 + 0.0858 = 0.7858,
and

y; = 0.7071 — 0.0858 = 0.6213.

The process can be repeated to obtain a better approximation.
Eliminating x between the two given equations, we obtain the quadratic
for y
yEry-1=0,
which gives y = 0.6180 for the first quadrant solution.
Then x = 0.7861. These values may be compared with the solution
(x1, ¥1) obtained above.

Example 2.34 Solve the system
sinx —y = —0.9793
cosy —x = —0.6703
with xy = 0.5 and y, = 1.5 as the initial approximation.
We have
f(x, y)=sinx -y + 09793
and
g(x, y) =cos y —x + 0.6703.
For the first iteration, we have
fo = —0.0413, g5 = 0.2410,
D = fig, — g fy = c0s(0.5)(=sin 1.5) — (1) = ~1.8754

foy —ofy _

h=—Y =Y __ 01505, k= 9fx = 19y
D

X =-0.0908

Therefore,

x = 0.5+ 0.1505 = 0.6505
and

y =15+ 0.0908 = 1.5908

For the second iteration, we have x, = 0.6505 and y, = 1.5908.
Then we obtain
D = -1.7956
also
h =-0.003181 and & = 0.003384.

Hence the new approximation is
x = 0.6505 + 0.0032 = 0.6537,
y = 1.5908 — 0.0034 = 1.5874.

Substituting these values in the given equations, we find that these are correct
to four decimal places.
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EXERCISES

2.1 Explain the bisection method for finding a real root of the equation
f(x) = 0 and write an algorithm for its implementation with a test for
relative accuracy of the approximation.

Obtain a root, correct to three decimal places, of each of the following

equations using the bisection method (Problems 2.2-2.5):

22 ¥ -4x-9=0

23 ¥ +x*-1=0

2.4 5Sx loglox -6=0

25 x> +x—cosx=0

2.6 Give the sequence of steps in the regula—falsi method for determining
a real root of the equation f(x) = 0.

Use the method of false position to find a real root, correct to three decimal

places, of the following equations (Problems 2.7-2.10):

27 P+ +x+7=0
28 ¥*—-x-4=0
29 x=3¢"

210 xtanx + 1 =0

2.11 Find the real root, which lies between 2 and 3, of the equation
X loglox— 1.2=0
using the methods of bisection and false—position to a tolerance of
0.5%.

2.12 Explain briefly the method of iteration to compute a real root of the
equation f'(x) = 0, stating the condition of convergence of the sequence
of approximations. Give a graphical representation of the method.

Use the method of iteration to find, correct to four significant figures, a real

root of each of the following equations (Problems 2.13-2.16):

2.13 ¢ = 3x

2.14 X=

(x +1)2
215 1 +x* =3

1
2.16 x — sinx = —
X —sinx = 7
2.17 Establish an iteration formula to find the reciprocal of a positive number
N by Newton—Raphson method. Hence find the reciprocal of 154 to
four significant figures.
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2.18 Explain Newton—Raphson method to compute a real root of the equation
f(x) =0 and find the condition of convergence. Hence, find a non-zero
root of the equation x> + 4sin x = 0.

2.19 Using Newton—Raphson method, derive a formula for finding the kth
root of a positive number N and hence compute the value of (25)"*.

Use the Newton—Raphson method to obtain a root, correct to three decimal
places, of each of the following equations (Problems 2.20-2.25):

2.20 x"2 — 4 =0
2.21 ¢ = 4x

222 X -5x+3=0
2.23 xe* = cos x

_1+cosx
3
2.25 cot x = —x

2.24 X

2.26 Describe a computational procedure to implement Newton—Raphson
method for computing the square root of a positive number to an accuracy
e. Write a flow-chart for the same.

2.27 Compute, to four decimal places, the root between 1 and 2 of the

equation

X -23+3x-5=0

by (a) Method of False Position and (b) Newton—Raphson method.
Using Ramanujan’s method, find the smallest root of each of the following
equations (Problems 2.28-2.30):
228 X —6x* + 1lx -6 =0
229 x+x’ - 1=0
230 sinx +x -1 =0

2.31 Use the secant method to determine the root, between 5 and 8, of
the equation x*>? = 69. Compare your result with that obtained in

Example 2.7.

2.32 Determine the real root of the equation x = ¢ *, using the secant method.
Compare your result with that obtained in Example 2.26.

2.33 Point out the difference between the regula—falsi and the secant methods
for finding a real root of (x) = 0. Apply both the methods to find a real
root of the equation x> — 2x — 5 = 0 to an accuracy of 4 decimal places.

2.34 Describe briefly Muller’s method and use it to find (a) the root, between
2 and 3, of the equation x> — 2x — 5 = 0 and (b) the root, between 0 and
1, of the equation x = ¢ ™ cos x.
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Find the real roots of the following equations using Graeffe’s root-squaring
method (Problems 2.35-2.36):

235 % —4x* +5x—2=0

236 x —2x* - 5x+6=0

2.37 Find a quadratic factor of the polynomial
f)=x-2x*+x-2

by Bairstow’s method with two approximations starting with », = —0.5
and sy = 1.

2.38 Determine a quadratic factor, nearer to x> — 1.5x + 1.5, of the polynomial
F(x) = x* - 8x* +39x? — 62x + 50
by Bairstow’s method. Give the computational steps of this method.
2.39 Using the O-D method, find the real roots of the equation
f)=x—6x*>+1lx—6=0

2.40 In the notation of Section 2.11, prove the following results:

(@ lim -1
ise by X

1 .

_Q(')

2.41 Prove the formula
p® Q) = D+ QD
Solve the following systems by Newton—Raphson method.
(Problems 2.42-2.44).
242 X> +)? =1, y=x
243 x* —y* =4, xX*+)y°=16
244 x> +y=11, Y +x=7
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245

2.46

2.47

2.48

2.2
24
2.7
2.9

2.11

2.13
2.15
2.17
2.19

To find the smallest root of the equation 7 (x) = x> —x — 1 = 0 by the
iteration method, 7 (x) = 0 should be rewritten as
(@ x=x>-1 (b)x =@+ D"
X+1
© x =5 @x= =5

Find the correct choice in the above.

Newton—Raphson formula converges if
f/(x) f(x f(x)f”(x
R R LT PP RICLECT
[f()] [f'(x)]
(c) Lf()z() <1 (d) None of these.
[f//(x)]
Which one of the following is not correct?

(a) Newton—Raphson method has quadratic convergence.

(b) The bisection method converges slowly.

(c) To solve f(x) = 0 by iteration method, the given equation is written in
the form x = ¢ (x) where | ¢ ’(x)| < 1 in an interval containing the root.

(d) The method of regula—falsi converges faster than the secant method.

Which one of the following is correct?

(a) The bisection method has quadratic convergence.

(b) The iteration method is a self-correction method.

(c) The equation x> — 2x — 5 = 0 has two positive roots.

(d) The equation x = cos x can be solved by Graeffe’s method.

Answers to Exercises

2.706 2.3 0.755
2.741 2.5 0.550
-2.105 2.8 1.796
1.0499 2.10 2.798
Successive values are (By bisection method)

2.5, 2.75, 2.625, 2.6875, 2.7187, 2.7344, 2.7422.
By false position method
2.7210, 2.7402, 2.7407, 2.7406, 2.7406

0.6190 2.14 0.4656
1.466 2.16 1.497

0.006494 2.18 —1.9338
2.23607 2.20 4.5932
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2.21 0.3574
2.22 With xq = 0.5, x; = 0.6470, x, = 0.65656, ...

2.23
2.24
2.25
2.27

2.28

2.29

2.30

2.31
2.32
2.33

2.34
2.35
2.36
2.37
2.38
2.39
2.42
2.43
2.44
2.45
2.46
2.47
2.48

With x, = 0.5, x, = 0.5180, x, = 0.5180, ...
xXp = 1.047, x; = 0.6224, x, = 0.6071, x3 = 0.6071.

2.798
1.8437; 1.8438

5 _ 054548, b2 _ 077647,

b, by

b5 _ 88696, b4 _ 094237,
by bs

Smallest root is 1.

Convergents are:

1.0, 0.5, 0.66666, 0.75, 0.66666, 0.66666, 0.69231, 0.68421, ...

Convergents are:
0.5, 0.5, 0.51064, 0.51087, 0.51097, ...

Required root is 0.5110.
Root = 6.85236.
Fifth iteration value = 0.567143

Regula—falsi: 2.0945 in 7 iterations.
Secant method: 2.0946.

(a) 2.09462409  (b) 0.51752

Third approximation to the roots: 0.9168, 1.0897, 2.0019
Third approximation: 3.014443, 1.991425, 0.999494.
x> — 0.0165x + 0.9394 (Exact factor is x> + 1).

x% — 1.9485x + 1.942982 (Exact factor is x> — 2x + 2).
0, = 3.13145, O, =~ 1.898, 05 = 0.9706.

x; = 0.8261, y, = 0.5636.

X0 =13, yo=2, x;=3.1667, y, =25

x =3.584, y=-1.848

(b)

(b)

(d)

(@)



Chapter

Interpolation

3.1 INTRODUCTION

The statement
y=7/x), xp<x<x,

means: corresponding to every value of x in the range x, < x < x,, there
exists one or more values of y. Assuming that f(x) is single-valued and
continuous and that it is known explicitly, then the values of /' (x) corresponding
to certain given values of x, say xg, xi, ..., X, can easily be computed and
tabulated. The central problem of numerical analysis is the converse one:
Given the set of tabular values (xo, 1g), (x1, Y1), (X2, 12), ..., (x,,» V,,) satisfying
the relation y = f(x) where the explicit nature of f(x)is not known, it is
required to find a simpler function, say ¢ (x), such that f(x) and ¢ (x) agree
at the set of tabulated points. Such a process is called interpolation. If ¢ (x)
is a polynomial, then the process is called polynomial interpolation and
¢ (x) is called the interpolating polynomial. Similarly, different types of
interpolation arise depending on whether ¢ (x) is a finite trigonometric series,
series of Bessel functions, etc. In this chapter, we shall be concerned with
polynomial interpolation only. As a justification for the approximation of an
unknown function by means of a polynomial, we state here, without proof,
a famous theorem due to Weierstrass (1885): if f(x) is continuous in
X9 £ x £ x,,, then given any € > 0, there exists a polynomial P (x) such that

| f(xX)—P(x) | <g, for all x in (xg, x,,).

73
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This means that it is possible to find a polynomial P (x) whose graph remains
within the region bounded by y = f(x) — € and y = f(x) + & for all x between
xo and x,, however small € may be.

When approximating a given function f(x) by means of polynomial ¢ (x),
one may be tempted to ask: (i) How should the closeness of the approximation
be measured? and (ii) What is the criterion to decide the best polynomial
approximation to the function? Answers to these questions, important though
they are for the practical problem of interpolation, are outside the scope of
this book and will not be attempted here. We will, however, derive in the
next section a formula for finding the error associated with the approximation
of a tabulated function by means of a polynomial.

3.2 ERRORS IN POLYNOMIAL INTERPOLATION

Let the function y(x), defined by the (» + 1) points (x;, y), i =0, 1, 2, ..., n,
be continuous and differentiable (z + 1) times, and let y(x) be approximated
by a polynomial ¢,(x) of degree not exceeding n such that

Oux) =y, i=0,1,2,..,n (3.1

If we now use ¢,(x) to obtain approximate values of y(x) at some points
other than those defined by Eq. (3.1), what would be the accuracy of this
approximation? Since the expression y(x) — ¢,(x) vanishes for x = x,, xq, ...,
X, W€ put
Y(X) = @u(x) = LIT, (%), (3.2)
where
I1(x) = (¢ = xp) (x — x1) ... (x = Xx,) (3.3)

and L is to be determined such that Eq. (3.2) holds for any intermediate
value of x, sayx = x’, xg < x” < x,,. Clearly,

Lo YD) =00 () (3.4)
l_[n+1(xl)
We construct a function F(x) such that
F(x) = y(x) = @u(x) — LIL, (%), (3.5)

where L is given by Eq. (3.4) above,
It is clear that

Flxo) = Flxy) = -+ = Flx,) = F(x') = 0,

that is, F (x) vanishes (# +2) times in the interval x, < x < x,,; consequently,
by the repeated application of Rolle’s theorem (see Theorem 1.3, Section 1.2),
F’(x) must vanish (n+ 1) times, F”/(x) must vanish » times, etc., in the
interval x; < x < x,,. In particular, F(n+) (x) must vanish once in the interval.
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Let this point be given by x = &£ x; < & < x,,. On differentiating Eq. (3.5)
(n+ 1) times with respect to x and putting x = £, we obtain

0 =" - L(n + 1)

so that
1
LY@ (3.6)
(n+1!
Comparison of Egs. (3.4) and (3.6) yields the results
(n+1)
’ A y (5) ’
Y (") —¢n(x )—WHnH(X ).

Dropping the prime on X', we obtain

Il (X

Y09-0000 = 22D, <t <x, (3.7
which is the required expression for the error. Since y (x) is, generally,
unknown and hence we do not have any information concerning y""V(x),
formula (3.7) is almost useless in practical computations. On the other hand,
it is extremely useful in theoretical work in different branches of numerical
analysis. In particular, we will use it to determine errors in Newton’s interpolating
formulae which will be discussed in Section 3.6.

3.3 FINITE DIFFERENCES

Assume that we have a table of values (x;, y,), i = 0, 1, 2, ..., n of any
function y = f(x), the values of x being equally spaced, i.e., x; = xq + ih,
i=0,1,2, ..., n. Suppose that we are required to recover the values of f(x)

for some intermediate values of x, or to obtain the derivative of f(x) for
some x in the range xy < x < x,. The methods for the solution to these
problems are based on the concept of the ‘differences’ of a function which
we now proceed to define.

3.3.1 Forward Differences

If yo, ¥15 2, ..., ¥, denote a set of values of y, then y; — yo, o — y1, -..s
¥V, — v, are called the differences of y. Denoting these differences by
Ayg, Ayy, ..., Ay, 1 respectively, we have

AyO =1 =)o Ayl =)V2 =V -0 Aynfl =Vn = Vnto

where A is called the forward difference operator and Ay, Ay, ..., are
called first forward differences. The differences of the first forward differences
are called second forward differences and are denoted by A%y, A%y, ...
Similarly, one can define third forward differences, fourth forward differences,
etc.
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Thus,

A?Yo =AY —AYo =Y, = Y1 — (Y1 — o)
=Yy —2¥1+ Yo,
Alyp =A%y — A%yg = y3 -2y, + Y1 — (Y2 — 2y1 + Yo)
=Y3 =3y, +3Y1— Yo
Atyo =A%y - Ao =y, —3y3 +3Y, — Y1 — (Y3 — 3y, +3y1 - Yo)
= Y4 —4y3 +6y, -4y, + Yo

It is, therefore, clear that any higher-order difference can easily be expressed
in terms of the ordinates, since the coefficients occurring on the right side
are the binomial coefficients.

Table 3.1 shows how the forward differences of all orders can be formed:

Table 3.1 Forward Difference Table

X Yo A A? A3 A* A’ A®
Xo Yo
Ayp
X1 n A%y
Ay, Ayo
X2 Y2 A’y A'yo
Ay, Ay Ay
X3 Y3 A%y, A'yy Ay,
Ay Ay, Ny,
X4 Ya Ay, Ay,
Ay, Ay
X5 Y5 A%y,
Ays
X Ye

In practical computations, the forward difference table can be formed in the
following way. For the data points (x;, »,), i = 0, 1, 2, ..., n and x; =
Xo + ih, we have
Ay =y =y =0, 1, ..., m— 1.
Denoting y; as DEL(0, ), the above equation can be written as
Ay; = DEL(0,j + 1) — DEL(0, /) = DEL(1,))

It follows that
A'y; = DEL(i - 1,j + 1) = DEL( - 1,)),

which is the ith forward difference of y;.
For the data points (x;, y;), i = 0, 1, 2, ..., 6, we have difference
Table 3.2.
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Table 3.2 Forward Difference Table

X y A A? A3 A* A’ AS
Xxo DEL(0,0)
DEL(1, 0)
x; DEL(0,1) DEL(2, 0)
DEL(1, 1) DEL(3, 0)
x, DEL(0,2) DEL(2, 1) DEL(4, 0)
DEL(1, 2) DEL(3, 1) DEL(5, 0)
x3 DEL(0, 3) DEL(2, 2) DEL(4, 1) DEL(6, 0)
DEL(1, 3) DEL(3, 2) DEL(5, 1)
x, DEL(0, 4) DEL(2, 3) DEL(4, 2)
DEL(1, 4) DEL(3, 3)
x5 DEL(0,5) DEL(2, 4)
DEL(1, 5)
x¢ DEL(0, 6)
In Table 3.2

DEL(4, 0) = DEL(3, 1) — DEL(3, 0)

DEL(2,2) — DEL(2. 1) — [DEL(2, 1) — DEL(2, 0)]

DEL(1, 3) — DEL(1, 2) — 2[DEL(1, 2) — DEL(1, )]

+ DEL(1, 1) — DEL(1, 0)

= DEL(0, 4) — DEL(0, 3) — 3[DEL(0, 3) — DEL(0, 2)]
+3[DEL(0, 2) — DEL(0, 1)] — [DEL(0, 1) — DEL(0, 0)]

= DEL(0, 4) — 4DEL(0, 3) + 6DEL(0, 2) — 4DEL(0, 1) + DEL(0, 0)
=ys—4y; T 6y — 4y Y

The forward difference table can now be formed by the simple statements:

Do i = 1(

Do j =
DEL (1,
Next j
Next i1
End

1)n
O(l)n - 1

j) = DEL(i - 1,

3.3.2 Backward Differences

The differences y; — yo, ¥» — »1»
differences if they are denoted by Vyy, Vy,, ..., Vy, respectively, so that

j + 1) - DEL(i - 1, 7)

ey Yn — Vo are called first backward

Vi =yi=v V2= -y

Vyn = Vn = Yn-1>
where V is called the backward difference operator. In a similar way, one
can define backward differences of higher orders.
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Thus, we obtain
V2, = Vy, - Vy,
==y — 01 =Y) =y2— 20+ yo
V3y3 = V2y3 - Vz)’z
=ys — 3y + 3y — o, ete.

With the same values of x and y as in Table 3.1, a backward difference
Table 3.3 can be formed:

Table 3.3 Backward Difference Table

X y % v?2 ve v4 Vo ve
X0 Yo

X1 Y1 Vy,1

X2 ¥ Vyo szz

X3 Y3 VW3 o Vs Vi,

X4 Y4 Wy v, vy, A

X5 Y5 W5 Vs viys Vs vy

X6 Y6 We V% Ve VY6 Ve Ve

3.3.3 Central Differences
The central difference operator § is defined by the relations

i=Yo=6Y2  Yo—Y1=6Yap, v Yn~Yn1=0Ynu2
Similarly, higher-order central differences can be defined. With the values of
x and y as in the preceding two tables, a central difference Table 3.4 can
be formed:
Table 3.4 Central Difference Table

X y B &2 53 st 5° 8°
X0 Yo
Y12
X1 Y1 8%y,
Y32 83yan
X2 Y2 5%y, 5y,
Y512 83ysi 5°ys12
X3 y3 5%y3 5%y3 %3
Y712 83y 712 8%y 712
X4 Ya 5%y, 5%y,
Yo 53y ar
X5 Y5 52y
oy 1112

X6 Y6
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It is clear from all the four tables that in a definite numerical case, the
same numbers occur in the same positions whether we use forward, backward
or central differences. Thus, we obtain

Ayy =Vy; =65, A%y, =V3y5 =8y, ...

3.3.4 Symbolic Relations and Separation of Symbols

Difference formulae can easily be established by symbolic methods, using
the shift operator E and the averaging or the mean operator u, in addition
to the operators, A, V and dalready defined.

The averaging operator i is defined by the equation:

1
Hyr =2 (Yrsm2+ Yecas2)-

The shift operator £ is defined by the equation:

Eyr = Vrtls
which shows that the effect of £ is to shift the functional value y, to the
next higher value y,.;. A second equation with £ gives

2
E7Yr = E(EY,) = EYri1 = Vrs2,
and in general,
Enyr =Yren-
It is now easy to derive a relationship between A and E, for we have

Ayg=Y1-Yo=Eyo—Yo=(E-1) Yo
and hence
A=E-1 or E=1+A. (3.8a)*
We can now express any higher-order forward difference in terms of
the given function values. For example,

A%yo=(E-1)°yo =(E®-3E* +3E-1) yp = y3-3y2 + 3%~ Yo.
From the definitions, the following relations can easily be established:
V=1-E7,
§=EY2_g-v2

(3.8b)
w=(U2) (E¥?+ E™V?), u? =1+ W/4) 52

A=VE =6EY2,

*The student should note that Eq.(3.8a) does not mean that the operators E
and A have any existence as separate entities; it merely implies that the effect of
the operator £on y, is the same as that of the operator (1 +A) on y,.
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As an example, we prove the relation
u? =1+ (U4) 52.
We have, by definition,
1
myr =3 Yrsw2+ Yev2)

1 _
ZE(EUZ Yr +E v yr)

:% (EV24 EV2)y
Hence

u :%(E1’2+ EV2)
and

2 :%(El/z +EV2Y?

=%(E+E_1+2)

I%[(EUZ— E—1/2)2 +4]

1 o
==(6° +4).
4( +4)

Y
=, [14+=6°.
H 4

Finally, we define the operator D such that
d

We therefore have

Dy (x) =— y(X).
dx
To relate D to E, we start with the Taylor’s series
h? h?

y(x+h)= Y(X)+hY'(X)+§Y"(X)+§y (X)+--
This can be written in the symbolic form

h’D? hD?
+—
21 3!

Ey(x)=(1+hD+ +---]y(x).

Since the series in the brackets is the expansion of ¢"”, we obtain the
interesting result

E=e, (3.8¢)
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Using the relation (3.8a), a number of useful identities can be derived. This
relation is used to separate the effect of £ into that of the powers of A and
this method of separation is called the method of separation of symbols. The

following examples demonstrate the use of this method.

Example 3.1

n -
AUy_, =Uy —NUy_3 +

Using the method of separation of symbols, show that
n(n-1)

Uy +-+ (=D)"u,_p.

To prove this result, we start with the right-hand side. Thus,

n(n-1
ux—nux_1+( )

=Uy — nE’luX +

n(n-1)

Uyp +--+ (_1)n Uy—n

E2u, +-+(-1)"E"u,

=[1—nE_1+wE_2 +---+(—1)”E_”]ux

=(1- Eil)nux
1 n

:(1_E) UX
]

= ? uX

An
= _uX

En
=A"E™"u,
=A"u,_,,

which is the left-hand side.
Example 3.2 Show that

Now,

2
X
eX (UO + XAUO +EA2UO +---

2
X
ex[uo +X Al +?A2uO 4o

XZ
=U0 +U1X+UZE+"'
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2p2
:(1+XE+ XZE' +---]u0

X2
:U0+XU1+;UZ+---,

which is the required result.

3.4 DETECTION OF ERRORS BY USE OF DIFFERENCE TABLES

Difference tables can be used to check errors in tabular values. Suppose that
there is an error of +1 unit in a certain tabular value. As higher differences
are formed, the error spreads out fanwise, and is at the same time, considerably
magnified, as shown in Table 3.5.

Table 3.5 Detection of Errors using Difference Table

y A A? A3 A% AS
0

0
0 0

0 0
0 0 0

0 0 1
0 0 1

0 1 -5
0 1 -4

1 -3 10
1 -2 6

-1 3 -10

0 1 -4

0 -1 5
0 0 -1

0 0 -1
0 0 0

0 0
0 0

0
0

This table shows the following characteristics:
(i) The effect of the error increases with the order of the differences.

(ii)) The errors in any one column are the binomial coefficients with
alternating signs.

(iii) The algebraic sum of the errors in any difference column is zero, and

(iv) The maximum error occurs opposite the function value containing

the error. These facts can be used to detect errors by difference
tables. We illustrate this by means of an example.
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Example 3.3 Consider the following difference table:

X y A A2 A3 A4

1 3010
414

2 3424 -36
378 39

3 3802 75 +178
303 +139

4 4105 + 64 =271
367 -132

5 4472 - 68 +181
299 +49

6 4771 -19 — 46
280 +3

7 5051 _16
264

8 5315

The term —271 in the fourth difference column has fluctuations of 449
and 452 on either side of it. Comparison with Table 3.5 suggests that there
is an error of —45 in the entry for x = 4. The correct value of y is therefore
4105 + 45 = 4150, which shows that the last-two digits have been transposed,
a very common form of error. The reader is advised to form a new difference
table with this correction, and to check that the third differences are now
practically constant.

If an error is present in a given data, the differences of some order will
become alternating in sign. Hence, higher-order differences should be formed
till the error is revealed as in the above example. If there are errors in several
tabular values, then it is not easy to detect the errors by differencing.

3.5 DIFFERENCES OF A POLYNOMIAL

Let y (x) be a polynomial of the nth degree so that
y(X)=agx" +ax" T+ ax" 2 4.+ a,.

Then we obtain
y(x+h) = y(x) =2 [(x+ )" = X"+ [(x+ )" = X"+
=ay (nh) x" L +a)x"? +...+a’,
where a;, a5, ..., a; are the new coefficients.

The above equation can be written as

Ay (X) =ag(nh) X" +a)x"? +... + ),

which shows that the first difference of a polynomial of the nth degree is
a polynomial of degree (n—1). Similarly, the second difference will be a
polynomial of degree (n — 2), and the coefficient of x” 2 will be agn(n —1)h2.
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Thus the nth difference is agn!/”, which is a constant. Hence, the (n + 1)th,
and higher differences of a polynomial of nth degree will be zero. Conversely,
if the nth differences of a tabulated function are constant and the (n + 1)th,
(n + 2)th, ..., differences all vanish, then the tabulated function represents a
polynomial of degree n. It should be noted that these results hold good only
if the values of x are equally spaced. The converse is important in numerical
analysis since it enables us to approximate a function by a polynomial if its
differences of some order become nearly constant.

3.6 NEWTON’S FORMULAE FOR INTERPOLATION

Given the set of (I’Z + 1) Valuesa ViZ's (x07 y0)> (xb yl)a (X2, y2)7 [ERE) (xm J’n),
of x and y, it is required to find y,(x), a polynomial of the nth degree such
that y and y,(x) agree at the tabulated points. Let the values of x be equidistant,
i.e. let

X =% +ih, 1=0,12,...,n
Since y,(x) is a polynomial of the nth degree, it may be written as
Yn(X) =ag +ay(X—Xp) +ap (Xx—Xg) (Xx—X)
+ag(x—Xg) (X=%) (X=Xp) +--- (3.9)
+a, (X=Xg) (X=%) (X=%5)...(X=X,_1)-

Imposing now the condition that y and y,(x) should agree at the set of
tabulated points, we obtain

o Yo Ay APy, _ASYO._“. _ Ay,
oo A T T h 2 g BT sy gy

Setting x = xo + ph and substituting for ay, a;, ..., a,, Eq. (3.9) gives

Yn(X) = Yo + PAYp + p(p )Azy +_p(p_2—|(p_2)A3y°+'”
N p(p—l)(p—2)(p—n+1) Anyo, (3.10)

n!

which is Newton’s forward difference interpolation formula and is useful for
interpolation near the beginning of a set of tabular values.

To find the error committed in replacing the function y(x) by means of
the polynomial y,(x), we use Eq. (3.7) to obtain

(X=Xg) (X=%).--(X—X5) (n+1)
(e D) (9}

y(X) = Yn(x) = Xo <E<x, (3.11)

As remarked earlier we do not have any information concerning y"(x), and
therefore, formula given in Eq. (3.11) is useless in practice. Nevertheless,
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if ""D(x) does not vary too rapidly in the interval, a useful estimate of the
derivative can be obtained in the following way. Expanding y(x + /) by
Taylor’s series (see Theorem 1.4), we obtain

’ h2 4
y(x+h) =y +hy' () + =0y () +---
Neglecting the terms containing 4> and higher powers of %, this gives
, 1 1
Y () =L Iy (x+h) =y (9] = - Ay(x).

Writing )'(x) as Dy(x) where D = d/dx, the differentiation operator, the above
equation gives the operator relation

_ 1 n+l _ 1 n+l
=FA and SO D :WA .
We thus obtain
1
y(n+l) (X) ~ WArH—ly(X)- (312)
Equation (3.11) can, therefore, be written as
- (p-2)...(p—n

(n+1)!

in which form it is suitable for computation.
Instead of assuming y,(x) as in Eq. (3.9), if we choose it in the form

yn(x)=a0 +a1(x—xn)+a2(x—xn) (X_Xn—l)
+ag(X—=%y) (X=Xq 1) (X=Xp2) +-+
+a, (X=X,) (X=Xp_1)---(X—=%).

and then impose the condition that y and y,(x) should agree at the tabulated
points x,, X, 1, ..., X3, X1, Xo, We obtain (after some simplification)

p(p+1)...(p+n—1)Vn
n!

+1
Yn(x):yn"'pv)’n"'%vz)’n‘k""" Yno (3.14)
where p = (x —x,)/h.

This is Newton’s backward difference interpolation formula and it uses
tabular values to the left of y,. This formula is therefore useful for interpolation
near the end of the tabular values.

It can be shown that the error in this formula may be written as

(= PRHD(P+2).(P+1) gnoay ey (3.15)
(n+1)!

where xp < x < x, and x = x,, + ph.

y(X) = Yn
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The following examples illustrate the use of these formulae.

Example 3.4 Find the cubic polynomial which takes the following values:
y(1) =24, y(3) = 120, y(5) = 336, and y(7) = 720. Hence, or otherwise,
obtain the value of y(8).

We form the difference table:
x y A A? AP

1 24
96
3 120 120
216 48
5 336 168
384
7 720

Here i = 2. Withxy = 1, we have x = 1 + 2p or p = (x — 1)/2. Substituting
this value of p in Eq. (3.10), we obtain

5 S 1 i i
y(x)=24+X2_1(96)+ 2 22 (120)+2 N2 - 2 Jug)

=x3 +6x% +11x +6.

To determine »(8), we observe that p = 7/2. Hence, Eq. (3.10) gives:

y(8) = 24 +%(96) + %(120) L)@ 2_61) (112=2) (48) =990.

Direct substitution in y(x) also yields the same value.

Note: This process of finding the value of y for some value of x outside the
given range is called extrapolation and this example demonstrates the fact
that if a tabulated function is a polynomial, then both interpolation and
extrapolation would give exact values.

Example 3.5 Using Newton’s forward difference formula, find the sum
Sy =3+22+3B 4.4t
We have
Sni1 =B+22 43+ +nd+(n+1)°
Hence
Shi =Sy =(n +1)3,
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or
AS, = (n+1)°. (1)
It follows that

A%S; = A8, —AS, = (n+2)° —(n+1)* =3n* +9n +7,
A3, =3(n+1)% +9n+7— (302 +9n+7) =6n +12
A*S, =6(n+1)+12— (6n+12) =6.

Since A°S, =A68n =..-=0,S,, is a fourth-degree polynomial in n.
Further,

S,=1,  AS; =8, A%, =19, A5, =18  A%S =6

Equation (3.10) gives

S, =1+(n-1) (8)+W(19)+ (n-1) (n;Z) (n-3) 1)

N (n=D(n-2)(n-3)(n-4) (©)
24

=£n4+ln3+ln2
2 4

4

_[n(n+1)]2
==

Example 3.6 Values of x (in degrees) and sin x are given in the following
table:

x (in degrees) sin x
15 0.2588190
20 0.3420201
25 0.4226183
30 0.5
35 0.5735764
40 0.6427876

Determine the value of sin 38°.
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The difference table is

X sin x A A2 A3 A4 A5
15 0.2588190
0.0832011
20 0.3420201 —-0.0026029
0.0805982 —0.0006136
25 0.4226183 —-0.0032165 0.0000248
0.0773817 —0.0005888 0.0000041
30 0.5 —0.0038053 0.0000289
0.0735764 —0.0005599
35 0.5735764 —0.0043652
0.0692112

40 0.6427876

To find sin 38°, we use Newton’s backward difference formula with x,, = 40
and x = 38. This gives

X=Xy _ 38-40 :-3=-0.4.
h 5 5

Hence, using Eq. (3.14), we obtain

~0.4(-0.4+1)

y(38) = 0.6427876—0.4 (0.0692112) + (~0.0043652)

L (-04)(-04 21) (£04+2) (~0.0005599)

, (04)(-04+1) (2—2.4 +2)(=04+3) 4 4000289)

, (0.4)(-0.4+1)(-0.4+2)(-0.4+3)(-04+4)
120

=0.6427876 — 0.02768448 + 0.00052382 + 0.00003583 — 0.00000120

(0.0000041)

=0.6156614.

Example 3.7 Find the missing term in the following table:

X y
0 1
1 3
2 9
3 -
4 81

Explain why the result differs from 3° = 27.
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Since four points are given, the given data can be approximated by a
third degree polynomial in x. Hence A%y, = 0. Substituting A = E — 1 and
simplifying, we get

E‘yo —4E3y, +6E2y, —4Ey, + Yo =0.
Since £y, = y,, the above equation becomes
Y4 —4y3 +6y, —4y; + Yo =0.
Substituting for y,, vy, y» and y, in the above, we obtain
V3 = 31.

The tabulated function is 3™ and the exact value of y (3) is 27. The error is
due to the fact that the exponential function 3* is approximated by means of
a polynomial in x of degree 3.

Example 3.8 The table below gives the values of tan x for 0.10 < x < 0.30:

X y=tanXx
0.10 0.1003
0.15 0.1511
0.20 0.2027
0.25 0.2553
0.30 0.3093

Find : (a) tan 0.12 (b) tan 0.26, (c) tan 0.40 and (d) tan 0.50.
The table of difference is

X y A A2 A3 At
0.10 0.1003
0.0508
0.15 0.1511 0.0008
0.0516 0.0002
0.20 0.2027 0.0010 0.0002
0.0526 0.0004
0.25 0.2553 0.0014
0.0540
0.30 0.3003

(a) To find tan (0.12), we have 0.12 = 0.10 + p(0.05), which gives p=0.4.
Hence, Eq. (3.10) gives

tan (0.12) = 0.1003+ 0.4 (0.0508) + W(o.ooos)

, 04004 _els) 04-2) 1, 0002)

L 04(04-1) ((;j ~2)©04-3) 4 0002)

=0.1205.
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(b) To find tan (0.26), we have 0.26 = 0.30 + p(0.05), which gives
p = —0.8. Hence, Eq. (3.14) gives

tan (0.26) = 0.3093 — 0.8 (0.0540) +

—0.8(-0.8+1
w@ml“)

, ~08(-08+1)(-08+2)
6
, 08(-08+1)(-0.8+2)(-08+3)
24

(0.0004)

(0.0002)
=0.2662.

Proceeding as in the case (i) above, we obtain
(¢) tan (0.40)=0.4241, and
(d) tan (0.50)=0.5543.

The actual values, correct to four decimal places, of tan (0.12), tan (0.26),
tan (0.40) and tan (0.50) are respectively 0.1206, 0.2660, 0.4228 and 0.5463.
Comparison of the computed and actual values shows that in the first-two
cases (i.e. of interpolation) the results obtained are fairly accurate whereas
in the last-two cases (i.e. of extrapolation) the errors are quite considerable.
The example therefore demonstrates the important result that if a tabulated
function is other than a polynomial, then extrapolation very far from the table
limits would be dangerous—although interpolation can be carried out very
accurately.

3.7 CENTRAL DIFFERENCE INTERPOLATION FORMULAE

In the preceding section, we derived and discussed Newton’s forward and
backward interpolation formulae, which are applicable for interpolation near
the beginning and end respectively, of tabulated values. We shall, in the
present section, discuss the central difference formulae which are most
suited for interpolation near the middle of a tabulated set. The central difference
operator 6 was already introduced in Section 3.3.3.

The most important central difference formulae are those due to Stirling,
Bessel and Everett. These will be discussed in Sections 3.7.2, 3.7.3 and
3.7.4, respectively. Gauss’s formulae, introduced in Section 3.7.1 below, are
of interest from a theoretical stand-point only.

3.7.1 Gauss’ Central Difference Formulae
In this section, we will discuss Gauss’ forward and backward formulae.

Gauss’ forward formula

We consider the following difference table in which the central ordinate is
taken for convenience as y, corresponding to x = x,.
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The differences used in this formula lie on the line shown in Table 3.6.
The formula is, therefore, of the form

Yo = Yo +GiAYg +GoA%Y_1 +GyA%y_ +GuA Y 5 +-- (3:16)

where Gy, G, ... have to be determined. The y, on the left side can be
expressed in terms of y,, Ay, and higher-order differences of y,, as follows:

Table 3.6 Gauss’ Forward Formula

X y A A? A3 A% AS A8

X_3 y-3
Ay_3

X2 y-2 Azy_s
Ay _» A3V_3

X1 Yy A%y, 5 A4y_3
Ay 3 N A%y 3 ]

X0 A%y /Ayz\ /A Y-\l
Ayo / \

X1 Y1 A? Yo A4y_1
Ayy A%y

X2 Y2 A2)’1
Ayo

X3 Y3

Clearly,
Yp= EpyO

=(L+A)Pyp, using relation (3.8a)
- (p-2
— Yo + PAYy + P(p )Azy L p@ ;(p )A3y0+---

Similarly, the right side of Eq. (3.16) can also be expressed in terms of vy, Ay,
and higher-order differences. We have

A%y =A’Ehy,
=A% (1+A) "y
=A2A-A+A2 A3+,
= A% (Yo — Ayp + A%yo — A%yp +++)

= A%yo = Ayg + Aty — Ayg + -
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A%y = A%yo —Atyg + A%y — APy +---
Ay, =A'Ey,

=AY @1+ A)? Yo

= A*(yo — 2y +3A%yy —4A3Yg +---)

=A%y —2A%y, +3A%y —4A Ty +---

Hence Eq. (3.16) gives the identity

-1 -1) (p-2
Yo+ DAY + p(r2>' ) a2y, + PP ;(p ) A3y,
+|D(|D—l)(|fi“—2)(|0—3)A4y0+...

= Yo + GAYg + Gy (A%y — A%yp + Alyy — A%y +++)
+G3(A%yg —Alyy + A%y — A%y +++)
+Gy(A%yy —2A%y, +3A%y —4A yy +-- )+ (3.17)

Equating the coefficients of Ay,, A%y, Ay, etc., on both sides of Eq. (3.17),
we obtain

~ (3.18)
G3:(|0+1) p(p-1

3!

G, = (P+D p(rj”—l)(p—Z)_

Gauss’ backward formula

This formula uses the differences which lie on the line shown in Table 3.7.
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Table 3.7 Gauss’ Backward Formula

X y A A? A3 A% AS A8
X1 Yy
/ Ay_1\ / A3y—2 ~ / A5y—3 ~_
Xg Yo A%y 7 Ay 5 NSy 3~
Ayg Ay, NSy,
X1 Y1

Gauss’ backward formula can therefore be assumed to be of the form
Yo=Yo +GiAY_1 +GHA%Y 4 +GIATY p +GiATY p + (3:19)

where G/, G5, ... have to be determined. Following the same procedure as
in Gauss’ forward formula, we obtain

G/=p
G = p(p+1),
21
Gé:(|o+1)3|c1(|0—1) (3.20)
,_(p+2)(p+1) p(p-1)
Ca= 41

117 using Gauss’

Example 3.9 From the following table, find the value of e
forward formula:

X

X €
1.00 2.7183
1.05 2.8577
1.10 3.0042
1.15 3.1582
1.20 3.3201
1.25 3.4903
1.30 3.6693

We have
1.17=1.15+ p(0.05),
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which gives

D= 002 1
0.05 4
The difference table is given below.
X ex A A2 A3 A%
1.00 2.7183
0.1394
1.05 2.8577 0.0071
0.1465 0.0004
1.10 3.0042 0.0075 0
0.1540 0.0004
1.15 3.1582 0.0079 0
\0.1619/ \0.0004/
1.20 3.3201 0.0083 0.0001
0.1702 0.0005
1.25 3.4903 0.0088
0.1790
1.30 3.6693

Using formulae (3.16) and (3.18), we obtain
ett’ :3.1582+§(0.1619)+%(0.0079)

L @51 @) @5-1) o

=3.1582+0.0648 —0.0009
=3.2221.

3.7.2 Stirling’s Formula

Taking the mean of Gauss’ forward and backward formulae, we obtain

Ay_; +Ayp +p_2A2y . p(p?-1) Ay, +A%,
2 2 =t 3l 2

Yp=Yo+ P

2,2
WP (E’“ DA%y, +.. (3.21)

Formula given in Eq. (3.21) is called Stirling’s formula.

3.7.3 Bessel’s Formula

This is a very useful formula for practical interpolation, and it uses the
differences as shown in the following table, where the brackets mean that
the average of the values has to be taken.
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2 4 6
X y A%y _q ATy 5 A"y 3
X ( O] o 2 A%y 4 A%, 6
X1 Y1 A%yo Ay g A"y

Hence, Bessel’s formula can be assumed in the form

Y= %+ BAyo + B, A%+t ; A% +B3A%y
+B, Aty +A4y—1+_,_
2
=Yo +(51+%)Ay0+52M+ BsA®y
+B4%+... (3.22)

Using the method outlined in Section 3.7.1, i.e., Gauss’ forward formula, we
obtain

B+ =p
B, = p(r;!—l)’
_p(p-Y(p-1/2 (3.23)
Bs = 3 ,
_(p+) p(p-Y(p-1
B = 41 !

Hence, Bessel’s interpolation formula may be written as

~1) A%y +A? ~1) (p-1/2
yp=yo+pAyo+p(z,) y12 Yo , P(P )?,Ep ) 3y,
L) p(p-D(p-2) Afy A%y, (3.24)

a1 2
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3.7.4 Everett’'s Formula

This is an extensively used interpolation formula and uses only even order
differences, as shown in the following table:

%) Yo Azy_l A4y_2 AGY—3

X1 Y1 AzYo A4)/_1 AGY—Z

Hence the formula has the form
Vo= EoYo + EpA%y_1 + E,AYY, +--+ Royy + FpA?yg + FyAty g+ (3.29)

The coefficients Ey, Fy, Ep, Fy, E4, F4, ... can be determined by the same
method as in the preceding cases, and we obtain

Eo=1-p=aq, Fo=p,
2 12 2 12
E2:q(q?"l), F2:|o(|03|1),
2' e o | (3.26)
E_A@-1)@-2°)  _ _p(p®-1")(p*-2%)
4 — ’ 4 — ’
51 5!
Hence Everett’s formula is given by
2 42 2 42y (n2 _ 92
-1 -1 -2
o+ 8 2y A V@D oy
: : (3.27)
2 42 2 _12v(n2 o2
-1 -1 -2
IREIGE IS ST S I

where g = 1 — p.

3.7.5 Relation between Bessel’s and Everett’s Formulae

These formulae are very closely related, and it is possible to deduce one from
the other by a suitable rearrangement. To see this we start with Bessel’s formula

p(p-1) A%y 1 +4%y)  p(p-1) (p-12) s
2! 2 3l =

Yp=Yo+ PAyg +

(D p(p-D(p-2) Aty +aty,
4! 2
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—1) A%y | +A2 -1) (p-1/2
—yo+ p (- yo) + HLED B8 Yo PP=D (P=TD) a2y, 2y )
(P p(p-D(p-2) Ay, +A%y,
41 2

expressing the odd order differences in terms of low even order differences.
This gives on simplification

p(p-1) _(p-1) p(p—1/2)]Azy_1+,,,

yp:(l_ P)Yo +[

4 6
+py1+[p(p—1)+ p(p—l)(p—JJZ)]Azyoij
4 6
2 2 2 2
-1 -1
:qyo+%A2y_l+...+ pyl+%A2yo+...

which is Everett’s formula truncated after second differences. Hence we
have a result of practical importance that Everett’s formula truncated after
second differences is equivalent to Bessel’s formula truncated after third
differences. In a similar way, Bessel’s formula may be deduced from Everett’s.

3.8 PRACTICAL INTERPOLATION

In the preceding sections, we have derived some interpolation formulae of
great practical importance. A natural question is: Which one of these formulae
gives the most accurate result?

(i) For interpolation at the beginning or end of a table of values, Newton’s
forward and backward interpolation formulae have to be used
respectively.

(ii) For interpolation near the middle of a set of values, the following are
the choices:

Stirling’s formula if —lg p gly
4 4
and
1 3
Bessel’s formula for ZS p SZ.

It can be shown that if the third differences are negligible, then Bessel’s
formula is about seven times more accurate than Stirling’s formula. If the
third differences are more than 60 in magnitude, then Everett’s formula
should be preferred.

Example 3.10 The following table gives the values of ¢* for certain equidistant
values of x. Find the value of ¢* when x = 0.644.
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X y=¢*
0.61 1.840431
0.62 1.858928
0.63 1.877610
0.64 1.896481
0.65 1.915541
0.66 1.934792
0.67 1.954237

The table of differences is

X y= eX A AZ A3 A4

0.61 1.840431
0.018497

0.62 1.858928 0.000185
0.018682 0.000004

0.63 1.877610 0.000189 —0.000004
0.018871 0

0.64 1.896481 0.000189 0.000002
0.019060 0.000002

0.65 1.915541 0.000191 0.000001
0.019251 0.000003

0.66 1.934792 0.000194
0.019445

0.67 1.954237

Clearly,
_0644-064
0.01

The third difference contribution to both Stirling’s and Bessel’s formulae is
negligible, and using Stirling’s formula, we obtain

y(0.644) =1.896481+ 0.4 0'018871; 0.019060 0'216 (0.000189)

=1.896481+0.0075862 + 0.00001512
=1.904082,

while Bessel’s formula gives
0.4(0.4-1) 0.000189+0.000191
2

y (0.644) = 1.896481+ 0.4 (0.019060) +

=1.896481+ 0.0076240 — 0.0000228
=1.904082.
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Using Everett’s formula, we find that

y (0.644) = 0.6 (1.896481) +

6(0.36 -1
%(0.000189)

+0.4(1.915541) +

0.4(0.16 -1
%(0.000191)

=1.1378886 — 0.000012096 + 0.7662164 — 0.000010696
=1.904082.

In all the above cases, the value obtained is correct to six decimal places.

It is known from algebra that the nth degree polynomial which passes
through (n+ 1) points is unique. Hence the various interpolation formulae
derived here are actually only different forms of the same polynomial. It,
therefore, follows that all the interpolation formulae should give the same
functional value. This is illustrated in the above example where we found that
the interpolated value of 0.644 is 1.904082 regardless of which formula is used.

Example 3.11 From the table of Example 3.10, find the value of ¢* when
x = 0.638, using Stirling’s and Bessel’s formulae.

It was mentioned in Section 3.8 that Stirling’s formula gives the most
accurate result for—1/4 < p < 1/4, and Bessel’s formula is most efficient for
1/4 < p < 3/4. In order to use these formulae, we therefore, have to choose
Xy so that p satisfies the appropriate inequality.

To use Stirling’s formula, we choose x, = 0.64 and x,, = 0.638 so that
p = —0.2. Hence,

0.018871+ 0.019060 N 0.04
2 2

=1.896481-0.0037931+ 0.0000038

y(0.638) =1.896481—0.2- (0.000189)

=1.892692,

which is correct to the last decimal place.
For Bessel’s formula, we choose xy = 0.63, x,, = 0.638 so that p = 0.8.
Hence, we obtain

y (0.638) =1.877610+0.8(0.018871) + %(0.000189)
=1.877610+ 0.0150968 — 0.0000151
=1.892692, as before.

Example 3.12 The values of x and ¢ ™ are given in the following table. Find
the value of ¢™ when x =1.7475.
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x y=e* A A2 A3 A4

172 0.1790661479
~17817379

1.73 0.1772844100 177285
—17640094 ~1762

1.74 0.1755204006 175523 13
~17464571 ~1749

1.75 0.1737739435 173774 22
~17290797 _1727

176 0.1720448638 172047 15
~17118750 _1712

177 0.1703329888 170335
16948415

178 0.1686381473

It should be noted that in writing the differences in the above table, the
zeros between the decimal point and the first significant digit to its right are
omitted. Thus, in the column of second differences, the number 173774
should be taken as 0.0000173774 in the computations.

To compute y (1.7475), we choose x, = 1.74 and x, = 1.7475 so that
p = 3/4. We shall obtain the solution by using both Bessel’s and Everett’s
formulae.

(i) If we use Bessel’s formula, the third differences need to be taken
into account since they exceed 60 units in magnitude. Hence Bessel’s
formula gives

y (1.7475) = 0.1755204006 — %(0.0017464571)

4 (3/4)(3/4-1) 0.0000175523 + 0.0000173774
2 2

=0.1755204006—0.00130984284 —0.00000163734 +0.00000000137

=0.1742089218, correct to ten decimal places.

(ii) On the other hand, if we use Everett’s formula up to second differences
only, we obtain

y (1.7475) =%(0.1755204006) + W(o.oooomsz@

+ %(0.1737739435) + %6/16_1) (0.0000173774)

=0.04388010015—-0.00000068564 +0.13033045764 —0.00000095033

=0.1742089218, as before.
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This example verifies the result of Section 3.7.5 that Everett’s formula
turncated after second differences is equivalent to Bessel’s formula truncated
after third differences. When the fourth difference contribution becomes
significant (i.e. when they exceed 20 units in magnitude), Everett’s formula
will be easier to apply since it uses only the even order differences.

3.9 INTERPOLATION WITH UNEVENLY SPACED POINTS

In the preceding sections, we have derived interpolation formulae of utmost
importance and discussed their practical use in some detail. But, as is well
known, they possess the disadvantage of requiring the values of the independent
variable to be equally spaced. It is therefore desirable to have interpolation
formulae with unequally spaced values of the argument. We discuss, in the
present section and the next, four such formulae: (i) Lagrange’s interpolation
formula which uses only the function values, (ii) Hermite’s interpolation
formula which is similar to Lagrange’s formula, (iii) Newton’s general interpolation
formula which uses what are called divided differences and
(iv) Aitken’s method of interpolation by iteration.

3.9.1 Lagrange’s Interpolation Formula

Let y(x) be continuous and differentiable (n + 1) times in the interval (a, b).
Given the (n + 1) points (xg, yo), (X1, ¥1)s ..., (X, ¥,) Where the values of x
need not necessarily be equally spaced, we wish to find a polynomial of
degree n, say L,(x), such that

L,(x)=y()=y;, i=0,1...,n (3.28)

Before deriving the general formula, we first consider a simpler case,
viz., the equation of a straight line (a linear polynomial) passing through two
points (xg, 1) and (x, ). Such a polynomial, say L;(x), is easily seen to be

X — X X—
Li(x) = Lyo+ al Y1
X=X X =X

=lo(X) Yo + L (X) 1

1
=z i ()i (3:29)
i=0
where
XX and =X %0 3.30
lo () -y and 1 (x) % (3.30)
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From Eq. (3.30), it is seen that

lo(x0) =1, lo(x) =0, L(x)=0, l(x)=1.
These relations can be expressed in a more convenient form as
Lifi=j
L(x:)= 3.31
1 (5) {:O,ifi £ j. 3-31)
The /(x) in Eq. (3.29) also have the property
1

D 0=l +h(x)=

i=0

X — X X — X
1, X=X
Xo—=X X —Xp

=1. (3.32)

Equation (3.29) is the Lagrange polynomial of degree one passing through
two points (xg, o) and (x;, 7). In a similar way, the Lagrange polynomial
of degree two passing through three points (xo, Vo), (x1, ¥1) and (x5, ¥») is
written as

2
L) = () i
i=0
o) xox) | (k) (o) | (=) (X %)
(X0 —%1) (X0 —X2) ° (% —%g) (X —%2) ! (X2 —=%p) (X2 —%q) 2
(3.33)

where the /(x) satisfy the conditions given in Egs. (3.31) and (3.32).
To derive the general formula, let

Lo(X) = ag + X+ ayX? +--- +a,x" (3.34)

be the desired polynomial of the nth degree such that conditions given in
Eq. (3.28) (called the interpolatory conditions) are satisfied. Substituting
these conditions in Eq. (3.34), we obtain the system of equations

2 n |
Yo _—a0+a1x0+a2x0 +---+anx0

2 n
Y1 =ag +agX +apXy +--+anXg

Yo =8g + X + X5 4o+ 25X} (3:35)

Yn =39 + 31X, +a2xr2]+---+anxrr]‘.'
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The set of Egs. (3.35) will have a solution if

1 % xZ o x{

2 n
1 X X{ s X

! Llzo0. (3.36)
1 %, x2 - xP

The value of this determinant, called Vandermonde’s determinant, is

(XO _Xl) (XO _XZ) (XO _Xn) (Xl _XZ) (Xl _Xn) (Xn—l _Xn)-

Eliminating a, a;, ..., a, from Egs. (3.34) and (3.35), we obtain

Lo 1 x x* .o0x"
2
Yo 1 X Xo =t Xg
w1 ox x2 e xM|=0 (3.37)
Yn 1 Xn Xr% qu

which shows that L,(x) is a linear combination of y,, ¥, »5, ..., ¥,- Hence
we write
n

La() =Y ()Y, (3.38)

i=0
where /,(x) are polynomials in x of degree n. Since L,(x;) =y, for j =0, 1,
2, ..., n, Eq. (3.32) gives
li(x;)=0 if Q]
o)=L forall j|
which are the same as Eq. (3.31). Hence /(x) may be written as
(X=X) (X=%1) ... (X=Xi_1) (X=Xip1) .- (X=%p) (3.39)
(% =%0) (% =) - (% = Xi_1) (6 = Xi41) - (% = Xp)
which obviously satisfies the conditions (3.31).
If we now set
My () = (X=X0) (X=%) .. (X=Xj_1) (X=%;) (X=X pq) ... (X=%,),  (3.40)
then

l; (x) =

M () = % [Hn+1(x)]x=xi

= (X =%0) (% =) - (6 = Xi2) 6 = Xipa) - (6 = %)  (3.41)
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so that Eq. (3.39) becomes

L) = — ) (3.42)
(x=x;) M1 ()
Hence Eq. (3.38) gives

T, (%)
n(x)= Z (X=%) T () (349

which is called Lagrange’s interpolation formula. The coefficients /,(x), defined
in Eq. (3.39), are called Lagrange interpolation coefficients. Interchanging
x and y in Eq. (3.43), we obtain the formula

)
(v)= Ut X, (3.44)
5 2 (Y= ¥i) T (i)

which is useful for inverse mterpolatzon.

It is trivial to show that the Lagrange interpolating polynomial is unique.
To prove this, we assume the contrary. Let L,(X) be a polynomial, distinct
from L,(x), of degree not exceeding » and such that

L, (%) =Y;, i=0,12 ...,n
Then the polynomial defined by M(x), where
M (x) = Ly (x) = Ly (X)
vanishes at the (n +1) points x;, i=0, 1, ...,n. Hence we have
M n (X) = 07
which shows that L,(x) and L,(x) are identical.

A major advantage of this formula is that the coefficients in Eq. (3.44)
are easily determined. Further, it is more general in that it is applicable to
either equal or unequal intervals and the abscissae X, Xy, ..., X, need not be
in order. Using this formula it is, however, inconvenient to pass from one

interpolation polynomial to another of degree one greater.
The following examples illustrate the use of Lagrange’s formula.

Example 3.13 Certain corresponding values of x and logj,x are
(300, 2.4771), (304, 2.4829), (305, 2.4843) and (307, 2.4871). Find log;¢301.

From formula given in Eq. (3.43), we obtain

_ DO 5 47714 (1)(4)(6)(24 829)

logso 301
4 (9 (7) (4) (-1 (=3)
LDEIEE) 5 are O 4o
GO 2 (1 (3) (2

=1.2739+4.9658 - 4.4717 + 0.7106
=2.4786.
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Example 3.14 1If y; =4, y3 =12, y, = 19 and y, = 7, find x.
Using Eq. (3.44), we have

(-8) (-15) @) (-7) 5) (7)
1 27 4

=4+
2 14 7

=1.86.

The actual value is 2.0 since the above values were obtained from the
polynomial y(x) = x* + 3.
Example 3.15 Find the Lagrange interpolating polynomial of degree 2

approximating the function y = In x defined by the following table of values.
Hence determine the value of In 2.7.

X y=In x
2 0.69315
25 0.91629
3.0 1.09861

We have
)_(x—2.5)(x—3.0)_
~ (-05)(-1.0)

2x% —11x +15.

lo (X
Similarly, we find
L (X) =—(4x® =20x+24) and 1,(x)=2x% —9x +10.
Hence

L, (X) = (2x? —11x +15) (0.69315) — (4x> — 20x + 24) (0.91629)
+(2x% —9x+10) (1.09861)

=-0.08164x> +0.81366x — 0.60761,

which is the required quadratic polynomial.
Putting x = 2.7, in the above polynomial, we obtain

In 2.7 = L,(2.7) =—-0.08164 (2.7)2 +0.81366 (2.7) —0.60761=10.9941164.
Actual value of In 2.7=0.9932518, so that

| Error | =0.0008646.
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Example 3.16 The functiony = sinx is tabulated below

X y =sinx
0 0
/4 0.70711
nl2 1.0

Using Lagrange’s interpolation formula, find the value of sin (7/6).
We have

0T (n/6-0) (m/6—7/2) (0.70711) + (n/6—0) (m/6—r/b) o)

6 (n/4-0)(nld—rl2) (w/2-0) (m/2—7/4)

~8070m)-L
9 9

_ 4.65688
9

=0.51743.

Example 3.17 Using Lagrange’s interpolation formula, find the form of the
function y (x) from the following table

X y
0 -12
1 0
3 12
4 24

Since y = 0 when x = 1, it follows that x — 1 is a factor. Let y(x) = (x — 1) R(x).
Then R(x) = y/(x—1). We now tabulate the values of x and R(x).

X R(x)
0 12

3 6

4

Applying Lagrange’s formula to the above table, we find

R(X) = (x-3)(x—4) (12)+(x—0) (X_4)(6)+ (x—-0) (x-3) ®)
(=3) (-4) 3-0)(3-4) (4-0)(4-3)

=(X=3)(x—4)—2x (x—=4) +2x (x—=13)

=x? —5x+12.
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Hence the required polynomial approximation to y (x) is given by

y(X) = (x—1) (x? —=5x +12).

3.9.2 Error in Lagrange’s Interpolation Formula

Equation (3.7) can be used to estimate the error of the Lagrange interpolation
formula for the class of functions which have continuous derivatives of
order upto (n+1) on [a, b]. We, therefore, have

(%) (nea
X) — L, (X) = R (x) = =22y (04) (), (3.45)
y() = Ly () = Ry (%) et ) &), a<&<b
and the quantity E;, where
E. =max|R,(X)] (3.46)
[a,b]
may be taken as an estimate of error. Further, if we assume that
YD (E) <My, a<E<b (3.47)
then
E <Mmax|n ()] (3.48)
LT (n+DMa b M '

The following examples illustrate the computation of the error.

Example 3.18 Estimate the error in the value of y obtained in Example 3.15.

Since y = In x, we obtain y’=1/x, y”=—-1/x? and y”’=2/x>. It follows
that y”(&) =2/&3. Thus the continuity conditions on y (x) and its derivatives
are satisfied in [2, 3]. Hence

(x—2)(x=25)(x-3) 2

Rn(x): 6 5—3, 2<§<3
But
N

When x = 2.7, we therefore obtain

(27-2)(27-25)(27-3) 2 ‘ 0.7x0.2x0.3

R, (x)| <
[Rn(X)| 5 3 I8

=0.00175,

which agrees with the actual error given in Example 3.15.

Example 3.19 Estimate the error in the solution computed in Example 3.16.

Since y(x) = sinx, we have

77

y'(x)=cos X, y”(X)=-sinx, y”'(X)=—cos X.
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Hence | y”(&)|<1.
When x = 7/6.

IR, (0 |< (/6 —-0) (/6 — /4) (/6 — 7/2) =l£££=0.02392,
6 66123

which agrees with the actual error in the solution obtained in Example 3.16.

3.9.3 Hermite’s Interpolation Formula

The interpolation formulae so far considered make use of only a certain
number of function values. We now derive an interpolation formula in which
both the function and its first derivative values are to be assigned at each
point of interpolation. This is referred to as Hermite’s interpolation formula.
The interpolation problem is then defined as follows: Given the set of data
points (X, ¥;, ¥i), i=0, 1, ..., n, it is required to determine a polynomial of
the least degree, say H,,,;(X), such that

H2n+1(xi) =Y and Hén+1(xi) = yl’v = 0! 1...n (349)

where the primes denote differentiation with respect to x. The polynomial
Hy,1(X) is called Hermite’s interpolation polynomial. We have here (2n + 2)
conditions and therefore the number of coefficients to be determined is (21 + 2)
and the degree of the polynomial is (2n + 1). In analogy with the Lagrange
interpolation formula (3.43), we seek a representation of the form

n

Honsa(X) = 2 Ui (X) ;i +z vi ()i, (3.50)

i=0 i=0

where u,(x) and v,(x) are polynomials in x of degree (2n + 1). Using conditions
(3.49), we obtain

1 ifi=j _
ui(xj)= 0, if i;ﬁj, Vi(X)ZO, for all i (3 51)
Lifi=j '

ui(x) =0, for all i; v{(xj)z{o i |

Since u,(x) and vi(x) are polynomials in x of degree (2n+ 1), we write

u() =AM [P and v (x)=B;(X) [l ()%, (3.52)

where /,(x) are given by Eq. (3.42). It is easy to see that 4,(x) and B,(x) are
both linear functions in x. We therefore write

Ui (x) = (@x+b;) [P and v;(x)=(cix+d;) [l (x)]? (3.53)
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Using conditions Eq. (3.51) in Eq. (3.53), we obtain
3% +b =1 (3.54a)
Ci X +di =0
and
ai + 2|i,(xi) =0 (354b)
Ci =1.
From Eq. (3.54), we deduce
a ==2l{(%), bj=1+2x I/(x
1 I(I) 1 1 I(I) (355)
Ci :1, di ==X
Hence Eq. (3.53) become
u; (x) = [=2x 1 (%) + 1+ 21 ()] [ (%))
=[1-2 (x = %) KOO (00 (3.56a)
and
i (x) = (=) [ (T (3.56b)

Using the above expressions for u(x) and v,(x) in Eq. (3.50), we obtain finally

Hann (00 =Y [L=2(x=x) KOOI 1P yi + Y, (x=x) KOO Yi, (3.57)
i=0 i=0

which is the required Hermite interpolation formula.

The following examples demonstrate the application of Hermite’s formula.

Example 3.20 Find the third-order Hermite polynomial passing through the

pOintS (xia Yis y/l)a i = Oa 1
Putting n=1 in Hermite’s formula (3.57), we obtain

Ha(x) =[L-2(x = %0) 1§ (%)] [l (1% Yo +[1—2 (x = %) K )1 [k (0T 1

+(x=%0) [l (1% Y5 + (x = x0) [ ()] yi.

Since

X—% X —X X=Xy X=X
In(X) = 1_A77 and |(x)=—2=""00
i — Yy

where h; = x; — x9. Hence

Ia(x)=—% and I{(x):%.

(1)



110 CHAPTER 3: Interpolation

Then, Eq. (i) simplifies to

2(x=x) | (4 = %)? 204 =) | (x=%)*
H (x)=[1+ ] Y +[1+ ]
3 h]_ h12 0 h]_ h12 1
2 VRY
+(x—x0)(xlh—zx)y6+(x—x1)Wy{, (ii)
1 1

which is the required Hermite formula.

Example 3.21 Determine the Hermite polynomial of degree 5, which fits
the following data and hence find an approximate value of In 2.7.

X y=Inx y =1/x
2.0 0.69315 0.5
25 0.91629 0.4000

3.0 1.09861 0.33333

The polynomials /,(x) have already been computed in Example 3.15. These are
lp(x) = 2x% —11x+15, b (x) =—(4x*—20x+24),  l,(x) =2x* —9x +10.

We therefore obtain

lo(x) =4x-11, l{ (x) =—8x + 20, I5(x)=4x-9.
Hence
lo (%) =3, l{(x)=0, l2(x;) =3
Equations (3.56) give
U (X) = (6x —11) (2x? —11x +15)?, Vo (X) = (x—2) (2x? —11x+15)?
Uy (x) = (4x2 —20x+ 24)2, Vi (X) =(x—2.5) (4x2 —20x+ 24)2 ,
Uy (X) = (19 - 6X) (2x% —9x +10)?, V,(X) = (x—3) (2x2 —9x +10)?,

Substituting these expressions in Eq. (3.57), we obtain the required Hermite
polynomial

Hg (x) = (6x—11) (2x? —11x +15)? (0.69315)
+ (4x% - 20x + 24)? (0.91629)
+ (19— 6X) (2x% —9x +10)?(1.09861)
+(x—2) (2x? —=11x +15)? (0.5)
+ (X —2.5) (4x? — 20X + 24)(0.4)
+(x—3) (2x% —9x +10)? (0.33333).
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Putting x = 2.7 and simplifying, we obtain
In (2.7) = H5(2.7) = 0.993252,

which is correct to six decimal places. This is therefore a more accurate
result than that obtained by using the Lagrange interpolation formula.

3.10 DIVIDED DIFFERENCES AND THEIR PROPERTIES

The Lagrange interpolation formula, derived in Section 3.9.1, has the disadvantage
that if another interpolation point were added, then the interpolation coefficients
I(x) will have to be recomputed. We therefore seek an interpolation polynomial
which has the property that a polynomial of higher degree may be derived
from it by simply adding new terms. Newton’s general interpolation formula
is one such formula and it employs what are called divided differences. It is
our principal purpose in this section to define such differences and discuss
certain of their properties to obtain the basic formula due to Newton.
Let (X9, o), (X4, Y4)s---, (X5, ¥,) be the given (n+1) points. Then the
divided differences of order 1, 2, ..., n are defined by the relations:

_N—Yo
[X0, X 1= X =%,
_ e xe]l—[x0, X1
Do o= e (3.58)
[XOy Xqyones Xn]: [Xl’ WIRE Xn]_[Xo, X{yeeny Xn—l]'

Xn — X

Even if the arguments are equal, the divided differences may still have a
meaning. We then setx; = xo + € so that

[0, X 1= lim [x5, X + €]
£—0

= lim y(XO +8)_ y(XO)
-0 £

=Y'(%), if y(x) is differentiable.

Similarly,

y') (3.59)
r!

[%0. X0, - %] =
|

(r+1) arguments



112 CHAPTER 3: Interpolation

From Eq. (3.58), it is easy to see that

__ Yo i _
[XO'Xl]_XO—x1+X1—xO [X0, %]

Again,

_ Y2=%1 Y11= Yo
o % Yl b_%[@_ﬁ M_%J

_ 1 [ Ya__y 1 1 |, Y% ]
Xp=Xg | X2 =% Xo=X X=X | X=X
. Yo " Y1

(o =) (X —X2) (% %) (% —X,)

Y2 _ (3.60)
(X2 —Xg) (X2 — %)

Similarly it can be shown that

_ Yo + Y1
(X =%1)--- (% =%y) (4 —Xp)--- (X —Xp)
Yn . (3.61)
(Xn - XO)---(Xn - anl)
Hence the divided differences are symmetrical in their arguments.

Now let the arguments be equally spaced so that X; —Xg=Xp =X =---
=X, — X,—1 =h. Then we obtain

[Xg, Xq, - es Xn]

Yi—Y _1
Xq]=—2Y=—A 3.62
[X0, %]  —% N Yo (3.62)
D xel-[x0. %] _ 1 (Ayr Ay ) 1 2 1 2
X, X = tes S Al A 0 oAy = A
[X0: X1, X, ] Y~ ol h T h Tt T,
(3.63)
and in general,
[X0: X, --er Xp1= A"yp. (3.64)

h"n!

If the tabulated function is a polynomial of nth degree, then A"y, would be
a constant and hence the nth divided difference would also be a constant.

For the set of values (x;, y,), i =0, 1, 2, ..., n, divided differences can
be generated by the following statements.
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Define y (x;) = y; = DD(0, 7)), 7 =0, 1, 2, .,
Do i=1(1)n
Do j = 0(1) (n- 1)

_ D -1,j +1)-Di -1,)
X(i +j)—-X(J)

DD (i, 7)
Next j
Next 1

3.10.1 Newton’s General Interpolation Formula

By definition, we have

[X, %] = y—YO’
X0

X_
so that
] Yy =y T (x = xo)lx, xo]
Again
X, —[Xg, X
[X, Xo, X1]:[ Xo] = [%0, %]
X=X
which gives
[x, xo] = [x0, x1] + (x — x1) [x, x0, x1]

Substituting this value of [x, xo] in Eq. (3.65), we obtain
Yy =Yoot (x = xo)lxo, x1] + (x — x)(x — x[x, xo, x1]
But
[X, X0, X11 = [X0, X, Xp]

[X X0, dp] = 20 = O

and so
[xa X0, xl] = [x09 X1, x2] + (x - X2)[x, X0, X1, x2]
Equation (3.66) now gives
Y =yt (x = x)lx, x1] + (x — x0)(x — xp)[x0, X1, X2]
+ (x = xp) (x — x(x — x2)[x, x0, X1, X2]
Proceeding in this way, we obtain
Y =yo t (x = xo) [x0, x1] + (x = x0)(x — x1)[x0, X1, X2]
+ (x = x)(x — x)(x — x2)[x0p, X1, X3, X3] + -+

+(x = x)(x — x)(x = x2) - (X = X)X, X0, X1, ..y X

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

This formula is called Newton's general interpolation formula with divided
differences, the last term being the remainder term after (n+ 1) terms.
After generating the divided differences, interpolation can be carried out

by the following statements.
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Let y, be required corresponding to the value x = x;. Then

Yir = Yo

factor = 1.0

Do i1 =0(1)(n-1)

factor = factor x (x, - x;)

Vx = yx + factor » DD (i + 1, 0O)
Next i1

End

Example 3.22 As our first example to illustrate the use of Newton’s divided
difference formula, we consider the data of Example 3.13.
The divided difference table is

x logyo X

300 2.4771
0.00145

304 2.4829 0.00001
0.00140

305 2.4843 0
0.00140

307 2.4871

Hence Eq. (3.69) gives
log1p301=2.4771+0.00145+ (-3) (—0.00001) = 2.4786, as before.

It is clear that the arithmetic in this method is much simpler when compared
to that in Lagrange’s method.

Example 3.23 Using the following table find f(x) as a polynomial in x.

X f(x)
-1 3
0 -6
3 39
6 822
7 1611
The divided difference table is
X f(x)
-1 3
-9
0 -6 6
15 5
3 39 41 1
261 13
6 822 132
789

7 1611
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Hence Eq. (3.69) gives
f(X) =3+(X+1) (-9)+x(x+1) (6)+x(x+1) (x—3) (5) +x(x+1) (x—3) (x—6)

=x*-3x® +5x% —6.

3.10.2 Interpolation by Iteration

Newton’s general interpolation formula may be considered as one of a class
of methods which generate successively higher-order interpolation formulae.
We now describe another method of this class, due to A.C. Aitken, which
has the advantage of being very easily programmed for a digital computer.
Given the (n + 1) points (xp, ¥o), (X1, V1)s ---» (X4 ¥n), Where the values
of x need not necessarily be equally spaced, then to find the value of y
corresponding to any given value of x we proceed iteratively as follows:
obtain a first approximation to y by considering the first-two points only;
then obtain its second approximation by considering the first-three points,
and so on. We denote the different interpolation polynomials by A(X), with
suitable subscripts, so that at the first stage of approximation, we have

1 1Yo Xp =X
Ao1(X) = Yo + (X —Xg) [X0, X(] = : (3.70)
X —X [ N1 X —X
Similarly, we can form Ag,(x), Agz(X),...
Next, we form Aj;, by considering the first-three points:
1 [Ann(¥) X=X
Ap12(X) = : (3.71)
Xp =X [Ag2(X) X2 —X

Similarly, we obtain Agy;3(X), Agq4(X), etc. At the nth stage of approximation,
we obtain

Ap1p nmi(X) Xp1—X

A

1

A012...n(X) =
Xn — Xn-1

(3.72)

012..n-2n (X) *n —X
The computations may conveniently be arranged as in Table 3.8 below:

Table 3.8 Aitken’s Scheme

X y
X0 Yo
Aga(X)
X1 Y1 Ap12(X)
Aga(X) Ap123(X)
X2 Y2 Ap13(X) Ap1234(X)
Agz(X) Ap124(X)
X3 Y3 Ap14(X)
Apa(x)

X4 Y4
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A modification of this scheme, due to Neville, is given in Table 3.9. Neville’s
scheme is particularly suited for iterated inverse interpolation.

Table 3.9 Neville's Scheme

X y
X0 Yo
Agy(x)
X1 Y1 Ag12(X)
Ag2(X) Ag123(X)
X2 Y2 A123(%) Ag1234(X)
Ap3(X) A1234(X)
X3 Y3 Ap34(x)
Az4(x)
X4 Yaq

As an illustration of Aitken’s method, we consider, again, Example 3.22.

Example 3.24 Aitken’s scheme is

X logyg x
300 2.4771
2.47855
304 2.4829 2.47858
2.47854 2.47860
305 2.4843 2.47857
2.47853
307 2.4871

Hence log;, 301 = 2.4786, as before.
An obvious advantage of Aitken’s method is that it gives a good idea of
the accuracy of the result at any stage.

3.11 INVERSE INTERPOLATION

Given a set of values of x and y, the process of finding the value of x for
a certain value of y is called inverse interpolation. When the values of x are
at unequal intervals, the most obvious way of performing this process is by
interchanging x and y in Lagrange’s or Aitken’s methods. Use of Lagrange’s
formula was already illustrated in Example 3.14. We will now solve the same
example by means of Aitken’s and Neville’s schemes.

Aitken’s scheme (see Table 3.8) is

y X
4 1
1.750
12 3 1.857
1.600
19 4
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whereas Neville’s scheme (see Table 3.9) gives

y X
4 1
1.750
12 3 1.857
2.286
19 4

Hence both the schemes lead to the same result ultimately. In practice,
however, Neville’s scheme should be preferred for the simple reason that in
this scheme those points which are nearest to x, are used for interpolation
at x=X,. It is, of course, important to remember that inverse interpolation
is, in general, meaningful only if the function is single-valued in the interval.

When the values of x are equally spaced, the method of successive
approximations, described below, should be used.

Method of successive approximations

We start with Newton’s forward difference formula [see Eq. (3.10), Section 3.6]
written as

u(u-1 uu-1)(u-2
Yu = Yo HUAY, + (2 )A2y0+ ( )6( )A3y0+... (3.73)

From this, we obtain

u :i[yu — yO — U(Uz—l) Azyo — U(U _1)6(u _2) A3y0 _:| (374)

Neglecting the second and higher differences, we obtain the first approximation
to u and this, we write, as follows

1
=— —VYo)- 3.75
U Ayo (YU yO) ( )

Next, we obtain the second approximation to « by including the term containing
the second differences. Thus,

1 b (W-1) - ]
Uy =—— |y —y, 2= 2 | (3.76)
2 Ao [YU Yo 5 Yo

where we have used the value of u; for u in the coefficient of A%y,. Similarly,
we obtain

1 Uy (Up=D) o0 Up(Up—-1)(Up-2) 3 ]
Us=——]| y, — Vo — A“Yp — A (3.77)
3 AYo [Vu Yo 5 Yo 5 Yo
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and so on. This process should be continued till two successive approximations
to u agree with each other to the required accuracy. The method is illustrated
by means of the following example.

Example 3.25 Tabulate y = x> forx =2, 3, 4 and 5, and calculate the cube
root of 10 correct to three decimal places.

X y=x A A? A3
2 8

19
3 27 18

37 6
4 64 24

61
5 125

Here y, =10, yg =8, Ayy =19, A2y0 =18 and A3y0 =6. The successive
approximations to u are, therefore,

1
u=—(2)-0.1
1 19()

i1k [ 010D ] o

19
u3:i [Z—MQS)  0.15(0.15-1) (0.15-2) (6)] 01532
19 2 6
e 1 [2_0.1532(0.1532—1) (18)_0.1532(0.1532—1) (0.1532-2) (6)]: 0.1541
19 6
g = % [ ,0.1541(0.1541-1) (18)_0.1541(0.15416—1) (0.1541-2) (6)]= 0.1542.

We, therefore, take u = 0.154 correct to three decimal places. Hence the
value of x (which corresponds to y = 10), i.e. the cube root of 10 is given
by xq + uh = 2.154.

This example demonstrates the relationship between the inverse interpolation
and the solution of algebraic equations.

3.12 DOUBLE INTERPOLATION

In the preceding sections we have derived interpolation formulae to approximate
a function of a single variable. For a function of two or more variables, the
formulae become complicated but a simpler procedure is to interpolate with
respect to the first variable keeping the others constant, then interpolate with
respect to the second variable, and so on. The method is illustrated below
for a function of two variables. For a more efficient procedure for multivariate
interpolation, see Section 5.3.
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Example 3.26 The following table gives the values of z for different values
of x and y. Find z whenx = 2.5 andy = 1.5.

X
y 0 1 2 3 4
0 9 16
1 11 18
2 6 7 10 15 22
3 12 13 16 21 28
4 18 19 22 27 34

We first interpolate with respect to x keeping y constant. For x = 2.5, we
obtain the following table using linear interpolation.

Yy YA
0 6.5
1 8.5
2 125
3 18.5
4 24.5

Now, we interpolate with respect to y using linear interpolation once again.
For y = 1/5, we obtain

so that z(2.5, 1.5) = 10.5. Actually, the tabulated function isz = x> + )* + y
and hence z(2.5, 1.5) = 10.0, so that the computed value has an error of 5%.

3.1

3.2

3.3

EXERCISES

Form a table of differences for the function
fx)=x>+5x -7
forx =-1, 0, 1, 2, 3, 4, 5. Continue the table to obtain f(6) and /(7).

Evaluate
(a) A% (b) A’(cos x) (c) A[(x + D(x + 2)]

-1 T
(d) Attan"'x)  (e) A[g(x)}

Locate and correct the error in the following table:

X 2.5 3.0 3.5 4.0 4.5 5.0 5.5
y 432 483 527 547 626 679 7.23
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3.4 Locate and correct the error in the following table:

X 1.00  1.05 1.10 .15 1.20 1.25 1.30
e’ 2.7183 2.8577 3.0042 3.1528 3.3201 3.4903 3.6693

3.5 Prove the following:
a) Vx T Vx-1 x-2 Vx-3  Vxen Yx—(n+1)
(a) F Ay o+ Ay s+ AT+ AT
(b) A" x = Vxtn — nCl Yyt T nCZnyran +oeee (_l)n X
@ty oty ="Criy +"Cy Ay + -+ ATy

3.6 From the following table, find the number of students who obtained
marks between 60 and 70:

Marks obtained 0-40 40-60 60-80 80-100 100-120
No. of students 250 120 100 70 50

3.7 Find the polynomial which approximates the following values:

X 3 4 5 6 7 8 9
y 13 21 31 43 57 73 91

If the number 31 is the fifth term of the series, find the first and the
tenth terms of the series.

3.8 Find f(0.23) and f(0.29) from the following table:

X 0.20 0.22 0.24 0.26 0.28 0.30
f(x) 1.6596 1.6698 1.6804 1.6912 1.7024 1.7139

3.9 Prove that

2
(a) A = ud + 57 (b) Ay, = Viys
3.10 From the table of cubes given below, find (6.36)° and (6.61)".

x 6.1 62 6.3 64 6.5 6.6 6.7
x> 226981 238328 250.047 262.144 274625 287496 300.763

3.11 Define the operators A, V, 6, E and E- I and show that
@ ATV =V =8y o (0) AVY =Vay =8y,
2

A+V
2

2
(c) ué = (d 1+ u?8 = (1+%52)

©) A2 = (1 + A 0 Al L=
Yk Yk Yk+1



EXERCISES 121

1 52 /2
(A——éz ):5[1+—]
2 4

3.13 Find the missing terms in the following:

3.12 Show that

X 0 5 10 15 20 25 30
y 1 3 ? 73 225 ? 1153

3.14 Derive expressions for the errors in Newton’s formulae of forward
and backward differences. Estimate the maximum error made in any
value of sin x in Example 3.6 obtained by interpolation in the range
15° < x < 40°.

3.15 Certain values of x and f(x) are given below. Find f(1.235).

X 1.00 1.05 1.10 1.15 1.20 1.25
fx) 0.682689 0.706282 0.728668 0.749856 0.769861 0.788700

3.16 Prove the following relations:

(@) S’ E =A% (b) EV?=pu- % (c) V=87

(dA-V =258 (e) u=cosh %D.

3.17 Using Gauss’s forward formula, find the value of f(32) given that
f(25) = 0.2707, £(30) = 0.3027, f(35) = 0.3386 and f(40) = 0.3794.

3.18 State Gauss’s backward formula and use it to find the value of /12525,

given that 2500 = 111.8034, 2510 = 111.8481,
J12520 = 111.8928, /12530 = 111.9375 and /12540 = 111.9822.

3.19 State Stirling’s formula for interpolation at the middle of a table of
values and find e'°! from the following table:

X 1.7 1.8 1.9 2.0 2.1 2.2
e™ 54739 6.0496 6.6859 7.3891 8.1662  9.0250

3.20 Using Stirling’s formula, find cos(0.17), given that cos(0) = 1,
c0s(0.05) = 0.9988, cos(0.10) = 0.9950, cos(0.15) = 0.9888,
c0s(0.20) = 0.9801, cos(0.25) = 0.9689, and cos(0.30) = 0.9553.

3.21 State Bessel’s formula for interpolation and mention its limitations. Use
this formula to solve the problem in 3.20.
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3.22 The complete elliptic integral of the second kind is defined as
k(m) j”’z LY
m) = —_—_—
0 J1-msin?e

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

Find £(0.25) given that
k(0.20) = 1.6596, £(0.22) = 1.6698, £(0.24) = 1.6804,
k(0.26) = 1.6912, £(0.28) = 1.7024, k(0.30) = 1.7139.

Using Bessel’s formula, find y (5) given that
y(0) = 1427, y(4) = 1581, y(8) = 17.72, and y (12) = 19.96.

From Bessel’s formula, derive the following formula for midway
interpolation:

21 1/.:2 2 3 (A4 4
Yo =5 00+ )~ o (A%Ya+ A%y )+ oAty + Aty 4o

Evaluate sin(0.20) given that
sin(0.15) = 0.1494, sin(0.17) = 0.1692, sin(0.19) = 0.1889,
sin(0.21) = 0.2085, sin(0.23) = 0.2280.

Deduce Everett’s formula from Bessel’s formula and show that Everett’s
formula truncated after second differences is equivalent to Bessel’s
formula truncated after third differences. Use Everett’s formula to find
cos(12.5°) given that

cos(0°) = 1, cos(5°) = 0.9962, cos(10°) = 0.9848, cos(15°) = 0.9659,
co0s(20°) = 0.9397.

Using Everett’s formula, evaluate f(25) from the set of values
f(20) = 2854, f(24) = 3162, f(28) = 3544, f(32) = 3992.

State Lagrange’s interpolation formula and find a bound for the error
in linear interpolation.

Write an algorithm for Lagrange’s formula. Find the polynomial which
fits the following data
-1, 7), (1, 5) and (2, 15).

Find y (2) from the following data using Lagrange’s formula
X 0 1 3 4 5
v 0 1 81 256 625

Let the values of the function y = sinx be tabulated at the abscissae
0, /4 and m/2. If the Lagrange polynomial L,(x) is fitted to this data,
find a bound for the error in the interpolated value.

Find a cubic polynomial which fits the data
(_29 _12)5 (_19 _8)7 (25 3) and (37 5)
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3.32

3.33

3.34

3.35

3.36

3.37

3.38

Show that

Zn: I, (X) _

A (X=X (4)

where II,.(x) = (x = x)(x — x)(x = x2) ==+ (x — xp).

In complex analysis, the residue theorem is used in the evaluation of
contour integrals. If a function f(z) is analytic inside and on a closed
contour C, and xy, Xy, X», ..., X, are simple poles inside C, then

I f(2)dz = 2mi  (sum of the residues at xq, xy, ..., Xx,)
c
[The residue of f(z) at z = a is defined as lim (z — a) f(2)]
Z—a

If xg, x1, X, ..., X, are simple poles of a function y (x) which is analytic
inside and an a closed contour C, then show that
1 t) 1,1 (x) dt
27§ (t=X) Ty ()

Lagrange’s formula can be used to express a rational function as a sum
of partial fractions (see, Stanton [1967]). Express

X° +x-3

fx) = —
X3 —2x% —x+2
as a sum of partial fractions.

Establish Newton’s divided-difference interpolation formula and give an
estimate of the remainder term. Deduce Newton’s forward and backward
difference interpolation formulae as particular cases.
Given

1

fx) = R

X

find the divided differences [a, b] and [a, b, c].

Given the set of tabulated points (0, 2), (1, 3), (2, 12) and (15, 3587)
satisfying the function y = f(x), compute f(4) using Newton’s divided
difference formula.

The nth divided difference [x(, xq, X5, ..., X,,] can be expressed as the
quotient of two determinants. Show that

1 1 1

Xo X X2

Yo Y1 Y2

[Xo: X1, Xp] =

1 1 1

Xo X )

2 2 2

X0 X )
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3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.46

3.47

3.48

Show that

1
[x0, x1] = J-y’(xo to + Xt) dt;,
0

where 1, 2 0 and ¢, + ¢; = 1.

Tabulate values of sinx for x = 0(0.01), 1.0 and find the maximum
errors in linear and quadratic interpolations using Lagrange’s formula.

If f(x) = 1, prove that
X

D

Do o Xl =

Using Hermite’s interpolation formula, estimate the value of In 4.2 from
the data (values of x, In x and l):
X

(4.0, 1.38629, 0.25000), (4.5, 1.50408, 0.22222), (5.0, 1.60944, 0.20000).

Find the Hermite polynomial of the third degree approximating the
function y (x) such that

»0)y =1, y(0) =0,

v =3,y =5

Values of x and ¥/x are given below
(51, 3.708), (55, 3.803), (57, 3.848). Find x when ¥x = 3.780.

From the table of values of x and ¥, viz. (1.4, 4.0552), (1.5, 4.4817),
(1.6, 4.9530), (1.7, 5.4739), find x when ¢* = 4.7115, using the method
of successive approximations.

The second degree polynomial which satisfies the set of values (0, 1),
(1, 2) and (2, 1) is

() 1+2x—x*> (b) 1 — 2x + x> (¢) 1 =2x—x> (d) 1+2x+x?
Find the correct alternative in the above.

If Ay = 1 + 2x + 3x?, which one of the following is not true?
(a) A’y =6x + 5 (b) A’y =6
(c) A% =0 dy=x>+x
Which of the following statements are true?
(a) A(tan'x) = tan’lL (b) A(cos2x) = 2 sinx (x + h)
1+ x(x+h)
(c) A*(x?) = 6x (d) 6 = VE?
A+V
() A* = (1 - A& (f) ué=

2
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3.49

3.50

3.1
3.2

3.3

3.4

3.7

3.10
3.14
3.17
3.19
3.21
3.23
3.25

3.28

3.30

3.34

3.37
3.42
3.44
3.46
3.48
3.50

AZ
(&) Ax" = mx™! M | = x® = 6x
(i) A" =¢"
For the function z = f(x, y), the following values are given

£, 0) =0, (@, 1) =2, f(0, 2) =6,
f(1, 0 =1, fa, 1) =3, £, 2 =1,
f(2, 0) =4, f(2, 1) =6, f(2, 2) = 10.
Estimate the value of (0.5, 0.5) by the method of linear interpolation
and compare the result with the actual value obtained from
z=x>+ y2 + .
Estimate the value of f(1.5, 1.5) in Problem 3.49 and compare the
value with its actual value.

Answers to Exercises

239, 371
(a) 61*(h + x), (b) cos (x + 2h) — 2cos (x + h) + cos x
(c) 2x + 4 (d) tan7?
X(x+h)
© f(x+h)g(x) — g(x+h) f(x)
9(x) g(x+h)
5.74
3.1582 3.6 54
y(1) =3, p(10) = 111 3.8 1.6751, 1.7082
257.259, 288.805 3.13 17,551
0.00000001 3.15 0.783172
0.3165 3.18 111.9152
6.7531 3.20 0.9856
0.9856 3.22 1.6858
16.25 3.24 0.1987
0.9763 3.26 3251
%(sz ~3x +7) 3.29 16
0.0239 331 — Loy 24, 39
15 20 60 10
1 N 1 N 1 336 —(a+b), ab+bc+ca
2(x+1)  2(x-1) x-2 a’h? a’p?c?
1454 3.40 | y(x) — Ly(x)| = 6.415 x 1078
1.435081 343 1 + x>+ X3
54 3.45 1.55
(a) 3.47 (d)
(@), (d), (O, (h) 349 1.5
Proceed as in Problem 3.49.



Chapter

Least Squares and
Fourier Transforms

4.1 INTRODUCTION

In experimental work, we often encounter the problem of fitting a curve to
data which are subject to errors. The strategy for such cases is to derive an
approximating function that broadly fits the data without necessarily passing
through the given points. The curve drawn is such that the discrepancy
between the data points and the curve is least. In the method of least squares,
the sum of the squares of the errors is minimized. For continuous functions,
the method is discussed in Section 4.4.

The problem of approximating a function by means of Chebyshev
polynomials is described in Section 4.5. This is important from the standpoint
of digital computation.

In Chapter 3, we concentrated on polynomial interpolation, i.e., interpola-
tion based on a linear combination of functions 1, x, x% ..., x". On the other
hand, trigonometric interpolation, i.e., interpolation based on trigonometric
functions such as, cos x, sin x, cos 2x, sin 2x, ... plays an important role in
modelling vibrating systems. The Fourier series is a useful tool for dealing with
periodic systems; but for aperiodic systems, the Fourier transform is the
primary tool available. The computations of discrete Fourier transform and the
Fast Fourier Transform (FFT) are discussed in detail in Section 4.6.

4.2 LEAST SQUARES CURVE FITTING PROCEDURES

Let the set of data points be (x;, ¥,), i = 1, 2, ..., m, and let the curve given
by Y = f(x) be fitted to this data. At x = x;, the given ordinate is y; and the

126
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corresponding value on the fitting curve is f(x;). If e; is the error of
approximation at x = x;, then we have

e, =y — f(x) 4.1)

If we write

S=[y1 - FOQF +[y2 = FOQ)F +-+[ym — ()
—e? +el+--+e, (4.2)
then the method of least squares consists in minimizing S, i.e., the sum of the

squares of the errors. In the following sections, we shall study the linear and
nonlinear least squares fitting to given data (x;, y;), i = 1, 2, ..., m.

4.2.1 Fitting a Straight Line

Let Y = ay + a;x be the straight line to be fitted to the given data, viz. (x; »,),
i=1,2, ..., m. Then, corresponding to Eq. (4.2), we have

S=[ - (a + ax)l* + [ — (@ + ax2))?

+ ot [y — (@0 + ax)]’ (4.3)
For S to be minimum, we have
dS
a =0==2[y; — (a0 + a1x))] = 2[y2 = (a0 *+ aix,)]
= 2y — (a0 T arxy)] (4.4a)
and
0S
a_al =0=2x[y1 = (a0 + a1x))] = 2x; [y — (ap + aix,)]
- _2xm [Vm - (Clo + alxm)] (44b)
The above equations simplify to
mag + ay(x; +xp + ot x,) =yttt oy, (4.52)
and
2 2 2\_
ag(xy + Xy + -0 X)) T oa (Xl X2 +"'+Xm)_ Xyr T xgyy o Xy
(4.5b)

or more compactly to

m m
mag +2 ) X = Vi (4.6a)
i=1 i=1

and

3 > Xi+ay = %y (4.6b)
i i i=1

i=1 i=1 i

o



128 CHAPTER 4: Least Squares and Fourier Transforms

Equations (4.6) are called the normal equations, and can be solved for a
and a;, since x; and y; are known quantities.
We can obtain easily

alz i=1 i=1 i=1 (47)

and then
ay = Y —aX. (4.8)
2g 2
Since —- and —- are both positive at the points ay and ay, it follows that
03y 0a{

these values provide a minimum of S. In Eq. (4.8), X and y are the means
of x and y, respectively. From Eq. (4.8), we have

which shows that the fitted straight line passes through the centroid of the
data points.

Sometimes, a goodness of fit is adopted. The correlation coefficient (cc)
is defined as

S, -S
CC= , .
s, (4.9)
where
. 2
Sy=2 (vi-9) (4.10)

and S defined by Eq. (4.3).
If cc is close to 1, then the fit is considered to be good, although this
is not always true.

Example 4.1 Find the best values of g, and a; if the straight line
Y = ag + a;x is fitted to the data (x;, y;):

(1, 0.6), (2, 2.4), (3, 3.5), (4, 4.8), (5, 5.7)
Find also the correlation coefficient.
From the table of values given below, we find X=3, y=3.4, and
_ 5(63.6) -15(17) _

| = 1.26
5(55) — 225

Therefore,

8g=y—-aX=-0.38.
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X; Vi Xi2 XY (y; — 7)2 0 — ap — ax)’
1 0.6 1 0.6 7.84 0.0784
2 2.4 4 4.8 1.00 0.0676
3 3.5 9 10.5 0.01 0.0100
4 4.8 16 19.2 1.96 0.0196
5 5.7 25 28.5 5.29 0.0484
15 17.0 55 63.6 16.10 0.2240

The correlation coefficient = ;%:o.ggsa

Example 4.2 Certain experimental values of x and y are given below:
0, -1), (2, 5), (5, 12), (7, 20)

If the straight line ¥ = a, + a;x is fitted to the above data, find the
approximate values of g, and aj.
The table of values is given below.

X y X Xy
0 -1 0 0

2 5 4 10
5 12 25 60
7 20 49 140
14 36 78 210

The normal equations are
4610 + 14611 = 36

and

l4ay + 78a, = 210

Solving the two equations, we obtain

ayg = -1.

1381

and a; = 2.8966

Hence the best straight line fit is given by
Y = -1.1381 + x(2.8966).

4.2.2 Multiple Linear Least Squares

Suppose that z is a linear function of two variables x and y. If the function
Z=q + apx + ay is fitted to the data (Zla X1, )’1)a (227 X2, )’2), ---(Zma Xm» )’m),

then the sum

m
S= (z—a—ax —aY;)

i=1
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should be minimum. For this, we have

dS

g=—22(zi -8 —aX —ayY;)=0-
dS

a_:_ZXiZ(Zi -8 -2 —a))=0>
8

and

aS

a_z_ZYiZ(Zi -8 —aX —aY)=0.
a

These equations simplify to
mag + a1 Xx; + a,Xy; = Xz;
ayZx; + a; Xx;? + XXy = XZ;iX; (4.11)
aXy; + a Zyx; + azZy,-z = 2z;y;

from which ay, a; and @, can be determined.

Example 4.3 Find the values of gy, a; and a,, so that the function
z = ayg + a;x + a,y is fitted to the data (x, y, z) given below.

0, 0, 2), (1, 1, 4), (2, 3, 3), (4, 2, 16) and (6, 8, 3).

We form the following table of values
2

X y z X Xy zx e vz
0 0 2 0 0 0 0 0
1 1 4 1 1 4 1 4
2 3 3 4 6 6 9 9
4 2 16 16 8 64 4 32
6 8 8 36 48 48 64 64

13 14 33 57 63 122 78 109

The normal equations are
5610 + 13611 + 14612 =33

13610 + 57611 + 63612 =122

14aq + 63a; + 78a, = 109
The solution of the above system is
a0=2,a1=5anda2:—3.

4.2.3 Linearization of Nonlinear Laws

The given data may not always follow a linear relationship. This can be
ascertained from a plot of the given data. If a nonlinear model is to be fitted,
it can be conveniently transformed to a linear relationship. Some nonlinear
laws and their transformations are given as follows.
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(a) y=ax+ b
X
This can be written as
xy=ax’> + b

Put xy = 7, x> = X. With these transformations, it becomes a linear
model.

(b) 0" =
Taking logarithms of both sides, we get
logjox + alogoy = log;eb.
In this case, we put

logiqy = Y, logpx = X,

lloglob = AO and —i = Ala
a a

so that

Y=4, + 4 X
(¢) y = ab*

Taking logarithms of both sides, we obtain
logjpy = logjpa + x log;eb
= Y= AO + Al)(,

where
Y = logoy, 4y = logea,
X =x, and 4; = logob
(d) y=ax’
We have
logoy = logjpa + blogox
= Y =4, + AX,
where
Y = logygy, 49 = logjpa, 41 = b
and
X = log;ox.
(e) y = ae™

In this case, we write
Iny=1Ina+ bx
= Y= AO + Al)(,
where
Y=Iny, Ag=Ina, 4, =5
and
X =x

Example 4.4 Using the method of least squares, find constants a and b
such that the function y = ae® fits the following data:

(1.0, 2.473), (3.0, 6.722), (5.0, 18.274), (7.0, 49.673), (9.0, 135.026).
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We have
y = ae®™
Therefore,
Iny=1Ina-+ bx
= Y =4, + 41X,
where

Y=Iny Ay =Ina, A; = b and X = x.

The table of values is given below

X Y=Iny X Xy
1 0.905 1 0.905
3 1.905 9 5.715
5 2.905 25 14.525
7 3.905 49 27.335
9 4.905 81 44.145
25 14.525 165 92.625
We obtain _ _
X =5, Y =2.905
A= 5(92.625) — 25(14.525) _ 05=b.
5(165) — 625
Then
Ay =Y — A X =2.905- 0.5(5) = 0.405.
Hence,

a=e" =e04%° =149,
It follows that the required curve is of the form

y = 1.499¢%*

Example 4.5 Using the method of least squares, fit a curve of the form

X
= to the following dat
Y= T bx o the following data

(3, 7.148), (5, 10.231), (8, 13.509), (12, 16.434).
We have

B X
Y a + bx
1 a+bx a
R =b+—
y X X

= Y =4, + AX,
where

A0=b,A1=a,X=£and Y:l
X y
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The table of values is
X Y X Xy
0.333 0.140 0.111 0.047
0.200 0.098 0.040  0.020
0.125 0.074 0.016  0.009
0.083 0.061 0.007  0.005

0.741 0.373 0.174  0.081

We obtain
A=a= 4(0.081) — 0.741(0.373)

- =0.324, X =0.185,Y =0.093
4(0.174) — (0.741)

and 49 =b =Y —aX =0.0331.
Hence the required fit is ¥ = 0.0331 + 0.324(X), which simplifies to

X
Y= 0324+ 0.0331(x)
|:N0te: The given data is obtained from the relation y = X
0.3162 + 0.0345x

4.2.4 Curve Fitting by Polynomials
Let the polynomial of the nth degree,
Y=ay+ax+ ax’+ - + ax" (4.12)

be fitted to the data points (x;, y;), i = 1, 2, ..., m. We then have

2
S :[yl —(8g + 8y + 8% +---+anx1”)]

2 NE

+|:y2 —(ag + g%y +ayX) +---+anx2)]

2 T
oot [y — (@ + et +ap@ o taxm) [ (@413)

Equating to zero the first partial derivatives and simplifying, we obtain the
normal equations:

Mag + a5 + 8 2x2 +--- + a, =X = Zy;,
2 1
AgZX; + 4 TX; +---.+ a, X" = Ix Y, @.14)

in+1 +

ap2X +a = 4+ 2, =X = =Xy,

where the summations are performed from i = 1 to i = m.
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The system (4.14) constitutes (# + 1) equations in (# + 1) unknowns, and
hence can be solved for ay, a;, ..., a, Equation (4.12) then gives the
required polynomial of the nth degree.

For larger values of n, system (4.14) becomes unstable with the result
that round off errors in the data may cause large changes in the solution.
Such systems occur quite often in practical problems and are called i//-
conditioned systems. Orthogonal polynomials are most suited to solve such
systems and one particular form of these polynomials, the Chebyshev
polynomials, will be discussed later in this chapter.

Example 4.6 Fit a polynomial of the second degree to the data points
(x, y) given by
(0, 1), (1, 6) and (2, 17).
For n = 2, Eq. (4.14) requires Zx;, inz, in?’, in4 , 2V, 2x;y; and inz Yi -
The table of values is as follows:

X y x2 x3 x4 Xy xzy
0 1 0 0 0 0 0
1 6 1 1 1 6 6
2 17 4 8 16 34 68
3 24 5 9 17 40 74

The normal equations are
3610 + 3611 + 5612 =24

3ayp + S5a; + 9a, = 40
Sap + 9a; + 17a, = 74
Solving the above system, we obtain
ay=1,a, =2 and a, = 3.

The required polynomial is given by ¥ =1 + 2x + 3x7, and it can be seen that
this fitting is exact.

Example 4.7 Fit a second degree parabola y = ay + a;x + a,x* to the data

(i Yo):
(1, 0.63), (3, 2.05), (4, 4.08), (6, 10.78).

The table of values is

x y X x’ x* xy X’y

1 0.63 1 1 1 0.63 0.63
3 2.05 9 27 81 6.15 18.45
4 4.08 16 64 256 16.32 65.28
6 10.78 36 216 1296 64.68  388.08

14 17.54 62 308 1634 87.78  472.44
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The normal equations are
4ay + 14a; + 62a, = 17.54
14ay, + 62a; + 308a, = 87.78
62ay, + 308a; + 1634a, = 472.44,
from which we obtain

ay = 124, a; = -1.05 and a, = 0.44

4.2.5 Curve Fitting by a Sum of Exponentials

A frequently encountered problem in engineering and physics is that of fitting
a sum of exponentials of the form

y=f(x)= Ae™ + AR ...+ A M (4.15)

to a set of data points (x;, y;), i = 1, 2, ..., m, where m is much greater
than 2n.

We describe here a computational technique due to Moore [1974]. For
easy of presentation, we assume n = 2.

Then the function

y = A + A2 (4.16)
is to be fitted to the data (x;, y,), i = 1, 2, ..., m, and m > 4. It is known

that y(x) satisfies a differential equation of the form

dy
—=ala+azy 4.17)

where the constants a; and a, have to be determined. Integrating Eq. (4.17),
we obtain

Y00 -y (%) =a [y() - y(O)] + 2, [ y(x)dx 4.18)

X0
. o , dy .
where x, is the initial value of x and y’(X) =d—. Integrating Eq. (4.18), we
X

get

V() = Y(0) — (x = X0) (%) = & | y(x)dx - & (x = ) y(%)
X0

+ azj J y(x) dxdx (4.19)
X0 X0
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Now,

X X X
j j y(x) dxdx = J-(x _tyy(t)dt
X0 %o X0
Hence, Eq. (4.19) becomes
X

y(x) = y(0) = (x= %) y'(Xo) = al_[ y(x)dx — 2y (x = %) Y (%)
X0

X
+ay [ (x=1) y(Odt (4.20)
X0
In Eq. (4.20), y'(xo) is eliminated in the following way. Let x; and x, be two
data points such that
Xo— X1 = X — Xp (421)
Then Eq. (4.20) gives

XL
Y04) = Y0%) = (4 = %) V' (%) = &y | y(x)dx = a1 (x; = %) y(p)

Xo
X
+a, j (x —1) y(t)dt (4.22)
and ’
X2
¥0%) = Y0%) — (X2 = %) ¥'(%0) = 2 | y(X)dx = & (xz = Xp) ¥ (%)
X0
X
+ay f (o —t) y(t)dt (4.23)
Xo

Adding Eqgs. (4.22) and (4.23) and using Eq. (4.21), we obtain

X X2
V0a) + y0xg) = 2y(xg) =y | | y0ax+ [ y(xx
X0

R
—Xl X2

+a, j (% —t)y(t)dt + j (2 =0 YOt | (424
X0 X0

Equation (4.24) can now be used to set up a linear system of equations for
a; and a,, and then we obtain A, and A, from the characteristic equation
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N =ad+ a (4.25)

Finally, 4; and 4, can be obtained by the method of least squares or by the
method of averages.

Example 4.8 Fit a function of the form
y= Alellx + Aze/lzx @)
to the data defined by (x, y)
(1, 1.54), (1.1, 1.67), (1.2, 1.81), (1.3, 1.97), (1.4, 2.15),
(1.5, 2.35), (1.6, 2.58), (1.7, 2.83), (1.8, 3.11).
Let xo = 1.2, x; = 1.0, x, = 1.4. Then, Eq. (4.24) gives
1

2 1.4
0.07 = all- y(x) dx + j y(x) dx]
0

1 1.2

12 14
+a, !— j (L.O—1t)y(t)dt + j L.4-1)y() dt}
1.0 1.2

Evaluating the integrals by Simpson’s rule* and simplifying, the above equation
becomes
1.81a; + 2.180a, = 2.10 (ii)

Again, choosing x; = 1.4, x, = 1.6 and x, = 1.8, and evaluating the integrals
as before, we obtain the equation

2.88a; + 3.104a, = 3.00 (iii)
Solving Egs. (ii) and (iii), we get
a; = 0.03204 and a, = 0.9364.
Equation (4.25) now gives
A% — 0.032044 — 0.9364 = 0,

from which we obtain
A = 0.988 = 0.99,
and
A, = —0.96.
Using the method of least squares, we finally obtain
A; = 0499 and A4, = 0.491.

The above data was actually constructed from the function y = cosh x so
that Al = A2 = 05, ll = 1.0 and ZQ = —1.0.

*See Section 6.4.2.
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4.3 WEIGHTED LEAST SQUARES APPROXIMATION

In the previous section, we have minimized the sum of squares of the errors.
A more general approach is to minimize the weighted sum of the squares of
the errors taken over all data points. If this sum is denoted by S, then instead
of Eq. (4.2), we have

S =Wy [ys — F )P +Wa [y — f (x)1 + -+ + Wiy [y — f (%)
:Wlel2 +W2e§ +---+Wme§1. (4.26)

In Eq. (4.26), the ¥, are prescribed positive numbers and are called weights.
A weight is prescribed according to the relative accuracy of a data point. If
all the data points are accurate, we set W; = 1 for all i. We consider again
the linear and nonlinear cases below.

4.3.1 Linear Weighted Least Squares Approximation

Let Y = ay + a;x be the straight line to be fitted to the given data points,
viz. (xla yl)a“'s(xma ym) Then

S(ap, a) = 2 W; [yi — (8 +aX; ). (4.27)

i=1

For maxima or minima, we have

w5 .
0 d ’
which give %
dS 4L
S =23 Wiy — (a9 +ax)] =0 (4.29)
dBg  {H
and
dS i
—=-2 Wi [y; —(ag +a%)] % =0. (4.30)
03y —~

Simplification yields the system of equations for a, and a;:

m m m
aoz Wi+aleixi:ZWiyi (431)
i=1 i=1 i=1

and

m m m
a()z Wixi+a12 Wixizzz WX Yi, (4.32)
|:1 |:1 |:1
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which are the normal equations in this case and are solved to obtain g, and
a;. We consider Example 4.2 again to illustrate the use of weights.

Example 4.9 Suppose that in the data of Example 4.2, the point (5, 12) is
known to be more reliable than the others. Then we prescribe a weight (say,
10) corresponding to this point only and all other weights are taken as unity.
The following table is then obtained.

b's y w Wx Wx? Wy Wxy

0 -1 1 0 0 -1 0

2 5 1 2 4 5 10

5 12 10 50 250 120 600

7 20 1 7 49 20 140
14 36 13 59 303 144 750

The normal Egs. (4.31) and (4.32) then give
13a, +59a, =144 (1)
59a, +303a, = 750. (i)
Solution to Egs. (i) and (ii) gives
ag=-1.349345 and a =2.73799.

The ‘linear least squares approximation’ is, therefore, given by

y =-1.349345 + 2.73799x.

Example 4.10 We consider Example 4.9 again with an increased weight,
say 100, corresponding to y(5.0). The following table is then obtained.

b's y w Wx Wix? Wy Wxy
0 -1 1 0 0 -1 0
2 5 1 2 4 5 10
5 12 100 500 2500 1200 6000
7 20 1 7 49 20 140
14 36 103 509 2553 1224 6150

The normal equations in this case are
103ay +5098 =1224 ()
and
509a, + 25533 = 6150. (i)



140 CHAPTER 4: Least Squares and Fourier Transforms

Solving the preceding equations, we obtain
ag=-1.41258 and a =2.69056.
The required ‘linear least squares approximation’ is therefore given by
y =-1.41258 + 2.69056,

and the value of y(5)=12.0402.
It follows that the approximation becomes better when the weight is increased.

4.3.2 Nonlinear Weighted Least Squares Approximation

We now consider the least squares approximation of a set of m data points
(x5 yp), i =1,2, ..., m, by a polynomial of degree n <m. Let

y=ag+aX+ax? +---+a,x" (4.33)

be fitted to the given data points. We then have
L 2
S(ag, ... ) = Y, Wi [y; —(ag +ap +--+ax)F.  (4.34)
i=1

If a minimum occurs at (ay, @, ..., a,), then we have

d5 _08 _9dS_ 95 _, (4.35)
dag da; da, da,,

These conditions yield the normal equations

m m m m
89> Wi+a ) Wixi+--+a, > Wix' =Y Wy
i-1 i-1 i-1 i-1

m m m
m 2 1
80,y Wi +ar Y Wixi +an D WX =3 Wixiy, (4.36)
|:1 |=1 |=l

m m m m
aoz W;x ! +a12 Wixi"+1+---+an2 Wix 2" :2 W,xy;.
= i-1 i1 i1

Equations (4.36) are (n + 1) equations in (z + 1) unknowns aq, a;, ..., a,. If
the x; are distinct with n <m, then the equations possess a ‘“unique’ solution.

4.4 METHOD OF LEAST SQUARES FOR CONTINUOUS FUNCTIONS

In the previous sections, we considered the least squares approximations of
discrete data. We shall, in the present section, discuss the least squares
approximation of a continuous function on [a, b]. The summations in the
normal equations are now replaced by definite integrals.
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Let
y(x)=a0+a1x+a2x2 +---+anx” (4.37)
be chosen to minimize
b
S(ag, ay,...,a,) = J W (x) [y(x)—(ag +a1x+---+anx”)]2dx. (4.38)
a

The necessary conditions for a minimum are given by
9 _d95_ 0 _, (4.39)
03y 0g 2,
which yield
b
2 j W (X) [y(X) = (8 + 8y X+ apx% ++++a,x")] dx =0
a
b

2 j W (X) [y(X) = (8 + & X +ayx% ++++a,x")] x dx = 0

b (4.40)
-2 J W(x) [y(x) - (ag +a1x+a2x2 +eotagx")] X2 dx=0

b :

-2 J W (X) [y(X) = (ag + 3 X + ayX? +---+a,x")] x" dx = 0.
a

Rearrangement of terms in Eq. (4.40) gives the system

b b b b
aOJW(x)dx+a1J XW (X) dx+---+anj x"W (x) dx:JW(x)y(x)dx
a a a a
b b b b
aOJxW(x)dx+a1Jx2W(x) dx+---+an'[x”+1VV(x) dx:JxW(x)y(x)dx
a a a a
b b b b
aOJX”W(x)dx+a1Jx”+1W(x) dx+---+an'[x2”W (X) dx:Jx”W(x)y(x) dx.
a a a a
(4.41)
The system in Eq. (4.41) comprises (n + 1) normal equations in (n+ 1)
unknowns, viz. ag, 3, 8y, ..., &, and they always possess a ‘unique’ solution.

Example 4.11 Construct a least squares quadratic approximation to the
function y (x) = sin x on [0, m/2] with respect to the weight function
Wx) = 1.



142 CHAPTER 4: Least Squares and Fourier Transforms

Let
y=ag +aX+ax’ (i)

be the required quadratic approximation. Then using Eq. (4.41), we obtain
the system

w2 w2 w2 w2
ag J. dx+a J. X dx +a, J x2dx = J sin x dx
0 0 0 0
w2 w2 ml2 w2
ay J X dX + & J x2 dx +a, J x3dx = J X sin x dx (i)
0 0 0 0
w2 w2 w2 w2
2, J x2 dx+a J x3 dx + a, J x*dx = J x2 sin x dx.
0 0 0 0

Simplifying Eq. (ii), we obtain
2 3

T T T
a0—+a1—+a2—:1
2 8 24
2 7'L'3 7T4
a0—+a1—+a2—=1

8 24 64

s * r° T
g—+ay—+a,—=2| -1}
24 64 160 2
whose solution is

18 96 480
R
alz—%—%+@ (iii)
T T V4
_ 240 2880 11520
T

The required quadratic approximation to y = sin x on [0, 7 /2] is then given
by (i) and (iii),
As a check, we obtain, atx = 7w /4,

sin X = —2—6—2+2i30 =0.706167587.
T r T
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The true value of sin (x/4) = 0.707106781, so that the error in the preceding
solution is 0.000939194.

4.4.1 Orthogonal Polynomials

In the previous section, we have seen that the method of determining a least
square approximation to a continuous function gives satisfactory results.
However, this method possesses the disadvantage of solving a large linear
system of equations. Besides, such a system may exhibit a peculiar tendency
called ill-conditioning, which means that small change in any of its parameters
introduces large errors in the solution—the degree of il/-conditioning increasing
with the order of the system. Hence, alternative methods of solving the
aforesaid least-squares problem have gained importance, and of these the
method that employs ‘orthogonal polynomials’ is currently in use. This method
possessess the great advantage that it does not require a linear system to be
solved and is described below.
We choose the approximation in the form:

Y(X)=agfo(X)+a f(X)+---+a, f,(X), (4.42)

where f;(x) is a polynomial in x of degree ;.
Then, we write

b
S (8g,@,.--,30)= | W OO0 ~[ag fo (¥)+ 4 () +++++ 2, Ty (AT dx. (4.43)

For S to be minimum, we must have

b
T 0= 2 [ WO 00 0+ 00+ 20 Ty (T o 0)
a5 :
a_al=0=—2£W(X){y(><)—[ao fo()+a f () ++an fy O dx |y g

b
25 20=2 [ WOO{Y(0—{a0 o0+ X +-+-+2 T (T} ()
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The normal equations are now given by

b b b
aoj W (x) f2(x) dx+a1j W (X) fy (X) £, (X) X+ -+ anj W (X) fy (X) f, () dx

b
- j W (x) y(x) o (x) dx

b b b
aoj W (x) %, (%) fo(x)dx+a1j W(x)ff(x)dx+---+anj W (x) f,(X) f, (x) dx

b
ZJ W (%) y(x) f, (x) dx

b b b
aoj W (X) f, (%) To (%) dx+a1j W (X) f (%) F, (X) dx -+ + anj W (x) 2(x)dx

b
= [ W) y09 £y (9 ax.

a

(4.45)
The above system can be written more simply as

b b
aoj W (x) fo(x) f;(x) dx+a1j W (x) fy(x) fj(x)dx+---

b b
+anj W (x) F (X) f; (x) dx = j W) y(x) f;00dx,  §=0,1 2,...,n,
A a (4.46)

In Eq. (4.45), we find products of the type f,(x) f(x) in the integrands, and
if we assume that

b 0 p#d
jW(x)fp(x)fq(x)dx= ij(x)fZ(x)dx - (4.47)
a p ! =4

then the system (4.45) reduces to

b b
ag [ W0 £ 00 dx= [ W) y(9) To(x) dx

b b
anj W) f2(x) dx = j W (X) Y(x) f, (x) dx.
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From the preceding equations we obtain

b
J W) y09 1500 o

aj=—7 , j=0,1, 2, ..., n (4.48)
Jweo 700 dx
a
Substitution of ay, a;, ..., a, in Eq. (4.42) then yields the required least
squares approximation, but the functions fy(x), f1(x), ..., f,(x) are still not

known. The f;(x), which are polynomials in x satisfying the conditions (4.47),
are called orthogonal polynomials and are said to be orthogonal with respect
to the weight function W(x). They play an important role in numerical
analysis and a few of them are listed below in Table 4.1.

Table 4.1 Orthogonal Polynomials*

Name fi(x) Interval W(x)
Jacobi PP -1,1] A-x)%@+x)P(a, B >-1)
Chebyshev Th(X) [-1 1] a- X2)—1/2
(first kind)
Chebyshev Un(x) | (1—x2)1/2
(second kind)
Legendre P (x) (-1, 1 1
Laguerre L (x) [0, =0) e~ X
Hermite Hn(x) (—oo, o0) e—x2

A brief discussion of some important properties of the Chebyshev
polynomials 7,(x) and their usefulness in the approximation of functions will
be given in a later section of this chapter. We now return to our discussion
of the problem of determining the least squares approximation. As we noted
earlier, the functions f;(x) are yet to be determined. These are obtained by
using the ‘Gram—Schmidt orthogonalization process,” which has important
applications in numerical analysis. This process is described in the next section.

4.4.2 Gram-Schmidt Orthogonalization Process

Suppose that the orthogonal polynomial fi(x), valid on the interval [a, 5], has
the leading term x'. Then, starting with

Jox) =1 (4.49)

*For more details concerning orthogonal polynomials, see Abramovitz and Stegun
[1965].
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we find that the linear polynomial f(x), with leading term x, can be written as

S = x + ko fox), (4.50)

where &  is a constant to be determined. Since f;(x) and f;(x) are orthogonal,
we have

b b b
IW(x)fO(x) £,(x) dx:ozj XW (%) Ty (X) dx+k1,0J.W(x)f02(x) dx

using Eqgs. (4.47) and (4.49). From the above, we obtain

b
j XW (x) fo (x) dx

a

Kio=—7 (4.51)
jW(x)fOZ(x) dx
a

and Eq. (4.50) gives
b
J X W (x) fo (X) dx

f(x)=x-= .

j W (x) f 2(x) dx

Now, the polynomial f(x), of degree 2 in x and with leading term x*, may

be written as
o (X) = X% +ky g fo (X) + ko1 f1 (%), (4.52)

where the constants k, , and &, ; are to be determined by using the orthogonality
conditions in Eq. (4.47). Since f>(x) is orthogonal to fy(x), we have

b
J W (x) fg (x)[x2 +ka o fo(X) +kyp fr(X)]dx =0.

Since j: W (x) fo(x) fy(x) dx =0, the above equation gives

b b
j X2W () fo (X) dx j Xx2W (x) dx
- __2 . (4.53)

b
j W (%) f 2(x) dx j W (x) dx
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Again, since f>(x) is orthogonal to fj(x), we have

b
J WO RO D + ko o () + Koy fr(X)] dx =0.

Using the condition that f;) W (x) fo(x) fy(x) dx=0, the above yields
b
j X2W (x) fy (x) dx

o =2 . (4.54)

j W (x) f 2 (x) dx

Since k, 5 and k, ; are known, Eq. (4.52) determines f,(x). Proceeding in this
way, the method can be generalized and we write

fj (X) = Xj + kj,O fo(X)+ kj,lfl(x)+"'+ kj,jflfj—l(x)’ (455)

where the constants k;; are so chosen that f(x) is orthogonal to
Jox), fi(x), ..., fi1(x). These conditions yield

b
j x W (x) f; (x) dx
ki =—2 . (4.56)

jii b
jW(x)fiZ(x) dx

Since the a; and fj(x) in Eq. (4.42) are known, the approximation Y(x) can
now be determined. The following example illustrates the method of procedure.

Example 4.12 Obtain the first-four orthogonal polynomials f,(x) on [-1, 1]
with respect to the weight function W(x)=1.
Let fy(x) = 1. Then Eq. (4.51) gives

1

jxdx

-1
1

de
-1

We then obtain from Eq. (4.50), fi(x) = x. Equations (4.53) and (4.54) give
respectively

=0.

ki o=-
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and

Then Eq. (4.52) yields f(x) = x> — 1/3.
In a similar manner, we obtain
1

J. x3dx
k.o =——5——=0,
J. dx
-1
Jl :
XX dx
I x2 dx

j x3(x2 —1/3) dx
-1
k3, 2 = — 1 = 0

j (x2 —1/3)? dx
-1

It is easily verified that
3
fa(x) = x3 - =x.
3(X) E

Thus the required orthogonal polynomials are 1, x, x> — 1/3 and x> — (3/5)x.
These polynomials are called Legendre polynomials and are usually denoted
by P,(x). It is easy to verify that these polynomials satisfy the orthogonal
property given in Eq. (4.47). An important application of Legendre polynomials
occurs in numerical quadrature (see Chapter 6).

4.5 APPROXIMATION OF FUNCTIONS

The problem of approximating a function is a central problem in numerical
analysis due to its importance in the development of software for digital
computers. Function evaluation through interpolation techniques over stored
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table of values has been found to be quite costlier when compared to the use
of efficient function approximations.

Let fi, f5, ..., f,, be the values of the given function and ¢, ¢, ..., ¢,
be the corresponding values of the approximating function. Then the error vector
is e, where the components of e are given by e; = f; — ¢;. The approximation
may be chosen in a number of ways. For example, we may find the
approximation such that the quantity +/ (el2 +e§ +oo e,f) is minimum. This
leads us to the least squares approximation which we have already studied.
On the other hand, we may choose the approximation such that the maximum
component of e is minimized. This leads us to the ‘celebrated Chebyshev
polynomials’ which have found important application in the approximation of
functions in digital computers.

In this section, we shall give a brief outline of Chebyshev polynomials
and their applications in the economization of power series.*

4.5.1 Chebyshev Polynomials

The Chebyshev polynomial of degree n over the interval [—1, 1] is defined by
the relation
T, (x) = cos (n cosx), (4.57)

from which follows immediately the relation
T,(¥)=T_p(x). (4.58)
Let cos *x=8 so that X=cos@ and (4.57) gives
T,(X) =cos né.
Hence
To(x)=1 and Ty(X)=Xx
Using the trigonometric identity

cos (N—1)6 +cos (n+1)0 =2cos n6 cosH,

we obtain easily
Troa () + Ta (X) = 2XT, (X)),
which is the same as

Tn+1(x) =2xT, (X) _Tn—l(x)- (4.59)
This is the recurrence relation which can be used to successively compute

all T,(x), since we know Ty(x) and T;(x). The first seven Chebyshev
polynomials are:

*Refer to Fox and Parker [1968] for further details and other applications of
Chebyshev polynomials.
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To(x)=1

T (x) =X
T,(x)=2x%-1
Ta(x) = 4x3 - 3x (4.60)
Ta(X) = 8x* —8x% +1
To(X) =16x° — 20x> +5x

T (x) = 32x° — 48x* +18x* 1. |
The graph of the first four Chebyshev polynomials are shown in Fig. 4.1
T,()

T,(X) T5(X) 1
T,(X) < \/\"\3

-1

Figure 4.1 Chebyshev polynomials T,,(x), n=1 2, 3, 4.

It is easy to see that the coefficient of x" in 7,(x) is always 2"!. Further,
if weset y = T,(x) = cos nf, then we get

d_y_ nsin n@
dx sin@
and
d?y —n®cosn@+nsinngcotd —n?y + x(dy/dx)
dx? sin o 1—x?
so that

d?y _d
(1—x2)ﬁ—xd—i+ n2y:0, (4.61)

which is the differential equation satisfied by T, (X).
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It is also possible to express powers of x in terms of Chebyshev polynomials.
We find

1=T0(X)
X =Ty (X)
@ =T (0 +T, ()
3_1
X —4[3T1(X)+T3(X)] (4.62)
X4 = %[3T0 (%) + 4T, (x) + T4 (X)]

x> = %[10T1(x) +5T5(x) + T5 (X)]

X0 = 3i2[m0<x) +H5T,00+6T400 +Ts (]|

and so on. These expressions will be useful in the economization of power series
to be discussed later.
An important property of 7,(x) is given by

1 0, m#n

J- Ty (X) Ty (X) dx _

1 J1-x2

that is, the polynomials 7,,(x) are orthogonal with the function 1//(1— Xz). This
property is easily proved since by putting x = cos#, the above integral becomes

wl2, m=n=#0 (4.63)

T, m=n=0

4 T
J Tm(cose)Tn(cose)dé):'[ €0s mé cos n do
0 0

_ [sin(m +n)o + sin(m—n) 6 r
2(m+n) 2(m-n) |,
from which follow the values given on the right side of Eq. (4.63).

We have seen above that 7,(x) is a polynomial of degree » in x and that
the coefficient of x” in 7,,(x) is 2"!. In approximation theory, one uses monic
polynomials, i.e. Chebyshev polynomials in which the coefficient of x” is
unity. If P,(x) is a monic polynomial, then we can write

P.(x)=2""T (), (n=1). (4.64)

A remarkable property of Chebyshev polynomials is that of all monic
polynomials, P,(x), of degree n whose leading coefficient equals unity, the
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polynomial 2V"T,(x), has the smallest least upper bound for its absolute
value in the range (-1, 1). Since |T,(x)| < 1, the upper bound referred to
above is 2!"". Thus, in Chebyshev approximation, the maximum error is kept
down to a minimum. This is often referred to as minimax principle and the
polynomial in Eq. (4.64) is called the minimax polynomial. By this process
we can obtain the best lower-order approximation, called the minimax
approximation, to a given polynomial. This is illustrated in the following
example.

Example 4.13 Find the best lower-order approximation to the cubic
2x3 +3x2. Using the relations given in Eq. (4.62), we write

23 +3x% = % [T3(x) + 3T (x)] + 3x°
3 1

=3x% + ST, (X) + =T (X

2 1(X) > 3(X)

=3x° +gx+%T3(x), since T; (X) = x.

The polynomial 3x*> + (3/2) x is the required lower-order approximation
to the given cubic with a maximum error +1/2 in the range (-1, 1).

A similar application of Chebyshev series in the economization of power
series is discussed next.

4,5.2 Economization of Power Series

To describe this process, which is essentially due to Lanczos, we consider

the power series expansion of f(x) in the form
f(x)=A0+A1X+A2X2+-'-+Aan, (-1<x<)). (4.65)

Using the relations given in Eq. (4.62), we convert the above series into an
expansion in Chebyshev polynomials. We obtain

f(x) =By + BT (X) + BTy (X) +--- + B, T, (X). (4.66)

For a large number of functions, an expansion as in Eq. (4.66) above,
converges more rapidly than the power series given by Eq. (4.65). This
is known as economization of the power series and is illustrated in
Example 4.14.

Example 4.14 Economize the power series

X oxe X

SinX=X——+——-———-
6 120 5040



SEcTION 4.6: Fourier Approximation 153

Since 1/5040 =0.000198..., the truncated series, viz.,

3 X5

SiNX=X——+— i
6 120 ®

will produce a change in the fourth decimal place only. We now convert the
powers of x in Eq. (i) into Chebyshev polynomials by using the relations
given in Eq. (4.62). This gives

sinx =Ty (x) — 2—14[3T1(x) + T3 (X)] + 1201 % [10T; (x) +5T5(x) + T5(x)].

Simplifying the above, we obtain

169

sinx = T T —T, (i)
192 1(X) - 3(X) + 1920 5(X).
Since 1/1920 = 0.00052..., the truncated series, viz.,
169 5
sinx=—T, -—T.
192 1(X) 128 3(X) (iii)

will produce a change in the fourth decimal place only. Using the relations
given in Eq. (4.60), the economized series is, therefore, given by
169 383 5 3

smx~—x——(4x -3X)=—Xx——X
192 128 384 32

4.6 FOURIER APPROXIMATION

The approximation of a function by means of Fourier series, i.e., by a series
of sines and cosines, is found useful in applications involving oscillating or
vibrating systems. Let the function f(f) be a periodic function with period
T>0, i.e.,let

fa+ 1 =10, (4.67)

where 7 is the smallest value satisfying Eq. (4.67). Then the Fourier series for
f(¢) is written as

f(t)zﬁ z (a cos nt+bnsin@), (4.68)

where g, and by, are real numbers independent of # and @y =27 /T is called the
fundamental frequency. The coefficients 2r k/T, k=2, 3,... are called harmonics.
Integrating both the sides of Eq. (4.68) from 0 to 7, we obtain

j f(t)dt= aoj dt+j (a cosznnt+b s'nznntJdt:i :
T T 2
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_[T cos(m)dt = J.Tsin(@)dt =0.
0 T 0 T

2T
a, =?j0 f(t) dt. (4.69)

since

Hence

Again, multiplying both the sides of Eq. (4.68) by cos (27n#/T) and then
integrating from 0 to 7, we get

2 ¢T 2znt
a, =?j0 f(t)cos(?)dt, (4.70)
since
_[ i cos(@)sin (m) dt=0.
0 T T

Finally, multiplying both the sides of Eq. (4.68) by sin (2zn#/T) and then
integrating from O to 7, we obtain

2 ¢T . [ 27Nt
b, =?j0 f(t)sm(?)dt. (4.71)

Thus the coefficients ag, a, and b, in the representation (4.68) are evaluated.
IfT = 2m, i.e. if f(¢) is of period 27z, Eqs. (4.69)—(4.71) become:

1¢x
=— f (t)dt,
2 =—]_ @)

v

a, = %j; f (t)cos nt dt, (4.72)

b, =%j”ﬂ f (t)sin nt dt.

The Fourier series becomes further simplified if f(¢#) is an even or odd
function. If f(¢) is even, then we have

f(t)=@+ Y a,cosnt,
2 0

where (4.73)

2 ¢m
a, =;j0 f (t)cos nt dt, |

since b, = 0.
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Similarly, if f(t) is an odd function, then we have

f(t)= b,sinnt,
n=1
where (4.74)

27 .
b, =;j0 f (t)sinnt dt._

since ay = a,, = 0.
The formulae (4.68)—(4.71) can be expressed in a different way. For this,
the well-known relations are used:

int —int int _ —int
cosnt:+—e and sin nt:—_e. (4.75)
2 2i
Using Eq. (4.75), Eqgs. (4.68)—(4.71) can be expressed as
fty="Y, Ae”™T, (4.76)
p=—co
where
_1lT2 _2ipt/T _
A, _?jm f(t) e dt, p=0,12... (4.77)

These formulae directly lead us to the discussion of Fourier transforms but,
before this, we consider an illustrative example on Fourier series.

Example 4.15 Find the Fourier series of the function defined by

-1, -r<t<0
ft)=<0, t=0
1, O<t<m.

The graph of the given function is shown in Fig. 4.2

A £(t)

Figure 4.2

From the graph, it can be seen that f'(¢) is an odd function. Hence the Fourier
series for f(¢) contains only the coefficients b,,.



156 CHAPTER 4: Least Squares and Fourier Transforms

We, therefore, have

f(t)=> b,sinnt,

n=1
where

2¢m .
b, =;j0 f (t)sinnt dt

=£Jﬂsin nt dt, since f(t)=1
Y0

L5,
=—|—=cosnt
[ n 0

S
nw

=—, n=135,...

It follows that

oo

fty= Y, isinntzi(sint+lsin3t+lsin5t+---).
n-135,.. n 3 5

4.6.1 Fourier Transform

In the preceding section, we considered the Fourier series for periodic
functions. There exist, however, several functions which are not periodic.
Similarly, we come across, in nature, many phenomena (for example, lightning)
which are aperiodic. The study of such phenomena is of great importance to
the engineer. In such cases, the Fourier transform is the applicable tool and
this can be derived, from Eqgs. (4.76) and (4.77), by making 7 approach infinity
so that the function becomes aperiodic. When 7' — oo, Eq. (4.77) can be written
in the form

Fliog) =~ f(t)e™™d, (4.78)

and is called the Fourier transform of f(¢). Similarly, Eq. (4.76) is written as

1 e : i
f(t)=EJ._wF(lw0)e od @y, (4.79)

and is called the inverse Fourier transform of f(¢). Equations (4.78) and (4.79)
enable us to transform from time domain to frequency domain and from
frequency to time domain, respectively. Physically, F(iw,) represents the
frequency content of the signal. In Eq. (4.78), the function f(¢) is given in
the continuous form which is rarely the case with a signal. In fact, the function
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f(9) is available only in a discrete form. In such a case, discrete analogues
of both the integrals are used to compute the transforms. These equations,
called the Discrete Fourier Transforms, are discussed below.

4.6.2 Discrete Fourier Transform (DFT)

T
Let f(r) be specified at the points #;, i = 0, 1, 2, ..., N—1, and At = N

If f; denotes the value of f(¢) at ¢ = #;, then the discrete Fourier transform
(DFT) and the inverse discrete Fourier transform (IDFT) are defined by

N-1
Fo= f.e?™N p=01,2 ., N-1I (4.80)
k=0
and
1 N2 )
f =ﬁ2 F,.e?™e/N, k=0,1,2 .., N-1 (4.81)
p=0
Denoting
Wy =g /N, (4.82)

Equations (4.80) and (4.81) become

Fo=3 fi Wy, p=01,2 .., N-1 (4.83)
k=0
and
1 N-1
fk=N20Fp-wN-kp, k=012 .., N-1 (4.84)
p:

The above equations are, respectively, called the discrete Fourier transform
(DFT) and the inverse DFT. The coefficients | F,| form a periodic sequence

when extended outside of the range p = 0, 1, 2, ..., N—1, and we have
Foony = F, (4.85)

From Eq. (4.83), it may be seen that to compute each point of the DFT, we
have to perform N complex multiplications and (N — 1) complex additions.
Hence the N—point DFT requires N? complex multiplications and N(NV — 1)
complex additions.

Properties of Wy
(i) Symmetric property

k+E

Wy 2 =W w2
N

—2mi— i
N e =1,

=W, sinceW,\'? =e
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(i) Periodic property

W =w

=2miN/IN — =27 =1

=W, since W\ =e e

(iii) Another useful property
W,\% — e—27Ti2/N — e—47Ti/N
and
Wyz = e—2m/N/2 — e—4m/N
Hence
2
Wiyo =Wy -

A useful analysis that is important in the practical applications of Fourier
transform (such as smoothing of noisy data) is called the power spectrum
which is a plot of the power versus frequency. If () is a discrete time
signal with period N, then the power P is defined by the relation

1 N-1 , N-1 5
P=ﬁ2 IRl=2> Ifl (4.86)
k=0 k=0
Therefore, the sequence
R =|f I’ k=012..,N-1 (4.87)

is the distribution of power as a function of frequency and is called the
power density spectrum of the periodic signal. Since F, is a periodic sequence
with period W, it follows that the spectrum of F;, (k=0,1,2, ..., N—1)
is also a periodic sequence with period N.

Matrix Representations of Equations (4.83) and (4.84).
We have

N-1
F(p)= fW p=022.,N-1
k=0

= fo+ WP + EWEP +oo 4 £y WV DP p=0,1,.., N -1
Putting p = 0, 1, 2, ..., N—1, in the above equation, we obtain
Fo = fo + HWS + BWS +-o-+ iy WY

F1= fo + f1W& + fzwl\% +--- 4+ fN_]_WI\II\‘_l

Fuog = fo + fW L4+ W 2N/ w (NND
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The preceding can be expressed in the matrix form:

F 1 1 1 1 fo
At W.“l‘ W“% o W“T_l f.l (4.88)
or
[Fl=[wn][f]
In a similar way, Eq. (4.84) can be expressed as
[ 1= w JIF] (4.89)

where W,i; is the complex conjugate of W).

Example 4.16 Using matrices, find the DFT of the sequence

i = {1, 2, 3, 4}.
We have

3
Fo= > W, f, p=0,12,3.
k=0

The matrix representation is

T[T 1 1 11,
R wi we wll g
Bl(1 w2 w! wiilf
3 6 9 ([ f
Bl wd wf wilh
1 1 1 1] [ 10
1 —i -1 i |2 —2+2i
= =
1 -1 1 -13 -2
1 i -1 -i|4] |-2-2

Example 4.17 Find the inverse DFT of the sequence

F, = {1, 1—i, =1, 1 +i}.

We have
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For N = 4,
1 1 1 1
[W ]: 1 - -1 i
AR R | 1 -
1 i -1 =i
Therefore,
1 1 1 1
* 1 i -1 -
[wi ] 1 -1 1 A
1 —i -1 i
Hence
1 1 1 1][ 1 2
11 i -1 —ill1-i| 1| 4
L0 vl PR | D i I
1 —i -1 i|[1+i 0
0.5
| 10
| -05
0

Example 4.18 Find the DFT of the sequence
Hh=12,2,2,..,2}, fork=20,1,2, ..., N-1.

We have
N-1 _
Fo= Y fi e 2MPN  h-0,1,2,...,N-1
k=0

N-1
=2) e N - since f (k)= 2forall k.
k=0

_ 2[1+ e=2mIPIN | o=2i2pIN | o=27ip(N-1)/N ]

which is a geometric progression with r =g 2mipN

i.e.,
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Forp=1,2 3, ..., N-1,

For p = 0, F, is of the form % By L’Hospital’s rule, we obtain

FO =2 I|m TI[}/NZZN
p—0 1—e
Hence
2N, p=0
Fp =
0 p=123,.. N-1

4.6.3 Fast Fourier Transform (FFT)

The computation of DFT by formula (4.83) requires N* complex multiplications
and NM(N — 1) complex additions. It also requires memory to store the values

of £(¢) and W,\ij. Besides, it does not make use of the periodic and symmetric
properties of W,\lfp. As N increases, the computation of DFT demands very
high memory requirements and becomes a time—consuming process.

The Fast Fourier Transform (FFT) algorithms make use of the symmetric

and periodic properties of W,L(p and compute the DFT in an economic fashion.
It requires N log,N operations, which means that in terms of computing time
and memory requirements, the FFT is far superior to the DFT. For
N =50, for example, the FFT requires about 250 complex operations compared
to about 2500 complex operations required by the direct use of Eq. (4.83).

There exist several FFT algorithms and the basic idea behind all these
is that a DFT of length N is decimated (or split) into successive smaller
DFT’s. One class of algorithms, called radix-2 algorithms, assume that N is
a power of 2. The decimation is carried out in either the time domain or
frequency domain. Accordingly, we have two types of algorithms in this
class, namely, (a) decimation-in-time (DIT) and (b) Decimation-in-frequency
(DIF). The Cooley—Tukey algorithm belongs to the type (a), whereas, the
Sande—Tukey algorithm to the type (b). Both the algorithms require N log,
N operations and the Cooley—Tukey algorithm is discussed in the next section.

4.6.4 Cooley-Tukey Algorithm

This algorithm assumes that N is an integral power of 2, i.e., N = 2",
where m is an integer. The basic idea of this algorithm is to decompose
the N-point DFT into two N/2-point DFT’s then decompose each of the
N/2-point DFT’s into two N/4-point DFT’s and continuing this process
until we obtain N/2 two-point DFT’s. It is clear that we require m steps to
achieve this.
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To describe the algorithm, we first consider the case N = 4, i.e., m = 2.
Let £, /1, />, /3 be the sequence of values of f(¢¥). The DFT for f, is given by

3
k
F, = kzb fLW>, p=0,123. (4.90)

where
W4 — 67271‘1'/4 =_
We split the sum on the right side of Eq. (4.90) into two equal parts of

length 2, one containing the even-indexed values of f(¢) and the other, the
odd-indexed values. We, therefore, write

Fo= Y fWe+ Y fow,®
P k=0,2 k=1,3 (4.91)

Putting £ = 2r in the first sum and & = 2r + 1 in the second sum of
Eq. (4.91), we obtain

1 1
2 2r+1
Fp = 2 for Wy P+ 2 f2r+1W4( roe
r=0 r=0

1 1
= 2 f2r W2rp "'W4p 2 f2r+1W2rpv p=0,1
r=0 r=0

It may be seen that the first sum consists of f; and f; (even-indexed values)
and the second sum f; and f; (odd-indexed values). A convenient notation
is to use the superscripts e and o for the first and second sums, respectively*.
We therefore write

F,=F, +W,/F), p=01 (4.92)
where
1
Fe = Z o W, P
r=0
and p=0,1 (4.93)
1
F;? = 2 f2r+1W2rp
r=0

Since F), is periodic with period 2, we have
Foio=Fg +WSPF), p=0,1

=F, -W,F), p=0,1 (4.94)

* Numerical Recipes in FORTRAN, CUP, Indian edition [1994].
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since
W2 =-1.
From Egs. (4.92) and (4.94), we obtain
F=h+th*+h*h
Fi=fi-fi-i(fhi - (4.95)

B=f+th-(Uh+hH
B=f-Hh+i(/hi -5

Results of Example 4.16 follow easily from Eqgs. (4.95).
The computations involving Eqs. (4.92) and (4.94) of the 4-point

DIT-FFT are shown in Fig. 4.3 called flow-graph.

f, Fo 1
%_

f, 2-point DFT Fe _\,
%_

o}

f, Fo

—_—— >
nAi 0 -1

f, 2-point DFT | F? i \

—_— >

Figure 4.3 Flow-graph for DIT-FFT, N = 4.

We next consider the case N = 8. Let the sequence of values of f(7) be

Je = Vo fis oo Sas -s Sr}-
The DFT for f is

7
K
Fo= Y W™, p=012...7,
k=0
where

W8 — e—277,'|/8

Splitting the 8-point DFT into two equal parts of length 4, one containing

the even-indexed f;, and the other of the odd-indexed f;, we write

e po
Fp = Fp +W8 Fp
where

3
FS = z erWArp
r=0

and p=

3
0 _ p
l:p - z f2r+1W4
r=0

0,1,2,3

(4.96)

(4.97)



164 CHAPTER 4: Least Squares and Fourier Transforms

Using the periodic properties, we also have

Fora=Fg +WP™FS,  p=0123
4
=Fp +Wg" -Wg' Fp

=F -WSFy,  p=0,1,23 (4.98)
since
4 1
W8 =W2 :—1.
It may be seen that Fg and FS are both 4-point DFT’s. This completes the

first stage of the decimation process and the computations are shown in the
flow-graph in Fig. 4.4.

fo 5 Fo N _Wso
LY S — . Fy oA Wé
f, 4-point DFT Fs A W
fs 5 Fs A WS
f%_ Fc;) NN W84
f%— Flo \g:WBS
fs 4-point DFT F;./ WP
%— > v
f%_ F?? )\_W87

Figure 4.4 Flow-graph of first stage of 8-point DIT-FFT.

In Fig. 4.4, values of the factor W8kIO are given below.

0 1-i 2 . 3 1+i
Wy =1, ngzf, Wg = —i, Wgz-f,

i Lo (4.99)
W84=—1, W85:_T-2l_l, W86:i, W87:%

In the second stage of decimation, each of the 4-point DFT’s in Fig. 4.4 is
split into two 2-point DFT’s. We then write

3
FS = z fer4pr
r=0
1 1
= 2 faW5? +W,° 2 fassoWy"
s=0 s=0
_[ee P eo
SFE WP FR, (4.100)
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where

1
S|
Fet = 2 45 WP

s=0
) (4.101)
and = 4o WP
s=0
Similarly, we obtain
Fo =Fp° +W,F2° (4.102)
where
: [
Fo' = 2 fa142 WP
'zo p=0,1 (4.103)
[
and Fp°= 2 fa143W,"
1=0
Using the periodic properties, we also have
Froo=F +WPPE®,  p=0,L (4.104)
and
Fo.o=FR® + WSR2, p=0,L. (4.105)

This completes the second stage of decimation where each of the 4-point
transforms is broken into two 2-point transforms. The flow-graph of the
second stage is shown in Fig. 4.5.

ee
fy Fo w,
I — >
H ee
f, 2-point DFT | F¢ / W
U — >
f, Fc? ° W 42
+ N
£ 2-point DFT | F%° \\W 3
I - N — >
f, Fc? © Wf
+ N
- H oe
f, 2-point DFT  [F; /WAl
—_—>—] >
00
f3 FO S W42
+ 7
1 00
| 2-point DFT | F? \\wf
+ Cd

Figure 4.5 Second stage of the decomposition.
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From Eq. (4.101), we find
1
Fge = 2 f4sW25pa p=0,1
s=0
and
1
FSO zz f4s+2WSpv p=0,1
s=0
=f2+f6W2p, p=0,l

It follows that at the third stage of decimation, we obtain

FE%® = fo, FS° = f,, FE% = f, and FE% = fo.

Thus, for the 8-point DFT, we start with the input sequence fo, f1, /5, fo»
f1, fs» f3 and f7, and obtain the output in the natural order, i.e., Fy, F|, F>,

F3, F4, F5, F6 and F7.

The three stages of computation can be shown in a single flow-graph

F° Wl NFS

(Fig. 4.6).
First stage Second stage o Third stage 0

£ Egs. (4.101) and (4.103)F5’e (Eq. 4.97) o Fo Egs. (4.96) and (4.98)\ Wa R

0 7 7 7

; >< A Wi F //WQ 5

4 rd rd rd

fz - )

w;

f, Fo 7NN W
. e i re X XX Rw

. ><F$e wi Fi W

5 >
f FS WMF; W
>< w/

\"4

Figure 4.6 Flow-graph of an 8-point DIT-FFT.

From Fig. 4.6, the following observations can be made

(i) The input is in the bit-reversed. order, namely fy, fi, fo, 1. 1> [55 J3s

/7, as shown in Table 4.2.
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Table 4.2 Input Data in the Reversed Bits

Input position Binary digits Reversed bits Index of the
sequence

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

(i) The output for the Fourier coefficients F} is in the natural order.
(iii) Computations are carried out in terms of what is called a butterfly.
A typical butterfly is shown in Fig. 4.7.

p+1

F F,

| ><

J > -
= P

Ji J

Figure 4.7 A typical butterfly.

Example 4.19 Apply Cooley—Tukey algorithm to compute the DFT of the
sequence

fi = {1, 2, 3, 4}.
The key equations are

Fo=Fp +W,SF) and Fp,,=F5 -W/F), p=0,1 (i)
Also
Fo=fo+ fWS, p=01 i
ii
and Fp=fi+fW p=01
We, therefore, obtain
F($=f0+f2=4, Flezfo—f2=—2
Foo=f1+f3=6, Flozfl—f3=—2
Equation (i) now gives

Fo=4+6=10, F=—2+W;(-2)=—2+2i

F,=4-6=—2, F3=—2-Wj(-2)=-2-2i
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The flow-graph for this computation is shown in Fig. 4.8.

Fo=4
- ><
_ F{=-2
f,=3 1 1
FO=6 M_2=F
f=2 0 2
f,=4 >

Figure 4.8 Flow-graph for Example 4.19.

Example 4.20 Use the Cooley—Tukey algorithm to find the DFT of the
sequence

fe=11,2,3,4, 4,3, 2, 1}.
First stage: The key-equations are
Fof = fo + W) £y, Fp0 =, + W, fg
Fof = fi+W, fs, Fp°=f3+ W, ;.
From these equations, we obtain
Foee:f0+f4:5, Fleezfo—f4=—3,
F()eO=f2+f6=5, Fleozfz—fe =1,
Fooez f1+ f5:5, Floe: fl_ f5=—1,
FOOO= f3+ f7 =5, F]_OO: f3— f7 =3.
Second stage: The key-equations are
e _ree Ppeo 0 _ oe P00 _
Fo=Fp +W,/F°,  F=F +W,F°, p=0,1
Fora=Fp —W/F®,  Flo=F° -WSF°,  p=01
From these equations, we obtain
Fy =5+5=10, F°=-3-i, F; =5-5=0, F5; =-3+i,
Fy =5+5=10, F°=-1-3i, F) =0, FY =—1+3i
For the third stage, we have

I PpEo —
Fp—Fp+W8 Fp, p=0,123
and

Foea =Fp 2WF),  p=0,1,2,3
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where,

W84 =

1-i 1+i

L Wy="—, Wi=—i, Wo@=-",
8 \/E 8 8 \/E
1-i 1+i

-1 We=-"1, WS=i, W =——.
8 \/z 8 8 \/z

From these equations, we obtain

Fo=Fy +Fy =20, F, =Ff+W3F°

B Tl A0

V2
=-5.828 -i(2.414),
0, F=-3+i- 1430
=-0.172-i(0.414),
o (@-i) i
0, fo_g_i_a=0. ,_
|:5 i \/E 1 3I)
— —0.172+i(0.414)
F7=—3+i+(1\7§|)(—1+3i)

= —5.828+i(2.414).

The flow-graph for this computation is given in Fig. 4.9.

5 10 Fy=20
f0=1 | | 1 | | |
><3 :\/‘73—/' \ / F,=-5.828-i(2.414)
f,=4 - > |
DOV
=0
5
f,=3 I I S > |0
Wy
1 —3+] F,=-0.172-i(0.414)
fe=2 UNP— T T f } I
21 F, =0
f1=2 I |5 1 | I > | 4
Wy
-1 —-1-3i 4 F;=-0.172+i(0.414)
fz=3 s > | : >—} | , |
_ =0
f,=4 } 5 1
Ws
3 1+3l -1 F, =-5.828+i(2.414)
f7=1 T 0 _>1 T I
We

Figure 4.9 Flow-graph for Example 4.20.
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4.6.5 Sande-Tukey Algorithm (DIF-FFT)

This alternative approach is a member of the class of algorithms called
decimation-in-frequency techniques. It is the reverse of the Cooley—Tukey
algorithm described in the previous section. In this case, the output is in the
bit-reversed order.

To start with we take N = 4, i.e.,

T = oo 1> 12> 33

Then we have

3
Fo=> W™,  p=0123
k=0
In the method, the above sum is divided in terms of the first two and last
two points as:

Kk K
Fo= Y, fW ™+ Y fwp
k=0,1 k=2,3

1 1

=Y fW <+ Y £ WP p=0,123 (4.106)
k=0 k=0

Now,

W4p(k+2) =W4pk ,W42P =W4pk (—l)p,
since
2
W, P =W, = (-1)P.
Hence, Eq. (4.106) becomes

1
k
FDZZ[fk+(—1)p’fk+2]W4p , p=0,1,2,3 (4]07)
k=0
which consists of both even and odd components.
Let
Fp :F2r+F2r+la
where
1
For = X (i + fiep )W,/
k=0
: k
= z (fi + fe)W,
k=0
1
and F2r+1 = Z (fk - 1:k+2)VV4k(2H1) (4'108)
0

=

(fic = frao) WA Wy

[
M-

=~
Il

o

(fx - fk+2)W2kr 'W4k: r=0,1

[
M-

=~
Il

o
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We define
gy ="f +f
k=Tt T k (4.109)
and  hy = (fi = fi,2)Wy
Then
1
For = 3, gW,%, r=0,1
k=0
(4.110)

1
and Fp =Y hW,*, r=01
k=0

It can be seen that the output is in the order F, F,, F| and F3. We now
consider the case N = 8. Let

fe = Lo f1s fos oo Jao S5 Joo Jr)-
Then

7
K
Fo= Y AW, p=01...,7.
k=0

We split the above sum in terms of the first four and last four points as

Fo= Y WP+ Y fwg™

k=0,1,2,3 k=4,56,7
= Y RWH Y i W
k=0,1,2,3 k=0,1,2,3 (4111)

Now,

k k k
W8p( +4) =W8p 'W84p =(-1) pW8p

Hence Eq. (4.111) becomes

3
k
Fo =k§[fk+(_1)p fiwa W, P=0.1,...7. (4.112)

Since the right side of Eq. (4.112) consists of both even and odd Fourier
coefficients, we write

Fp = F2r + F2r+15
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where

3
For = D [y + e aWE™
k=0

[fe + fogWSX, r=0,123

DM

k=0

3
and Fp g = Z[fk - fk+4]W8k(2r+l),

k=0
3
=) [f— fk+4]W4rk 'Wsk, r=0123
k=0
For brevity, let
f, + 4=
k k 1 Tkea = Ok  k=012.3
and Wg (f, — fi0)=h
Then Eq. (4.113) becomes
3
For = Z ng4rk
e . r=0123

3
and Forp = Z hk W4rk
k=0

(4.113)

(4.114)

(4.115)

The flow-graph for the first stage of this algorithm is given in Fig. 4.10.

4-point DFT

f 4-point DFT

Figure 4.10 Flow-graph for the first stage of Sande—Tukey algorithm.

Clearly, this approach can be repeated at the second stage to split each of
the 4-point DFT’s into two 2-point transforms. Flow-graph for this computation

is shown in Fig. 4.11.
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X

X

Go—>—— =
2-point DFT \
[ P — -
9 —>—— .
2-point DFT /
g3 ———>— -
hy——>—— o
2-point DFT \
hy ——>—— .
hy—>— o
2-point DFT /
hy ———>—— &

S

We
We

Figure 4.11 Second stage for Sande—Tukey algorithm.

In the general case, the final result is obtained after log, NV stages. Figure 4.12
shows the flow-graph for the 8-point decimation in frequency FFT.

fo

> b ' > >

1 Wy

1 N | _J Wg 1 N 1 N
RS N >

0
—1\‘W8

N

\4

P

-1

[ s
y

¥ : A4
X

/—1\ \Wﬁ

Yy
/
s

T d T

N

Figure 4.12 8-point flow-graph for Sande—Tukey algorithm.

Fo
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We observe that the input is in the natural order, whereas the output for the
frequency components is in the bit-reversed order.

4.6.6 Computation of the Inverse DFT
The inverse DFT is defined by

=z

1
szi FWG®,  k=01,..,N-1
N =

Comparison with DFT shows that the factors W,\ifp have changed signs, the
input and output have interchanged, and that the final output is divided by
N. Hence the flow-graph for the calculation of DFT can also be adopted for
the computation of inverse DFT after making the above changes.
Example 4.21 Using Sande—Tukey algorithm, find the DFT of the sequence
fo= 11,23, 45
We have the key-equations

1

k

Far = D 0l
k=0

1
and  Fpry= Z W,
k=0

where
8 = fi * fur and Iy = (i = fiun) W
With £, = {1, 2, 3, 4}, we obtain
&g =loth=4 =Nt/ =6
hy=fo—Hh=-2, h=F0( -1 W41 ==2(-1) = 2i

Hence
Fo =g *+ g = 10, F2=g0+g1W21 =g —& =2
1
F= ) hW) =hg +hy =—-2+2i,
k=0
. k 1
Fs= Y hW, =hy +hW; =hy—h =-2-2i.
k=0
Hence

F =10, - 2+2i,—2,— 2 - 2i}.



SectiON 4.6: Fourier Approximation 175

The flow-graph for this computation is shown in Fig. 4.13.
=10
Jotg:= F,

ENZA=—,
D e
N

hy+h,=-2+ 2/
f,=3
/ ><h hy=-2-2i
f;=4
Figure 4.13 Flow-graph for Example 4.21.

3

Example 4.22 Using Sande—Tukey algorithm, find the DFT of the sequence

Je=11,2,3,4,4,3,2, 1}
We have

7
=Y W™, p=01..7
k=0

First stage:

3 3
For = > 0 W, Forp= DMWY, r=0123.
k=0 k=0

Ok = f + feas N =(fi - f|<+4)W8k
Then
g0:5’ g1:5! g2:53 g3:5’
hg = -3, hy =-W§, hy=WgZ, hy=3Wg.

Second stage:
Fy = Fys + Fagn, Fopy = Fypy + Fypis,

1 1
F4s=zpk WK, F4s+2=zqk WK, s=0,1,
k=0 k=0
Pk = & T &k qk = (g — gk+2)W4 , k=0,1.
1 ) 1 )
I:4t+1=2,uk'W23 : F4t+3=ZVk'WS :
k=0 k=0

U = hy + hyo, Vi = (hg — hygio) W4k
We obtain,
po =10, p1 =10, g0 =0, ¢; = 0;

u0:—3+W82:—3—i, u1=h1+h3=—2\/§—i\/§,
V0:_3+ia vl:2\/§_i\/§'
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Finally,
Fo=po+tp1 =20, Fy=po—p1 =0,
Fy=q+q1=0, Fe=4q0o—q1 =0,
Fi=-3—-i-2J2 —iJ2 =-5828 — i(2.414)
Fs=-3—-i+2J2 +iJ2 =-0.172 + i(0.414)
Fy =vy +v; =-0.172 — i(0.414)
F; = vy — vy = =5.828 + i(2.414)

EXERCISES
4.1 Explain the method of least squares to fit a straight line of the form Y

4.2

4.3

4.4

4.5

= ay + a;x to the data (x;, y,):

1 2 3 4 5 6
y 24 31 35 42 50 6.0

Find the values of a, and a; so that ¥ = a5 + a;x fits the data given
in the table:

0 1 2 3 4
10 29 48 6.7 86

If the straight line ¥ = a; + a;x is the best fit to the set of data points
(xb yl)a (X2, yZ)a cees (xna yn)a show that
X y 1
ZXi Zyl n|, i=1,2,...,n.
inz ZXi Yi ZXi

Use the method of least squares to fit the straight line ¥ = a + bx to
the data:

Find the values of @, b, ¢ so that ¥ = a + bx + ¢x” is the best fit to
the data:
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4.6 Fit a least squares parabola ¥ = a + bx + cx” to the data:

x 0 1 2 3 4 5 6
y 71 89 67 43 31 18 9

4.7 Determine the normal equations if the cubic polynomial ¥ = gy + a;x +
ax’ + ay’ is fitted to the data (x;, y,), i = 1, 2, ..., m.

4.8 Determine the constants a and b, by the method of least squares, such
that the curve y = ae®™ fits the data:

X 2 4 6 8 10
Y 4077 11.084 30.128 81.897 222.62

4.9 Fit a function of the form y = ax’ for the following data:

X 61 26 7 2.6
350 400 500 600

a
4.10 Using the method of least squares, fit a curve of the form Y= — + bx
to the following data (x, y): X

(1, 5.43), (2, 6.28), (4, 10.32), (6, 14.86), (8, 19.51).

4.11 Fit a function of the form y = Aiellx + AQeAZX to the data given by

x 10 11 12 13 14 15 16 17 18
y 154 167 181 197 215 235 258 2.83 3.11

4.12 Write an algorithm to fit a linear least squares approximation to the data
Op v, i=1,2, ..., N.

4.13 If the functions fi(x) = 1, fo(x) = x are orthogonal on the interval
[1, 1], find the values of ¢ and b so that the function 3 = 1+ ax + bx” is
orthogonal to both f; and /> on [-1, 1].

4.14 Define an orthogonal set of functions and show that the set

f(x) = sin @ n=1,2 ..

is orthogonal on [0, /].

4.15 Explain the difference between Fourier series and Fourier transform.
Find the Fourier series for the function defined by

X, —=1<x<0
f(x)=
X+ 2, O0<x<1
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4.16 Define discrete Fourier transform (DFT) and inverse discrete Fourier
transform (IDFT).

Find the DFT of each of the following sequences using matrix method

(Problems 4.17-4.20):

4.17 {0, 1, 0, —1}

4.18 {1, %, 0, —%}

419 {1, 2,3, 1}
420 {2, 2, 4, 3}

Using the definition
N-1 _
Fo= Y fe?™®/N p=012 . N-1,
k=0

find the DFT of each of the following sequences (Problems 4.21—4.23):

421 {1, 2, 3, 4}

422 {1, 1, ..., 1}, N values.

4.23 {1, -1, 2, -2, 3, -3}

4.24 Write the computational steps for computing the DFT of a sequence
f(t) by the above formula and test it on Problem (4.21).

4.25 List any two properties of DFT and find the IDFT of the sequence {0,
1, 1, 0}.

4.26 State the key equations in the Cooley—Tukey algorithm for computing
the DFT of the sequence f,, p = 0, 1, 2, 3. Draw the flow-graph for
its computation.

Use the Cooley—Tukey algorithum to compute the DFT of each of the

following sequences (Problems 4.27-4.30):

427 {1, 1, 0, 0}

4.28 {1, 0, 1, 0}

429 {1, -1, 1, -1}

430 {1, 2, 1, 2}

4.31 Draw a flow-chart to implement the bit reversal procedure for the

Cooley—Tukey algorithm.

4.32 Write down the key equations in the Cooley—Tukey algorithm for
computing the 8-point DFT of the sequence f,, p =0, 1, 2, ..., 7, and
draw the flow-graph for its computation.
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Use the Cooley—Tukey algorithm to compute the DFT of each of the following
sequences (Problems 4.33-4.35):

433 {1, -1, 1, =1, 1, =1, 1, -1}
434 {1, 1,1, 1,1, 1,1, 1}
435 {1, 2,3, 4,5, 6,7, 8

4.36 Explain the difference between Cooley—Tukey and Sande—Tukey algorithms
for an 8-point computation of the DFT of a sequence. Write down the
key equations of Sande-Tukey algorithm for computing the DFT of the
sequence f;, £ =0, 1, 2, ..., 7.

Use Sande-Tukey algorithm to compute the DFT of each of the following

sequences (Problems 4.37-4.40):

437 {1, 1, 0, 0}

4.38 {1, 0, 1, 0}

439 {1, 2, 3, 4,5,6,7, 8}

4.40 {0, 1,0, 1,0, 1, 0, 1}

4.41 Show that T,(x) = cos (n cos 'x) is a polynomial in x of degree n.
4.42 Show that the coefficient of x” in T,(x) is 2"\

4.43 Economize the series given by
_ 3,5 7
sinhx=x+—+—+—-+---
6 120 5040

on the interval [-1, 1], allowing for a tolerance of 0.0005.

Answers to Exercises
41 a, = 0503, a, = 2.021.
42 a; =20, gy = 0.8.
44 a=2, b=3.
45 a=1,b=-3 and ¢ = 2.

4.6 a=8193, b =-828, ¢c=-0.78
48 a=1.5b=0.5 =g
49 a =702, b =-0.17.

410 a = 3.02, b = 2.39.
411 A = 0.99, 4, = —0.96, A4, = 0.499, A, = 0.491.
4.13 1 — 3x°

2
4154 =2, 4, =0, b= —[1 - 2¢1Y]
4
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4.17 [0, — 2i, 0, 2i]

418 [1, 1 —iy2, 1, 1 +iy2]

419 [7, 2 —i 1, 2 + i]

420 [11, 2 +i 1, -2 — ]

421 Fy =10, F; = 2 + 2i, F, = 2, Fy=-2—2i.

N, p=0
4.22 sz
0, p=12.. N-1

[ J3 33, 33, J3
4.23 Tl,

-15——i, -15- 2, -15+—i -15+—i
2 2 2

4.24 [10, -2 + 2i, =2, -2 — 2i]

4.25 f, = [0.5, =0.25 + 0.25i, 0, —-0.25 — 0.25{]

426 Fy=f,+f,, R°="f,-f,, R’ =f+f; R°="1—f;

427 Fy =2, Fi=1—-14, F,=0,F3;=1+1i

4.28 £, = {1, 0, 1, 0}, F,=1{2,0,2, 0}

429 £, = {1, -1, 1, -1}, F, =10, 0, 4, 0}

430 £, = {1, 2, 1, 2}, F, = {6, 0, 0, 0}

4.33 Final stage: Fy =0, F, =0, F, =0, F3 =0; Fy =8, F5 =0,
Fs¢ =0, F;, =0.

434 fr={1, 1, 1, 1,1, 1, 1, 1}, F,=1{8,0,0,0,0,0, 0, 0}.

4.35 36, —4 + i(9.66), —4 + 4i, —4 + i(1.66), 4, —4 — i(1.66), —4 — 4i, —

— i(9.66).
437 F, = {2, 1 -0, 0, 1 + i}

438 Fy =2, F, =2, F, =0, F; = 0.

4.39 F, = {36, -4 + 9.66i, -4 + 4i, -4 + 1.66i, -4, -4 — 1.66i,

—4 — 4i, -4 — 9.66i}
4.40 F, = {4, 0, 0, 0, -4, 0, 0, 0}
4.41 Hint: Use mathematical induction
4.42 T,(x) = 2"y, Th(x) = 27'¥2 - 1,
T5(x) = 23713 22x, Ty(x) = 2% 'x* - 8x% + 1.

443 sinh x = oy 4 Ly
A SIRX T g " T g



Chapter

Spline Functions

5.1 INTRODUCTION

In Chapter 3, we have discussed the methods of finding an nth order polynomial
passing through (n + 1) given data points. In certain cases, these polynomials
tend to give erroneous results due to round-off and other errors. Further, it
was found that a low-order polynomial approximation in each subinterval
provides a better approximation to the tabulated function than fitting a single
high-order polynomial to the entire interval. Such an interpolation is called
piecewise polynomial interpolation and the spline functions are such piecewise
connecting polynomials.

The name spline has been adopted following the draftsman’s device of
using a thin flexible strip (called a spline) to draw a smooth curve through
given points. The points at which two connecting splines meet are called
knots. The connecting polynomials could be of any degree and, therefore, we
have different types of splines: linear, quadratic, cubic, quintic, etc. Of these,
the cubic spline (spline of degree three, or order four) has been found to be
the most popular in engineering applications. Before discussing about cubic
splines, we shall start with linear and quadratic splines since such a discussion
will eventually justify the development of cubic splines. In Section 5.2, we
derive the governing equations of a cubic spline and consider different end
conditions. Errors in the cubic spline and cubic spline derivatives are important
from the stand point of applications. These derivatives will be discussed in
Section 5.2. Surface fitting cubic splines will be considered in Section 5.3,
while cubic B-splines and their computation will be introduced in Section 5.4.

181
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Applications of cubic splines to numerical differentiation, integration,
numerical solution of differential equations, etc. will be considered in subsequent
chapters.

5.1.1 Linear Splines

Let the given data points be
(i V), i=0,1,2,...,n, S.D
where
a=x)<x1<xp<--<x,=b
and let
hy = x; — xi_1, i=1,2, .., n (5.2)
Further, let s,(x) be the spline of degree one defined in the interval [x, , x;].

Obviously, s;(x) represents a straight line joining the points (x;;, ;1) and
(x;, ¥;). Hence, we write

5{(x) = yio + mx — x;q), (5.3)
where
m, _YiTYia, (5.4)
Xi — Xj—1

Setting i = 1, 2, ..., n successively in Eq. (5.3), we obtain different splines
of degree one valid in the subintervals 1 to n, respectively. It is easily seen
that s,(x) is continuous at both the end points.

Example 5.1 Given the set of data points (1, —8) (2, —1) and (3,18) satisfying
the function y = f'(x), find the linear splines satisfying the given data. Determine
the approximate values of »(2.5) and y’(2.0).

Let the given points be A(1, — 8), B(2, —1) and C(3, 18). Equation of
AB is

si(x) =8+ (x—-17="7x—-15,
and equation of BC is
SH(x) =—-1 + (x —2)19 = 19x — 39,

Since x = 2.5 belongs to the interval [2, 3], we have

V(2.5) = 55(2.5) = 19(2.5) — 39 = 8.5,
and
V'(2.0) = my = 19.

It is easy to check that the splines s;(x) are continuous in [1, 3] but their
slopes are discontinuous. This is clearly a drawback of linear splines and
therefore we next discuss quadratic splines which assume the continuity of
the slopes in addition to that of the function.
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5.1.2 Quadratic Splines

With reference to the data points given in Eq. (5.1), let s,(x) be the quadratic
spline approximating the function y = f(x) in the interval [x, ;, x,], where
X; — x,.1 = h;. Let s(x) and sj(x) be continuous in [x,, x,] and let

s{x) = yi i=0,12, .., n (5.5)

Since s;(x) is a quadratic in [x; ;, x;], it follows that sj(x) is a linear function
and therefore we write

, 1
si(x) = E[(Xi = X)Mi_y + (X=X )m; ], (5.6)
1
where
m; = s (x;). 5.7
Integrating Eq. (5.6) with respect to X, we obtain
1] (x— x)2 (X=X_ )2
5 (x) = h_,[_IT Mg +T'1mi +G, (5.8)
where ¢; are constants to be determined. Putting x = x, 4 in Eq. (5.8), we get
2
Ci=Y .1 il m_ =Yy ™
i =Yiaat Mg = Yjq + Mg
1 | hl 2 1 | 2 1
Hence Eq. (5.8) becomes:
1| (% —x)? (X=X _4)? h
Si(x):h_i[_ : 7 M1t 2' Lm; |+ ying +Elmi—1- (5.9)

In Eq. (5.9), the m; are still unknown. To determine the m;, we use the
condition of continuity of the function since the first derivatives are already
continuous. For the continuity of the function s;(x) atx = x;, we must have

$i(x) = s (x;F) (5.10)
From Eq. (5.9), we obtain

h; h;
s (%)= Elmi + Y+ Elmi—l

=%(mi—1+mi)+yi—l- G.11)

Further,

1| (X —x?2 (X —x:)? hy
= 1 _\idl m; + 7 m i+1

Si 1(X) = i + Vi +——m;,
|+1() hi+1 2 2 i+1 Yi 2 i
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and therefore
hi+1 hi+1
Si+1(Xi+)=—7mi+yi R =Y (5.12)
Equality of Egs. (5.11) and (5.12) produces the recurrence relation

mi_1+mi=%(yi—yi_1), i=12,...,n (5.13)
1

for the spline first derivatives m;. Equations (5.13) constitute » equations in
(n + 1) unknowns, viz, mg,, m,, ..., m,. Hence, we require one more condition
to determine the m; uniquely. There are several ways of choosing this condition.
One natural way is to choose s;”(x;) = 0, since the mechanical spline straightens
out in the end intervals. Such a spline is called a natural spline. Differentiating
Eq. (5.9) twice with respect to x, we obtain

s (x) = h—l_(—mi—l +m;),
or |

(%) :%(ml —mp).

Hence, we have the additional condition as

my = mj. (5.14)
Therefore, Eqgs. (5.13) and (5.14) can be solved for m,;, which when substituted
in Eq. (5.9) gives the required quadratic spline.

Example 5.2 Determine the quadratic splines satisfying the data given in
Example 5.1. Find also approximate values of y (2.5) and »’(2.0).

We have n =2 and # = 1. Equation (5.13) gives
my + my = 14 and my + my = 38.

Since mqy = m;, we obtain my = m; = 7, and m, = 31.
Hence, Eq. (5.9) gives:

2 2
5,(x) = - 2 ;X) (7)+ & ‘2"1) (31)—1+%

_ @-x° 3L, 2.5
= 5 (7)+2(x 2) +2

=12x% —41x + 33,

which is the spline in the interval [2, 3].
Hence,
¥(2.5) = 55(2.5) = 5.5 and ’(2.0) = 7.0.
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The quadratic spline s;(x) in the interval [1, 2] can be determined in a similar
way. A straightforward way of deriving the quadratic splines is as follows:
Since s/(x) is a quadratic in (x,_;, x;), we can write

s(x) = a; + bx + ¢, (5.15)

where a,, b; and ¢, are constants to be determined. Clearly, there are 3 constants
and therefore we require 37 conditions to determine them. These conditions
are obtained by using the properties of the quadratic spline. Firstly, we use
the condition that the spline passes through the interior points. This means

s{x) =a; + bx; + cx?  i=1,2,..,n—1. (5.16)
Next, s,(x) is continuous at x = x;. This condition requires
$ix) = s (xih). (5.17)

Hence, we must have
2 2
& +0X +GXT = H b X HCaX, =12, .. n—1. (518)
Again, s”(x) is continuous atx = x;. This gives
bi + 26’,~xi = bi+l + 2Ci+1xl', i= 1, 2, ey N — 1. (5]9)

We thus have 3n—3 conditions and we require three more conditions. Since the
spline passes through the end points also, we must have

Yo =8 +byxg +CX (5.20)
and
Yo =8, +by Xy +C,X 2. (5.21)
Finally, for the natural spline, we have
S,/l(xO) = 0, (522)
and this gives
c;=0. (5.23)

We have, thus, a completed system of 3n equations in 3z unknowns.
Although this system can certainly be solved, it is obviously more expensive
and, therefore, this method is less preferred to the previous one.

The discontinuity in the second derivatives is an obvious disadvantage of
the quadratic splines and this drawback is removed in the cubic splines
discussed below.

5.2 CUBIC SPLINES

We consider the same set of data points, viz., the data defined in Eq. (5.1),
and let s;(x) be the cubic spline defined in the interval [x,_;, x;]. The conditions
for the natural cubic spline are
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(i) s,(x) is atmost a cubic in each subinterval [x; |, x;], i=1, 2,...,n,
() six)=y,i=0,1,2, ..., n,
(iii) sj(x),s{(x) and s{(x) are continuous in [x,, x,], and

(iv)  si(%p) =s(x,) =0.

To derive the governing equations of the cubic spline, we observe that the
spline second derivatives must be linear. Hence, we have in [x._;, x;]:

77, 1
s{(x) :E[(Xi =M +(x=%_)M;], (5.24)
1
where h;=x;—x; ; and s{(x)=M,; for alli. Obviously, the spline second
derivatives are continuous. Integrating Eq. (5.24) twice with respect to x, we
get

Si(X):%

[(Xi - x)°

3
5 Mi—l"'%l\ﬂi]*‘ci(xi =X)+di(Xx=Xi_g), (5.25)

where ¢; and d; are constants to be determined.
Using conditions s;(x, ;) = y,.; and s{x;) = y;, we immediately obtain

1 2 1( h
1 1

Substituting for ¢; and d; in Eq. (5.25), we obtain

i ; o ,
Si(X)=% @Mi—l"'wwli +[yi—1_hl?Mi—1](Xi -X)

h2
+| Y _IFMi ](X_xi—l)]- (5-27)

In Eq. (5.27), the spline second derivatives, M, are still not known. To
determine them, we use the condition of continuity of s”;,(x). From Eq. (5.27),
we obtain by differentiation:

L 30x=%4)°

, 1
Si (X)=E M M;

6

f&m—mz
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Setting x = x; in the above, we obtain the left-hand derivative

, h 1 h? 1 h?
Si (Xi_):EIMi _H[yi—l_l?Mi—l ]+E[yi —'?Mi ]
1 1

1 h h ,
zh_i(yi_yi—1)+E|Mi_1+€|Mi (i=12...n). (5.28)

To obtain the right-hand derivative, we need first to write down the equation
of the cubic spline in the subinterval (x,, x;;1). We do this by setting i=i+1
in Eq. (5.27)

2
1| (X —x)° X—%)° hi
Si+1(X)=h— (I+16 ) Mi+( 6I) Miy +| Vi =M |(Xiy1 = X)
i+1
2
hi+1
+ Yi+1_TMi+1 (x=x) |, (5.29)

where %, =x;,1—x;. Differentiating Eq. (5.29) and setting x = x,, we obtain the
right-hand derivative at x =x;

, 1 h; h; .
s,'+1(xi+)=h—(yi+1—yi)—%1Mi —'?“Mi+1 (i=0,1,...,n=1). (5.30)
i+1

Equality of Eqgs. (5.28) and (5.30) produces the recurrence relation

hy 1 hi
g'Mi—lJFg(hi +hiy) M +%1Mi+1
_Yin=Yi _YiTVYia (i=12,...,n=1). (5.31)
hig h

For equal intervals, we have h;=h; . ; =h and Eq. (5.31) simplifies to
6 .
Mi—l +4Mi + Mi+1 :h_z(yi+1 —2yi + yi—l)’ (I =12 ...,n —1) (532)

The system of Eq. (5.31) has some special significance. If M, and M,, are
known, then the system can be written as
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2(hy +hy)M1 +h, M, =6 yzh_ L r_llyo j— My
7

h,M; + 2(h, +hg)M 5 + hsM5 =6 y3h—Y2 _Y2h—Y1]
3 2

(5.33)

hsM + 2(hg + hy )M + M, =6 y“h_y3 - y3h_y2]
4 3

hn—lM n-27t 2(hn—l + hn M n-1= 6 Yo~ Yot - Y1~ Yn-z B hn Mp.
hn hn—l ]

Equations (5.31) or (5.32) constitute a system of (n— 1) equations and with
the two conditions in (iv) for the natural spline, we have a complete system
which can be solved for the A,. Systems of the form (5.33) are called tridiagonal
systems and in Chapter 7, we shall describe an efficient and accurate method
for solving them. When the M; are known, Eq. (5.27) then gives the required
cubic spline in the subinterval [x; |, x;]. Also, the y{ can be obtained from
Eqgs. (5.28) and (5.30).

Example 5.3 Determine the cubic splines satisfying the data of Example 5.1.
Find also the approximate values of y (2.5) and y’(2.0).

We have n =2 and M, = M, = 0. Hence, the recurrence relation (5.32) gives
M, = 18. If 51(x) and s,(x) are, respectively, the cubic splines in the intervals
1 £x<2and2 < x <3, we obtain

si0)=3x—-1P° -82-x)—4(x—-1)
and
5,(x) = 33 — x)* + 22x — 48.
We, therefore, have

y(2.5) = 5,(2.5) =§+ 7=17.375

and
y’(2.0) = 55 (2.0) =13.0.

It should be noted that the tabulated function is y = x> — 9 and hence the exact
values of 3(2.5) and )’(2.0) are, respectively, 6.625 and 12.0. The convergence
to the actual values, with the increase in the order of the spline, is clearly seen
from Examples 5.1, 5.2 and 5.3.

In many applications, it will be convenient to work with the spline first
derivatives. Denoting s{(x)=m; and taking suitable combinations of
Eqs. (5.28) and (5.30), we can derive the following relationship for the m; :
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1 1 1 1
—Mi_ +2| —+—— My +——m; 4
hy i iy his1

3 3
=— (Vi — yi)+h_2(yi = Yi1), i=12,..,n-1. (534

i+1 i

The cubic spline in (x,_;, x;) in terms of the m; is then given by

5 <x)=h%{mi_1(xi — %) (X=X 1)~ My (X %_)2 (% — )}

+ h_1_3{yi—1(xi —X)2[2(x= %)+ 1+ i (X=X *[206 =) + R} (539)

The above result can easily be derived using the Hermite interpolation formula
given in Section 3.9.3.
For equally spaced knots, Eq. (5.34) assume the simpler form:

3 .
Mj_g +4m; + M,y = F(ym = Vi), i=12..n-1  (536)

Equations (5.32) or (5.36) constitute (n—1) equations in (z+1) unknowns,

viz., mgy, my, ..., m,. Clearly, two further relations are required in order that

a unique interpolating spline may be found. These conditions are called the

end conditions and are discussed in detail in Kershaw [1971, 1972].
Specifically, we mention three types of end conditions:

(i) Natural cubic spline: My = M, = 0
(if) Dy spline: s/(xo) = ¥/ (¥o)s 5/(x,) = (%),
(i) Dy spline: s;"(xo) = My = y"(xo) and s;"(x,) = M, = y"(x,).
The following example demonstrates the improvement in accuracy of the
cubic spline interpolates with successive interval halving.

Example 5.4 Given the points (0, 0), (7/2,1) and (r, 0) satisfying the function
y=sinx (0 £ x £ 7), determine the value of y (7/6) using the cubic spline
approximation.

We have n =2 and & = n/2. The recurrence relation for the spline second
derivatives gives:

MO +4M1+M2 =6L24(0—2+0)=—4—§
T /A

For the natural spline, we have M, = M, = 0. Hence, we have

»

7_[2

M1=
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In the interval [0, /2], the natural cubic spline is given by

=2 28 3
1 T 77;2 2 .

o(Z)es(E ) 2(-2 4
6 Sl6 z{ 108 4

We next take # = 7/4, i.e., the data points are (0, 0), (7/4, 1/\/5),(7#2,1),
(37/4,1/\/2) and (x, 0). In this case, the recurrence relation gives:

Hence

=0.4815.

AM, + M, = —4.029
M1+4M2 + M3 =-5.699
M, +4M3 =-4.029

since M, = M, = 0. Solving Eq. (i), we obtain

M, = —0.7440, M; = —0.7440.

In 0 £ x £ w/4, the cubic spline is given by

M, = —1.053,

5(X) = 4 [-0.1240(x%) + 0.7836(x)].
T

(o) (o)

This result shows that the cubic spline has produced a better approximation
when the interval is halved. We finally consider values of y =sinx in intervals
of 10° from x = 0 to wand then interpolate for x = 5°, 15°, 25°, 35° and
45°, using the natural cubic spline. The cubic spline values together with the
exact values are given in the following table:

Hence,

y=sinx

Exact values

x (in degrees)

Cubic spline values

5
15
25
35
45

0.087155743
0.258819045
0.422618262
0.573576436
0.707106781

0.087155530
0.258818415
0.422617233
0.573575040
0.707105059
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Example 5.5 Given the points (1, 6), (2, 18), and (3, 42), satisfying the
function y = x> + 5x, determine the cubic spline in the interval [1, 2] using
the end conditions (1) = 8 and »’(3) = 32.

We have 4 = 1 and n = 2. The recurrence relation is

my + 4my + my = 3(y2 — yo)
= 40 + 4m; = 3(42 - 6) = 108
= m = 17.
In [1, 2], the cubic spline is given by
s1(x) = mo(x; — x)2 (x = x0) — my(x — xo)2 (x1 —x)
+ yolxr = x) [2(x = x0) + 1] + yi(x — x0)*[2(x; — x) + 1]
Substituting the values of x;, y; and m;, we obtain
si(x) = x>+ 5x,

which is the tabulated function itself. In this case, the spline interpolation is
exact because the two end conditions prescribed are exact and the tabulated
function is a cubic.

5.2.1 Minimizing Property of Cubic Splines

We prove this property for the natural cubic spline. Let s(x) be the natural
cubic spline interpolating the set of data points (x;, ¥,), i =0, 1, 2, ..., n,
where it is assumed that a = x5 < x; < x, < -+ <x, = b. Since s(x) is the
natural cubic spline, we have s(x;) = y; for all i and also s”(xy) = s”(x,,) = 0.

Let z(x) be a function such that z(x;) = y; for all i, and z(x), z'(x), z”(x)
are continuous in [a, b]. Then the integral defined by

| = j:[z”(x)]zdx (5.37)

will be minimum if and only if z(x) = s(x). This means that s(x) is the
smoothest function interpolating to the set of data points defined above, since
the second derivative is a good approximation to the curvature of a curve. We
write

J:[z”(x)]z dx = j :[s”(x) +27(x) — 87 (X)]2dx

b 9 b
- j 7007 +2 j L0127 00 = s"(0]de

+ j :[z”(x) —s”(X)]dx. (5.38)
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Now,

= X+l ” ”
[ 757001709 -5 001k = Y. | 57001270 - 5" (1
i=0 ™

n-1
= {s" () ~s (0T}

i=0

n-1 %
-y J’ S (0[Z(X) - $ (9] dx. (5.39)
i=0

X

The first term in Eq. (5.39) simplifies to
8" (%n)[2' (%) = 8"(%n )] = 8"(%0)[Z'(X0) = 5" (X0)].

Since s”(x,)=5s"(Xg) =0, the above expression vanishes. Similarly, the second

1444

term in Eq. (5.39) is zero since s”’(x) has a constant value in each interval
and s(x;) = z(x;) = y;, for all i. Hence, Eq. (5.38) becomes

[ oorax=[ s P a0 - 00Pd (540

or
b ” 2 b ” 2
J 0P dez [ 5700 de (5.41)
It follows that the integral
b
| =j [2” ()] dx
a
will be minimum if and only if
a ” ’” 2
J, 200 -s"Pdx=0, (5.42)

which means that z”(x) = s”(x). Hence z(x) — s(x) is a polynomial in x of
degree at most three in [a, b]. But the difference z(x) — s(x) vanishes at the
pointsi = 0, 1, 2, ..., n. It, therefore, follows that

z(xX)=s(x), a<x<h.

5.2.2 Error in the Cubic Spline and Its Derivatives

The errors in the natural and D, splines are of the order of 4> and A*
respectively. The errors in the derivatives are given by

’ 4 l
S'0) =¥ — 755w’ + Oh°) (5.43)
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mow N urpey . L 2iveo v, LA vigy 6
704) = ¥ 06) ~ Py ) + =y 0) + O®)  (5.44)
S[706 9+ 57049 = Y00 + R 0) 0 (5.45)

$”(% +) — "% =) = hy" (%) — %Ohfi yi(x)+0(h")  (5.46)

From the above equations, we obtain

y'(%)=s"(x)+0(h") (5.47)
Y (X)) =5"(x) + éhzy”m )+0(h*) (5.48)
Yy (%)= %[s”’(xi +) + 57 (X —)] + O(hz) (5.49)
yV(x)= %[s”’(xi +) =™ (x-)] + O(h*) (5.50)

These relations can be established* by using the spline recurrence relations
together with the operators £ and D.

5.3 SURFACE FITTING BY CUBIC SPLINES

The cubic splines derived in the previous section can be extended to functions
of two or more variables. We derive the formulae for functions of two variables,
the extension to higher dimensions being straightforward.** Let L,(x) be natural
cubic splines which satisfy

H0) =05 =1 Jz'} (5.51)
=0, J#L
These splines bear the same relation to the general cubic spline as the Lagrange
polynomials bear to the Lagrange interpolation polynomial. Due
to this reason, we call them cardinal splines. Let s(x) be the natural
cubic spline, in x;_; < x < x;, corresponding to the set of data points (x;, ),
j=0,1,2, ..., n Then, Li(x) are the cardinal splines corresponding to the
set of data points (x;, J; ;), where §; ; is the Kronecker delta defined above.

*See, Curtis and Powell [1967].
**See, Ichida and Kiyono [1974].
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The cardinal splines are given by

1| (-%)° (x=xj0)° h?
Li(x)zﬁ[ J_3| Mi,j—1+—3: Mi,j+(xj_x) 6i,j—1_aMi,j—1

2
+(X—Xj_1) [5i, i _%Mi, i }:|, (552)

where M; ; = L (x;). It is easy to verify that Eq. (5.52) satisfies conditions
(5.51). As in the case of general splines, the condition of continuity of the
first derivatives leads to the recurrence relation

6
Mi, j—l+4Mi, i + Mi, j+1 :h_2(6i‘ j—l_26i, i +5i, j+l)‘ (553)

In terms of the cardinal splines L,(x), the general spline s(x), in the interval
X1 < x < x;, can be written as

s =2, L) Y. (5.54)

i=0

where L,(x) are given by Eq. (5.52).
Extension to functions of two variables is now quite straightforward. Let
the values
z(x;, Vi), i=0,1,2,...,n

of a function of two variables, z = 7(x, y), be given at the »* data points
arranged at the intersections of a rectangular mesh. The interpolation problem
now is to determine the value of z at an arbitrary point in the rectangular
region. The cubic spline formula is given by

s(X, y)=z Z L) L)z, (5.55)

n
i=0 j=0

where L;(x) and L(y) are given by formulae of the type given in Eq. (5.52). The
spline second derivatives, Mj;, are calculated from the recurrence relation
(5.53) by imposing the natural end conditions, M;, = M,, = 0.

The following examples demonstrate the use of the formulae derived

above.

Example 5.6 Using the data of Example 5.1, viz., (1,-8), (2,—1) and
(3, 18), find the cardinal splines L(x) and hence determine the general natural
cubic spline in the interval 1 < x < 2.

For the interval 1 < x <2 we have j = 1. With A= 1,andj = 1, Eq. (5.52)
gives:
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2-x)° (x-1)°

Li(x)=

Mi,0+

Mi,1+(2_x)(5i,0_%Mi,O)

+(x=1) (&,1‘%%,1)

_(x=1°

Mi,1+(2_x)5i,0+(X_1)(5i,1_%Mi,1)’ (i)

since M;, = 0 for the natural cubic spline.
Similarly, the recurrence relation (5.53), becomes:

4M;y = 6(06;0 — 26,1 + 6;2),
from which we obtain

3 3
MO,].:EI M1V1=—3, MZJ:E'

Hence, (i) gives:

GRS R TRPSRNPRPYY (1 I SR I L
La(x) = (2) (2—x)+(x 1)( 4J—4(x 1 4x+4, (i)

6
Ll(x)z—%(x—1)3+§(x—1), (iii)
Lo(¥) =3 (=1 = 2 (x-1) (iv)

Hence, in 1 < x < 2, the general natural cubic spline is given by

2

s0)=, yiLi(x)
i=0

5 9

A2 2 ey B = L -1 | (-
—[4(x 1 4x+4]( 8)+[2(x 1 2(x 1) ]( 1)

1 s 1
+[Z(x—1) —Z(x—l)](18)

=3(x-1)% +4x-12,

which is the same as that obtained in Example 5.3. The next example
demonstrates the use of cardinal splines in surface fitting.

Example 5.7 The function z = f(x, y) satisfies the following data for 0 < x, y
< 2. Determine the natural cubic spline s(x, y) which approximates the above
data and hence find the approximate value of z(0.5, 0.5).
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X
y 0 1 2
o 1 2 9
1 2 3 10
2 9 10 17

For determining z(0.5, 0.5), we need to obtain the natural cubic spline
for the interval 0 < x, y < 1.
With 2 =1, j = 1, we have

1-x)° x3 1 1
Li(X)=%Mi,o +EMi,1+(1_X)(6i,O_gMi,O}' X(5i,1—gMi,1J
x3 1
:?Mi,1+(1_x)6i,o+X(5i,1_€Mi,1)a (i)

since M; = 0 for the natural cubic spline. Also,

3
M 1 =E(5i,o —26i 1+ i 7).

Hence, we obtain

3 3
Mgq1=—, M, =-3, M, =—.
01 2 11 2,1 2
From Eq. (i), we then obtain
3
X~ 5X
X)=——-——+1
Lo (x) YR
13 3

Li(X)=—=Xx"+=X,
1(9=-3%+2

_13 1
L2(x)—zx 4x.
Hence, in 0<%, y<1, we have
2 2
sy =2, Y, LOILY) 7, |
i=0 j=0
= Lo(X) [Lo(Y) 2,0 + Li(Y)Z0,1 + L2 (V) 2o, 2]
+L (%) [Lo(V)zg,0 + La(Y)z,1 + Lo ()7, 2]

+Lo (%) [Lo (V)220 + Li(Y) 2,1 + Lo (Y) 2 2]
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Since x = y = 0.5, the preceding equation gives:

z(0.5, 0.5)=s(0.5, 0.5)

B (13 ><1+Ex2—3x9)+E(Ex2+Ex3—%xm)

3203277 16 32 16| 32 16
—i E><9+E><10—i><17
321327 16 32

=0.875.

The tabulated function is z = x> + »° + 1 and therefore the exact value of z
(0.5, 0.5) is 1.25, which means that the above interpolated value has an error
of 30%.

5.4 CUBIC B-SPLINES

The cubic spline formulae derived in the preceding section are global in
nature, which means that they do not permit any local changes in the given
data. Hence, efforts were made to derive spline formulae which are ‘nonglobal’.
We require basis functions which allow the degree of the resulting curve to
be changed without any change in the data. The B-splines are such basis
Junctions which have important applications in computer graphics. The B-splines
can be of any degree but those of second or third degree are usually found
to be sufficient.

The theory of B-splines was first suggested by Schoenberg [1946], but
recurrence formulae for their computation were discovered independently by
Cox [1972] and de Boor [1972].

A B-spline of order n (or degree n — 1), denoted by s,, (x), is a spline of
degree (n — 1) with knots k,_,,, ki_,+1» -.., k;; Which is zero everywhere except
in the interval k; , < x < k;. The cubic B-spline s, ;(x) with knots
ki4, ki3, kio, ki, ki, is such that

(i) on each interval, s4 (x) is a polynomial in x of degree 3 or less,
(ii) 54,(x), s74,(x) and s’ (x) are continuous, and
(iii) s4,x) > 0O inside [k; 4, ;] and is identically zero outside [k; 4, k;].

A typical cubic B-spline with knots k; 4, k; 3, ki», ki1, kj, is shown in

Fig. 5.1.
m

i

Figure 5.1 A typical cubic B-spline.
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5.4.1 Representations of B-splines

To represent the cubic B-spline s4,(x) at x = k;, we consider the five knots

kl'%» kl¥3$ ki*Z» kl?l» ki
which are such that
ki <kiz<kio<kii <Kk (5.56)

We also define the function

3
Pf’ :{P , when P >0 (5.57)

0, when P<0

Then, a unique representation of the cubic B-spline with knots &, 4, ..., k;, is
given by Greville [1968]:

3 i
s 00= D 06X+ N Bru(x—kn)} (5.58)

r=0 m=i-4

Another representation based on the concept of divided differences is given
below.

84, (X) =[Ki_s, Ki_3, Ki_2, Ki_1, ki] (5.59)
_ (kizg = X)2
(Ki—a — Ki—g)(ki—a — ki_2)(ki_a —ki_1)(Ki_s — ki)
. (ki-g = X3
(Ki_g = Ki_a) (ki3 = ki_2)(ki_3 — ki_1)(ki_3 = k;)
(ki =3
5.60
Tk kK k) -k k) Y
Denoting
Iy, () = (x = kig)x — ki3)(x — kip)(x — ki) (x — &) (5.61)
We obtain

hi (k) = (ki — ki) (k; — ki 3) (ki — kio)(k; — ki) (5.62)
Hence, Eq. (5.60) can be written as
(kig =93 | (kig =% (kip =)
Mikig)  Miikisg)  TIG(ki-2)
NG Y R0
I (ki) TIg(k)

i 3
D M (5.63)

S45(X)=
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More generally, a B-spline of order n (degree n— 1) is defined by

Sn,i (X) =[Ki—n, Kizpaas -+ kil (5.64)
! (k B X)+
" 2 ) (563
where
l_In,i (X) = (X - ki—n)(x - ki—n+1) (X - ki) (5.66)

and II, (x) denoting its derivative with respect to x. From the definition of
a divided difference, we have

[k ki, ks ki g k_]_[ki—S’ki—2!ki—l,ki]_[ki—4:ki_3yki_2, ki_1]
i—4, Ki—3, Kj_2, Kj_1, Kj | =

Ki —Ki_4
_83(X) = s34(x) (5.67)
C ki—kig
Thus,
41(X) = S3i (X) — S3j1 (X), (5.68)

Ki —ki_q

which is a recurrence relation. Similarly, for B-splines of order n, we have
the recurrence relation

1 () = Sh-1i (:-): ljn-l,i-l(x) (5.69)

In practice, however, formulae given in Eqgs. (5.58), (5.68) and (5.69) are not
used since they are found to be computationally inefficient. Instead, a recurrence
formula discovered independently by Cox [1972] and de Boor [1972] is
found to be efficient. This formula is

1 (X) = (x- ki—n)Sn—l,i;(_XLJr (Ki = X)sp_1i (%) | (5.70)

for all x. For proof of Eq. (5.70), see Cox [1972].

From Eq. (5.70), it can be seen that the computation of s, (x) depends
on s, ;;1(x) and s, | (x). Thus, if the knots are k; 4, k; 3, k; 5, k;_; and k;, then
the cubic B-spline S, (x) can be computed, from left to right, as in the
following Fig. 5.2.
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S,i-3
$2i-2
Si-2 S3,i-1
$2,i-1 S4i
Sl,i—l S3i
S2,i
Sp,i

Figure 5.2 Array of elements for computing s, ;.

Further, simplification in the computation of the above array may be made
by using the property

" K if kj—l <X< k]
S,j=1" T Rj4 (5.71)
0, otherwise.

For example, if ;4 < x < k;_3, the array in Fig. 5.2 simplifies to the following
Fig. 5.3.

S1,i-3
$2i-2
0 S3,i-1
0 S4.i
0 0
0
0

Figure 5.3 Simplified array of Fig. 5.2.

The numerical computation of B-splines will now become more simpler. The
following examples demonstrate the use of formulae (5.64) and (5.70) for the
computation of B-splines.

Example 5.8 With respect to the knots 0, 1, 2, 3, 4, compute cubic B-splines
at x = 1 and x = 2 using formula (5.64).
We have

i 3
Ky — .
si0= Y Um0 (i
mereq Hai(km)
(@) x=1
Herei=4,k0=0,k1=1,k2=2,k3=3andk4=4.
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Therefore,

X)+
S44() = z SCS)

O A e S i U O VY (P
Myako) Maa(k) Mag(ke) Maa(ks) Tlaa(ke)

_04+0+—t 48 & (ii)
134(2) TI34(3) I134(4)
Now,
342 =2-02-D2-3)2-4) =4,
M543 =G -003 -DH3-2)3 -4) =~
and

) = @ - 0@ - D@ - 2)(4 - 3) = 24,

Hence, (ii) gives

-8
1
24
(b) x=2
We have

(3-2)% , (4-23
MM 4(3)  Ty4(4)
1 8 1
-6 24 6

$4,4(2) =

Example 5.9 With the same data as in Example 5.8, compute cubic
B-splines at x = 1 and x = 2, using formula (5.70).
The formula is

(X = Kj_g)83i-1(X) + (Ki — X)s3; (iii)
ki =K _,4

S (X)=

(@) x =1
1 pa—
ko — Ky

We have 1 < x < 2. Then sy, =
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Hence we need to compute the elements in the following array

0
2,2
1,2 S33
523 S4.4
0 S34
0
0
Now,
o = (d-ko)sig +(ka—Dsip 1
2.2 Ky — ko 2’
(A-ky)spo + (k3 —1)s;3
S23= =0,
’ ks — kg
1
_(A-ko)spp + (ks —1)s3 o 1
33 ks — ko 376
_(-k)spg+ (ks —1)Sp4 _ 0
“ kg — Ky ’
_(U-ko)szz (ks —D)sz4 _ 1
4 ky — ko 24"
b)x =2
We have 2 < x <3
Then
1
= =1
13—k,
In this case, the array to be computed is given below.
0
0
0 833
$23 S4,4
513 $3.4
2,4
0

2ok, + (B2 1
23 3-k 2

_ (2-kp)sy3 +(4-2)s14 _
2

0,

S.4
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(2-0)552,+(3=-2)s95 1
R
(2-Dsy3+(4-2)s54 1
53’4 = =—,
3 6
(2-0)s33+(4-2)s34 1
and 54'4 = 4 = E

5.4.2 Least Squares Solution

Let the set of data points be (x,, y,), i =1, 2, ..., m, and a < x < b. Let s(x)
be the cubic spline with knots ky, ks, ..., k,, Where a <ky <k <--- <k, <b. To
define the full set of B-splines, it is necessary to introduce eight additional
knots, namely, k3, ks, ki, ko, k15 kpios kpi3 and k4. These knots are chosen

such that
k3 < k2 < k] < k() =q and b= kar] < kp+2 < kp+3 < kp+4 (572)
We now have (p +4) B-splines (of order 4) in the range a < x < b, and then
the general cubic spline s(x) with knots ki, k», ..., k, has a unique representation,
in the range a < x < b, of the form
p+4

s(x) = z a;S4i(X), as<x<b, (5.73)
i=1

where o; are constants to be determined.
To determine the constants ¢; in Eq. (5.73), we substitute x = x, and
obtain

p+4
(X )=y, = z 0584 (%), r=12...m (5.74)

i=1
where m > p + 4. In matrix notation, Eq. (5.74) can be written as
Ao =y (5.75)

where 4 is an m X (p +4) band matrix and o, y are column vectors. The
required solution is obtained by solving the normal equations

Ao = A"y (5.76)

5.4.3 Applications of B-splines

An important application of the B-spline theory is in digital signal processing
where the B-splines are used for noise reduction in wavelet domain. See, for
example, Poornachandra et al. [2004], where B-splines are adopted to obtain
noisefree signals.
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EXERCISES
5.1 The function y = x*> + 9 is tabulated below.
(3, 36), (4, 73), (5, 134)
Predict the value of y(4.5) using quadratic and natural cubic splines and
state the absolute error in each case.

5.2 Given the points (0, 0), (/2, 1) and (m, 0) satisfying the function y =
sin x, 0 < x < &, determine the value of y (7/6) using quadratic spline
approximation. Compare your result with that obtained in Example 5.5.

5.3 Determine the cubic spline s(x) valid in the interval [x,, x;] for the
following data, given that

s”(x0) = " (x) and s”(xy) = "(xp).
Find »(6.3).
X 6.2 6.4 6.6
y=xInx 113119 11.8803 12.4549
5.4 Fit (a) a natural cubic spline and (b) a D; cubic spline to the following
data:
X 0.10 0.20 0.30
y=e* 1.1052 1.2214  1.3499
Find y(0.15) in each case and state which of these is the best fit.
5.5 Derive the cubic spline formula with D; end conditions. Show that
1 4.v 6
s'(x;) =y, ——=h"y; + O(h
() = y{ = 5y + O()
Given that the data
(=1, 1), (0, 0) and (1, 1)
satisfies the function y = f(x) in -1 < x < 1, find the cubic spline
approximation of y (-0.5) if y’(~1) = —4 and )’(1) = 4.

5.6 Determine the cubic spline in 0 < x < 1 representing the data points and
the end conditions given in Question 5.5 above.

5.7 Write an algorithm to implement formula (5.27) for computing a cubic
spline in the interval [x; ;, x;].

5.8 The data points

(=2, 16), (0, 0), (2, 16)

satisfy the relation y = f(x) in the interval -2 < x < 2. Determine
the cubic spline valid in this interval and satisfying the end conditions
V' (-2) = =32 and y’(2) = 32.
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5.9

Show that the error in the spline second derivative is given by

” ” l i
$(%) = ¥{' = h* %"+ O(h).

5.10 Prove the minimization property of Section 5.2.1 for the D; spline.

5.11

5.12

5.13

5.14

If the function y (x) is periodic with period (x, — x(), the spline is called
a periodic spline. In this case, we have

sV =s"x), r=012

Using these conditions, obtain the recurrence relation in the matrix
form.
If the end conditions are taken as

_MO+M2 Mn+Mn—2

and Mn—1:—2 '
then the spline curve is the same as the single cubic which is fitted
throughout to the given data.

For the data points
(-2, -12), (-1, =8), (0, -3.9), (1, -0.1),
the single cubic which fits these points is given by

yz—ix3 —ix2 +Ex—3.9.
15 20 60

Find the cubic spline which fits this data with the above end conditions.

M,

The following table gives the values of z = f(x, y) for different values
of x and y. Use the method of Section 5.3 to find z when
x = 1.5 and y = 1.5. Compare your result with the actual value obtained
from z = f(x, y) = x* + ) + ).

W1 2 3

6 11
10 15
13 16 21
Using the data
X 0 1 2

y=x3-5|-5 -4 3

find the cardinal splines L,(x) and hence determine the natural cubic
spline valid in the interval 0 < x < 2.
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5.15 Using the formula (5.58), determine the cubic B-spline s(x) with support

[0, 4] on the knots 0, 1, 2, 3, 4. State whether this is a unique representation.

5.16 With respect to the knots 0, 1, 2, 3, 4, 5, 6, compute B-splines of order

5.1
5.2
5.3
5.4
5.5
5.6
5.8

5.12

5.13

5.14

5.15

5.16

6 at x = 1 using Cox—de Boor recurrence formula.

Answers to Exercises
106.75 (error = 6.625); 103 (error = 2.875)

0.3333

11.5953
1.1622; 1.1618
51(=0.5) = 0

S() =2 —x*, 0<x <1
—4x% — 453 —4x% + 4x°

1 5 3 , 241
X)=——X"——X"+—x-3.9
5(%) 15 20 60

6.125

s(x)=§x3 —EX—S, 0<x<1
2" 72
s(x) = c3[x3 —4(x =1)3 +6(x - 2)3 — 4(x -3)?;]

PR
S3=4 2875 B4
S —i S =0 —i
45 = op0 546 S5.6 120

1
55‘7 = O 56,7 = ﬁ



Chapter

Numerical Differentiation and
Integration

6.1 INTRODUCTION

In Chapter 3, we were concerned with the general problem of interpolation,
viz., given the set of values (x¢, 19), (X1, ¥1)s .., (X, ¥,) of x and y, to find
a polynomial ¢ (x) of the lowest degree such that y (x) and ¢ (x) agree at the
set of tabulated points. In the present chapter, we shall be concerned with
the problems of numerical differentiation and integration. That is to say,
given the set of values of x and y, as above, we shall derive formulae to
compute:
dy d2y

(i) —=,——=,--- for any value of x in [x, x,], and
dx ' dx?

(i) ]D y dx.
Xo

6.2 NUMERICAL DIFFERENTIATION

The general method for deriving the numerical differentiation formulae is
to differentiate the interpolating polynomial. Hence, corresponding to each
of the formulae derived in Chapter 3, we may derive a formula for the
derivative. We illustrate the derivation with Newton’s forward difference
formula only, the method of derivation being the same with regard to the
other formulae.

207
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Consider Newton’s forward difference formula:

u(u-1) Azyo N u(u-1) (u-2)

o . Alyo+:, (6.1

Y =Yo +UAyg +
where

X = Xg +uh. (6.2)
Then

2
d_yzd_yd_uzl(Ayo+2u2—1 2. 3ul-bu+2 ,

Alyg + 22 T TEN3y | ,
dx dudx h Yo 6 Yo ] (63)

This formula can be used for computing the value of dy/dx for non-tabular
values of x. For tabular values of x, the formula takes a simpler form, for
by setting x =X, we obtain u=0 from Eq. (6.2), and hence Eq. (6.3) gives

Differentiating Eq. (6.3) once again, we obtain
from which we obtain
[ﬂ] =i(A2yo—A3yo+EA4yo+---)- (6.6)
o |, h? 12

Formulae for computing higher derivatives may be obtained by successive
differentiation. In a similar way, different formulae can be derived by starting
with other interpolation formuale. Thus,

(a) Newton’s backward difference formula gives

dy 1 1. 1 3
—= == Vy, +=V°y, +=V°y, +--- 6.7
[dx]x_x h( In ¥ ¥V ) (6.7)

and

dx?

(b) Stirling’s formula gives

d? 1 11 5
|:_y:| zh_z(vzyn +VSYn +Ev4yn +EV5yn +) (6.8)
X=Xn

[d_y} 1Ay +Ay, 1 A3y_2+A3y_1+i ASy o +A%y,
X Jyoy, D 2 6 2 30 2

+] (6.9)
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and

d? 1 1 1
A T CRae TR YO BRt)
X=X

If a derivative is required near the end of a table, one of the following
formulae may be used to obtain better accuracy

hyg = PNEEYCINEYC I SYINE I YIS Yo (6.12)
2° 37 47 5 6
N WECEE Y IE JCINE DI DI V4 (6.12)
2° 6 120 200 30
11 .4 5.5 137 .5 7 363
h2yy = A2 = A3+ SA* AP 2 AB AT AR
Yo ( 12° 6 180 10 560 o 613
1.4 1.5 13,6 11 7 29 g4
= A2 A A NS S AT ARy
( 12° "12° "180° 180" 560 o 619

hy;, = V+£V2+1V3+£V4+EV5+£V6+£V7+EV8+--- y, (6.15)
2 3 4 5 6 7 8

= V_EVZ _1V3 _iv“ _iv5 _iVG _iv7 _ivg —e Yna
2 6 12 20 30 42 56

(6.16)

! V8+---)yn (6.17)

h2yr = v2 + V3 +EV4 +§V5 +£V6 +—V' +ﬁ
12° 6 180 10 560
1 1 13 11 29
o At v S v vl v L VY . (6.18
( 12° 180 180 560 e (O019)

For more details, the reader is referred to Interpolation and Allied Tables.
The following examples illustrate the use of the formulae stated above.

Example 6.1 From the following table of values of x and y, obtain dy/dx
and d?yldx* for x=1.2:

X y X y
1.0 2.7183 1.8 6.0496
1.2 3.3201 20 7.3891
1.4 4.0552 2.2 9.0250

1.6 4.9530
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The difference table is

X y A A? A3 A% AS A8
1.0 2.7183
0.6018
1.2 3.3201 0.1333
0.7351 0.0294
14 4.0552 0.1627 0.0067
0.8978 0.0361 0.0013
1.6 4.9530 0.1988 0.0080 0.0001
1.0966 0.0441 0.0014
1.8 6.0496 0.2429 0.0094
1.3395 0.0535
2.0 7.3801 0.2964
1.6359
2.2 9.0250

Here Xg =1.2, yy =3.3201 and h=0.2. Hence Eq. (6.11) gives

[d—y] :i[0.7351—1(0.1627)+3(o.0361)—3(0.0080)+3(0.0014)]
dx |,yp 0.2 2 3 4 5
=3.3205.

If we use formula (6.12), then we should use the differences diagonally
downwards from 0.6018 and this gives

[d—y] =i[0.6018+£(0.1333)—l(0.0294)+i(0.0067)—i(0.0013}
dx |y, 0.2 2 6 12 20

=3.3205, as before.

Similarly, formula (6.13) gives

2
d—g’ -1 [0.1627 —0.0361+ -1 (0.0080) —5(0.0014)] =3.318.
o |, 004 12 6

Using formula (6.14), we obtain

2
d—g’ :i[0.1333—i(o.0067) +i(0.oo13)] =3.32.
o |, 004 12 12
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Example 6.2 Calculate the first and second derivatives of the function
tabulated in the preceding example at the point x = 2.2 and also dy/dx at
x = 2.0.

We use the table of differences of Example 6.1. Here x,, = 2.2, y,, = 9.0250
and 2 = 0.2. Hence formula (6.15) gives

[d—y :i[1.6359+1(0.2964) +1(0.0535)+ 1 (0.0094) +1(0.oo14)]
dx |, p, 0.2 2 3 4 5

=9.0228.

.
[d y -1 [0.2964+0.0535+%(0.0094)+%(0.0014)]=8.992.

2
dx |,,, 004

To find dy/dx atx = 2.0, we can use either (6.15) or (6.16). Formula (6.15)
gives

[ﬂ] -1 [1.3395 + 1 (0.2429) + L (0.0441) + L (0.0080)
X | ypp 0.2 2 3 4

; %(0.0013) +%(o.0001)]

=7.3896.

whereas from formula (6.16), we obtain

[d—y} 1 [1.6359 ~10.2064)- 1 (0.0535) - i(o.0094)—i(0.0014)}
dX | 4pp 0.2 2 6 12 20

=7.3896.

Example 6.3 Find dy/dx and d*y/dx* at x = 1.6 for the tabulated function of
Example 6.1.

Choosing x, = 1.6, formula (6.9) gives

[g] _ 1 (08978+1.0966 10.0361+0.0441 1 0.0013+0.0014
dx ],y 0.2 2 2 2 30 2
= 4.9530.

Similarly, formula (6.10) yields

2
d—;’ -1 [0.1988—i(0.0080) +i(o.0001)] =4.9525.
|, 004 12 90
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In the preceding examples, the tabulated function is ¢* and hence it is easy
to see that the error is considerably more in the case of the second derivatives.
This is due to the reason that although the tabulated function and its
approximating polynomial would agree at the set of data points, their slopes
at these points may vary considerably. Numerical differentiation, is, therefore,
an unsatisfactory process and should be used only in ‘rare cases.” The next
section will be devoted to a discussion of errors in the numerical differentiation
formulae.

6.2.1 Errors in Numerical Differentiation

The numerical computation of derivatives involves two types of errors, viz.
truncation errors and rounding errors. These are discussed below.

The truncation error is caused by replacing the tabulated function by
means of an interpolating polynomial. This error can usually be estimated by
formula (3.7). As noted earlier, this formula is of theoretical interest only,
since, in practical computations, we usually do not have any information
about the derivative y""(&). However, the truncation error in any numerical
differentiation formula can easily be estimated in the following manner. Suppose
that the tabulated function is such that its differences of a certain order are
small and that the tabulated function is well approximated by the
polynomial. (This means that the tabulated function does not have any rapidly
varying components.) We know that 2eis the total absolute error in the
values of Ay,, 4¢ in the values of A2yi, etc., where €is the absolute error in
the values of y,. Consider now, for example, Stirling’s formula (6.9). This
can be written in the form

l?gl SR SR e S SO 4 (6.19)
dx X=X 2h 2h
where 77, the truncation error, is given by
1A%y, +A%y
=—|—== =1 6.20
1=%h > (6.20)
Similarly, formula (6.10) can be written as
d’y 1.2
— =—A%y 1 +T,, 6.21
ldxz :|X_X hz 1 2 ( )
0
where
T, = Aty (6.22)

12h?

The rounding error, on the other hand, is inversely proportional to / in the
case of first derivatives, inversely proportional to % in the case of second
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derivatives, and so on. Thus, rounding error increases as h decreases.
Considering again Stirling’s formula in the form of Eq. (6.19), the rounding
error does not exceed 2&/2h = €/h, where € is the maximum error in the value
of y;. On the other hand, the formula

[g] _Ayatay Ay,+Aty,
X=X

dx 2h 12h

_ Y2 -8y 1+8y1-¥, 4o (6.23)
12h
has the maximum rounding error
12h 2h
Finally, the formula
2 2 —

[d_g’} :A_>2’—1+...=Lzo+yl+... (6.24)

dx X=X h h

has the maximum rounding error 4glh?. It is clear that in the case of higher
derivatives, the rounding error increases rather rapidly.

Example 6.4 Assuming that the function values given in the table of
Example 6.1 are correct to the accuracy given, estimate the errors in the
values of dy/dx and d’y/dx* at x=1.6.

Since the values are correct to 4D, it follows that £ <0.00005 = 0.5 x 107,

Value of dy/dx at x = 1.6:

A%y + A%y,

, from (6.20
5 (6.20)

. 1
Truncation error = 6_

_ 1 0.0361+0.0441
6(0.2) 2

=0.03342

and
. 3¢
Rounding error :E’ from (6.23)
_3(0.5)107
0.4

=0.00038.
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Hence,
Total error =0.03342+ 0.00038 = 0.0338.
Using Stirling’s formula from Eq. (6.19), with the first differences, we obtain
dy Ay 3 +Ay, 0.8978+1.0966 1.9944
dX Jy—16 2h 0.4 0.4

=4.9860.

The exact value is 4.9530 so that the error in the above solution is (4.9860 —
4.9530), i.e., 0.0330, which agrees with the total error obtained above.

Value of d?y/dx* at x = 1.6: Using Eq. (6.24), we obtain

2 2
[u} Ay, 01988 _ o000
x=1.6

dx? h? 0.04
so that the error= 4.9700 — 4.9530 = 0.0170.
Also,
. 1 4 1
Truncation error =——|A"y_,|=—-—-x0.0080=0.01667
12h2 12(0.04)
and

4e _ 4x05x107*

Rounding error =— = =0.0050.
h 0.04
Hence
.| d?y
Total error in [d?] =0.0167+0.0050 =0.0217.
x=1.6

6.2.2 Cubic Spline Method

The cubic spline derived in Section 5.2 can conveniently be used to compute
the first and second derivatives of a function. For a natural cubic spline, the
recurrence formulae (5.31) or (5.32) may be used to compute the spline
second derivatives depending upon the choice of the subdivisions. Then
Eq. (5.29) gives the spline in the interval of interest, from which the first
derivatives can be computed. For the first derivatives at the tabular points,
it would, of course, be easier to use formulae (5.28) and (5.30) directly. If,
on the other hand, end conditions involving the first derivatives are given,
then recurrence formulae (5.34) or (5.36) may be used to compute the
remaining first derivatives.

The following examples illustrate the use of the spline formulae in numerical
differentiation.

Example 6.5 We consider the functiony (x) = sin x in [0, 7].
Here My = My = 0. Let N = 2, i.e., h = n/2. Then
y0:y2:0, y1:1 and M0:M2:0.
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Using formulae (5.32), we obtain
6
Mo +4M; + M, =h—2(YO —2y1+Y,)

or
- 12

7_[2

Formula (5.29) now gives the spline in each interval. Thus, in 0 < x < 7/2,

we obtain
5.3
s(x)=3( X ﬂ}
T T 2
, 2 2 3 .
s'(X) :—[——2(3x2) +—]. @)
T T 2

2
o[ P28 7 3|_ 9 _071619725.
4) n| 216 2| 4n

Exact value of s'(ml4) = cos m/4=1/\/2 =0.70710681. The percentage error
in the computed value of s'(7/4) is 1.28%. From (i),

24

which gives

Hence

S”(X)Z—_X
3
and hence
[T =227 __ 5 _ 460792710
4 nd 4 n?

Since the exact value is —1//2, the percentage error in this result is 14.03 %.
We now consider values of y = sin x in intervals of 10° from x = 0 to z. To
obtain the spline second derivatives we used a computer and the results are
given in the following table (up to x =90°).

y“(x)

x (in degrees) Exact Cubic spline
10 -0.173 648 178 —0.174 089 426
20 —0.342 020 143 —0.342 889 233
30 —0.500 000 000 —0.501 270 524
40 —0.642 787 610 —0.644 420 964
50 —0.766 044 443 —0.767 990 999
60 —0.866 025 404 —0.868 226 016
70 —0.939 692 621 —0.942 080 425
80 —0.984 807 753 —0.987 310 197
90 —1.000 000 000 —1.002 541 048

It is seen that there is greater inaccuracy in the values of the spline
second derivatives.
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Example 6.6 From the following data for y(x), find y’(1.0).

X 2 -1 2 3
y(x) -12 -8 3

The function from which the above data was calculated is given by

y :—ix3 —ix2 +%X —3.9. Hence, the exact value of )’(1) is 3.51667.

To apply the cubic spline formula (5.31), we observe that #; = 1,
h2=3andh3=1.
For i = 1, 2, the recurrence relation gives:
8M, + 3M, = 2
and
3M, + 8M, = -10,
. . 14 74
since My = M; = 0. We obtain M| = — and M, = —— . In -1 < x < 2,
we have 55 %5

-3 2 e 7

3] 6 5 6 \ 55

1 21 1 9( 74
+ §|:—8—£:| (2 - X) + §|:3 - g(—%)] (X +1)

Differentiating the above and putting x = 1, we obtain

1[ 7 148 461 276
W) =s5L0) == = =22, 20
y(h)=510) 3[ 55 55 55 55]

=3.52727, on simplification.

6.2.3 Differentiation Formulae with Function Values

In Section 6.2, we developed forward, backward and central difference
approximations of derivatives in terms of finite differences. From the
computational point of view, it would be convenient to express the numerical
differentiation formulae in terms of function values. We list below some
differentiation formulae for use in numerical computations.

(i) Forward Differences

—Yir2 +4Yin —3Yi
2h

y(x) =2 OB

- +0(h?)

—Yiez T 4Yis2 =i +2Vi .

y//(xi): yl - 2yi+1 + yl+2 . h2 :

Iy ()=
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(ii) Backward Differences

y'(xi)=%; Vix)=> 4y'2h1+y' :

V) = i —2yi_21 +Yi_o )= 2y —9Yi_1 ‘;jyi—z —Vi-3 :
(iii) Central Diﬁ‘erenhces

V) =2t ;hyi -1 y(x) = Y2 +SYi+112—hSYi—1 iz,

y(x) =YL= ZhBQ * Yiat

y(%) = —Yir2 +16Yiy —13;?1326 +16yi 1 — Vi

These formulae can be derived by using Taylor series expansion of the
functions.

6.3 MAXIMUM AND MINIMUM VALUES OF A TABULATED
FUNCTION

It is known that the maximum and minimum values of a function can be
found by equating the first derivative to zero and solving for the variable.
The same procedure can be applied to determine the maxima and minima of
a tabulated function.

Consider Newton’s forward difference formula

DD 2y, PE-D (-
Differentiating this with respect to p, we obtain

Yy =Yo+ PAYy + ——— Yot

2p-1 - 2
W _ gy +2P1 p A2y + 307 -3p+2 s Ay, +- (6.25)
dp 6
For maxima or minima a’y/dp = 0. Hence, terminating the right-hand side, for
simplicity, after the third difference and equating it to zero, we obtain the
quadratic for p

Cu+CGp+ce, p? =0, (6.26)

where
1, 1.3 |

Co =AYy — =A%y +=A

0 =AY 5 Yo 3 Yo

¢, =A%y, — A%y, (6.27)

1

and c2=EA3yO.

Values of x can then be found from the relation x = x, + ph.
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Example 6.7 From the following table, find x, correct to two decimal
places, for which y is maximum and find this value of y.

X y
1.2 0.9320
1.3 0.9636
14 0.9855
15 0.9975
1.6 0.9996
The table of differences is
X y A A2
1.2 0.9320
0.0316
1.3 0.9636 —0.0097
0.0219
1.4 0.9855 —0.0099
0.0120
1.5 0.9975 —0.0099
0.0021
1.6 0.9996

Let x, = 1.2. Then formula (6.25), terminated after second differences, gives
2p-1
2

from which we obtain p = 3.8. Hence

X=Xy + ph=1.2+(3.8) (0.1) =1.58.

0=0.0316 +

(~0.0097)

For this value of x, Newton’s backward difference formula at x, =1.6 gives

y (1.58) = 0.9996 — 0.2 (0.0021) +w (~0.0099)

=0.9996 —0.0004 + 0.0008
=1.0.

6.4 NUMERICAL INTEGRATION

The general problem of numerical integration may be stated as follows.
Given a set of data points (xp, yo), (X1, 11)s ..., (x,,, ¥,,) of @ function y = f(x),
where f(x) is not known explicitly, it is required to compute the value of the
definite integral

D — T
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As in the case of numerical differentiation, one replaces f'(x) by an interpolating
polynomial ¢ (x) and obtains, on integration, an approximate value of the
definite integral. Thus, different integration formulae can be obtained depending
upon the type of the interpolation formula used. We derive in this section a
general formula for numerical integration using Newton’s forward difference
formula.

Let the interval [a, b] be divided into n equal subintervals such that
a=xo<x; <x,<---x,=b. Clearly, x, = xo + nh. Hence the integral becomes

X
Izj y dx.

X0
Approximating y by Newton’s forward difference formula, we obtain
Xn
-1
1= | [yo+ payy + 2B aty, +

X0

WM] dx,

Since x=Xg + ph,dx=hdp and hence the above integral becomes
n
-1 -D(p-2
| =hj [YO + PAyg +_p(p2 )Azyo +Re=D(p-2) é(p )Agyo +] dp,
0

which gives on simplification

Xn 2
n n(2n-3) .o nin-2)° 3
dx =nh +—Ayy + A%y + A Yoy +---|.
JO y [yo S A0+ ATy Ay (6.29)

From this general formula, we can obtain different integration formulae by
putting n = 1, 2, 3, ..., etc. We derive here a few of these formulae but it
should be remarked that the trapezoidal and Simpson’s 1/3-rules are found
to give sufficient accuracy for use in practical problems.

6.4.1 Trapezoidal Rule

Setting » = 1 in the general formula (6.29), all differences higher than
the first will become zero and we obtain

X

1 1 h
J ydx=h (yo +5Ay0 ): h[yo +E(Y1 - yO):IZE (Yo+ Y1) (6.30)
X0

For the next interval [x;, x,], we deduce similarly

X2

h
[ yox=Z0n+y) (6:31)

X
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and so on. For the last interval [x,_;, x,], we have

Xn
h
[ yox=Z0nitv). (6:32)

Xn-1
Combining all these expressions, we obtain the rule

Xn

h
[ yox=Zlvo+20n+y2 4+ yan)+val (6.33)

which is known as the frapezoidal rule.

The geometrical significance of this rule is that the curve y = f(x) is
replaced by n straight lines joining the points (xy, y) and (xq, 11); (x1, ¥1)
and (x3, y2), ..., (Xp_1, Yn_1) and (x,, »,,). The area bounded by the curve
y = f(x), the ordinates x = x; and x = x,,, and the x-axis is then approximately
equivalent to the sum of the areas of the n trapeziums obtained.

The error of the trapezoidal formula can be obtained in the following
way. Lety = f(x)be continuous, well-behaved, and possess continuous
derivatives in [xo, x,]. Expanding y in a Taylor’s series around x = x,, we
obtain

X1 X1 2
’ X=X ’”
j ydx:j [YO+(X—X0)YO+—( 20) yo+--}d><
Xo X0
2 3
g+ g (6.34)
2 6
Similarly,
D( + )—D + +h’+ﬁ ”+E 0+
2Yo Y1 > Yo+ Yo + Yo 2Yo 6Y0
2 3
:hYO"'?yO"'TyO"'"' (6.35)
From Egs. (6.34) and (6.35), we obtain
X1
h 1 3.7
dx——=(yg+Vy)=—7—7hyg+---, )
[ yax—2 o+ w) =% (6.:36)

X0

which is the error in the interval [x, x;]. Proceeding in a similar manner we
obtain the errors in the remaining subintervals, viz., [xy, X5], [x5, X3], ... and
[x,_1, x,]. We thus have
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1 4 7”7 7”7
E =—Eh3()’o YY), (6.37)

where E is the total error. Assuming that y”(X) is the largest value of the
n quantities on the right-hand side of Eq. (6.37), we obtain

1 3 27— b_a 2. 1
E=-—hny”"(X)=———h X 6.38
oy (X) T (X) (6.38)

sincenh = b — a.

6.4.2 Simpson’s 1/3-Rule

This rule is obtained by puttingn = 2 in Eq. (6.29), i.e. by replacing the
curve by n/2 arcs of second-degree polynomials or parabolas. We have then

X2
1 h
J y dx = 2h (yo + Ay +€A2yo )=§(YO +4y1+Y5).

X0
Similarly,
X4 h
[ yox=Z 2 +ay3+ya)
X2
and finally
Xn h
[ ydx=30na+avna+y).
Xn-2

Summing up, we obtain
Xn h
J yox=Zlo+ a0+ yatys+t yo)
X0

+2(Yo+Ya+Yet+ o+ Yn2)+ Ynl, (6.39)

which is known as Simpson’s 1/3-rule, or simply Simpson’s rule. It should
be noted that this rule requires the division of the whole range into an even
number of subintervals of width A.

Following the method outlined in Section 6.4.1, it can be shown that the
error in Simpson’s rule is given by

b

h
j de:g[yo+4(y1+Y3+y5+“'+Yn—1)
a

+2(Yo+Ya+ Yo+t Yno2)+ Ynl

b—a. 4 iV y—
= _—h ] .
80 " Y (x) (6.40)

where y'¥(X) is the largest value of the fourth derivatives.
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6.4.3 Simpson’s 3/8-Rule

Setting n = 3 in Eq. (6.29), we observe that all the differences higher than
the third will become zero and we obtain

]?’ 3 3., 1.4
de=3h Yo +5Ay0 +ZA Yo +§A Yo

X0

3 3 1
=3h [YO +E(Y1 = Yo) +z(Y2 =2¥1+Yp) +§(Y3 —3yp +3y1 — YO):I

3h
iy (Yo +3y1 +3Y2 + ¥3).
Similarly
f; 3h
[ yox=T (3 +3y, +3y5+ o)

X3

and so on. Summing up all these, we obtain

Xn
3h
f y dx=-"[(Yo 31 +3Y2 + ¥3) + (Y3 +3Ys +3Y5+ yg) + -
X0
+(Yn-3 +3Yn-2 +3Yn_1 + ¥n)]
3h
=E(yo+3y1+3y2+2)’3+3Y4 +3Y5 + 25+
+2Y5_3+3Yn_2 +3Yn1+ Yn) (6.41)
This rule, called Simpson’s (3/8)-rule, is not so accurate as Simpson’s rule,
the dominant term in the error of this formula being —(3/80) /°y"V(X).
6.4.4 Boole’'s and Weddle’s Rules

If we wish to retain differences up to those of the fourth order, we should
integrate between x, and x, and obtain Boole’s formula

X4
J. y dx =j—2(7y0 +32y; +12y, +32y3 +7Y,) (6.42)
X0
The leading term in the error of this formula can be shown to be
8h’ i,
Sy AN I]
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If, on the other hand, we integrate between x, and x4 retaining differences
up to those of the sixth order, we obtain Weddle’s rule

Xg

3h
[ ydx=T5 00 +5y1+y; +6y5 + 4 +5y5 + ). (6.43)
X0

the error in which is given by —(h7/140)yVi(7).

These two formulae can also be generalized as in the previous cases. It
should, however, be noted that the number of strips will have to be a
multiple of four in the case of Boole’s rule and a multiple of six for Weddle’s
rule.

6.4.5 Use of Cubic Splines

If s(x) is the cubic spline in the interval (x,_;, x,), then we have

Iz)]-]dezi )jl‘ s(x) dx
Xo

=1 i
Xi

=> _[ {6—1h[(xi =) Mg+ (x=%1)*M;]

=1 X4
1 h2 1 h2
4 _X)[yi—l —5 Mia J+E(X— Xi—l)[Yi s Mi J}dx,

using Eq. (5.27). On carrying out the integration and simplifying, we obtain

n

h h3
[ ZE[E(Yi—1+Yi)_ﬂ(Mi—1+Mi):|1 (6.44)

where M;, the spline second-derivatives, are calculated from the recurrence
relation

6
Mi_ +4M; +Mi+1=h—2(Yi—1—ZYi + Yisa), i=1,2 ..., n-1
The use of the cubic spline method is demonstrated in Example 6.13.

6.4.6 Romberg Integration

This method can often be used to improve the approximate results obtained
by the finite-difference methods. Its application to the numerical evaluation
of definite integrals, for example in the use of trapezoidal rule, can be
described, as follows. We consider the definite integral
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b
I:J- y dx
a

and evaluate it by the trapezoidal rule (6.33) with two different subintervals
of widths /2, and %, to obtain the approximate values /; and I,, respectively.
Then Eq. (6.38) gives the errors E; and E, as

1 e
E1=—E(b—a)h1y 9] (6.45)
and
l Ry
E; =—E(b—a)h2y (X). (6.46)

Since the term y”(X) in Eq. (6.46) is also the largest value of y”(X), it is
reasonable to assume that the quantities y”(X) and y”(X) are very nearly the
same. We therefore have

2
B _h
E, h?
and hence
E, W
E,-E hi-h

Since E, — E; = I, — I;, this gives

h22
E,=—=—(1,-1y).
2 hzz—hf(z 1) (6.47)

We therefore obtain a new approximation /5 defined by

|3:|2—E2= IthZ_IZhl2
2 2
hy -
which, in general, would be closer to the actual value—provided that the

errors decrease monotonically and are of the same sign.
If we now set

(6.48)

1. 1
h, ==h ==h
22hlz

Equation (6.48) can be written in the more convenient form

1 1 1
| (h, Eh)=§[4l (Eh)_ I (h)], (6.49)
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where I(h) = I,

1 1
I(Eh):IZ and |(h,§h): |3.

With this notation the following table can be formed

1(h)

I h,}h,lh
2 4

nen NETEE
4 2 4 8

h,=h,=h,=h
2 48

The computations can be stopped when two successive values are sufficiently
close to each other. This method, due to L.F. Richardson, is called the
deferred approach to the limit and the systematic tabulation of this is called

Romberg Integration.

6.4.7 Newton—Cotes Integration Formulae

Let the interpolation points, x;, be equally spaced, i.e. let x; = xo + ih,
i=0,1,2, .., n and let the end points of the interval of integration be

placed such that

Xo=a. x,=b, h=—=,

Then the definite integral
b
I = I y dx
a

is evaluated by an integration formula of the type

n
|n=2 Cii
i=0

(6.50)

6.51)
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where the coefficients C; are determined completely by the abscissae x;.
Integration formulae of the type (6.51) are called Newton—Cotes closed
integration formulae. They are ‘closed’ since the end points a and b are the
extreme abscissae in the formulae. It is easily seen that the integration
formulae derived in Eqgs. (6.47)—(6.50) are the simplest Newton—Cotes closed
formulae.

On the other hand, formulae which do not employ the end points are
called Newton—Cotes, open integration formulae. We give below the five
simplest Newton—Cotes open integration formulae

X2 3
h® ,, _ _
(a) J ydx=2hy1+?y (X), (Xg <X <Xp) (6.52)

X0

3h 3, =
(b) ydx=?(Y1+Y2)+Ty (X), (X <X <X3) (6.53)

& =

X4

4h 14 iV e =
yd>(=?(2y1—y2 +2y3)+4—5h5y'v(x), (Xo <X <X4) (6.54)

—

(c)

X0

dx=— 11y, +y, + Y, +11y,)+—h X), (Xg <X <X
@ 1y 24( y1+ Yo +Yy3+11y,) 4 Yy (X), (X <X<X5)

S — &

(6.55)

41

6h 7. Vi<
dx=—(@11y, —14y, + 26y; —14y, +11y:)+——h X),
e |v 20( y1 —14y; +26y3 —14y, +11ys) oY (X)

S —— &

(Xg <X <Xg). (6.56)

A convenient method for determining the coefficients in the Newton—Cotes
formulae is the method of undetermined coefficients. This is demonstrated
in Example 6.14.

Example 6.8 Find, from the following table, the area bounded by the curve
and the x-axis fromx=7.47tox=7.52

X f(x) X f(x)
7.47 1.93 7.50 2.01
7.48 1.95 7.51 2.03

7.49 1.98 7.52 2.06
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We know that
7.52
Area = I f(x) dx
7.47
with 2 = 0.01, the trapezoidal rule given in Eq. (6.32) gives

Area = %[1.9% 2(1.95+1.98+ 2.01+ 2.03) + 2.06] = 0.0996.

Example 6.9 A solid of revolution is formed by rotating about the x-axis
the area between the x-axis, the lines x = 0 and x = 1, and a curve through the
points with the following coordinates:

X y
0.00 1.0000
0.25 0.9896
0.50 0.9589
0.75 0.9089
1.00 0.8415

Estimate the volume of the solid formed, giving the answer to three decimal
places.

If V' is the volume of the solid formed, then we know that
1
V=r J y2dx
0

Hence we need the values of y*> and these are tabulated below, correct to
four decimal places

X y?
0.00 1.0000
0.25 0.9793
0.50 0.9195
0.75 0.8261
1.00 0.7081

With 72 = 0.25, Simpson’s rule gives

V= (0.25)
3

[1.0000 + 4(0.9793 + 0.8261) + 2(0.9195) + 0.7081]

=2.8192.



228 CHAPTER 6: Numerical Differentiation and Integration

Example 6.10 Evaluate
1
| :J. %dx,
0 + X

correct to three decimal places.

We solve this example by both the trapezoidal and Simpson’s rules with
h=0.5,0.25 and 0.125 respectively.
(i) /A =0.5: The values of x and y are tabulated below:

X y
0.0 1.0000
0.5 0.6667
1.0 0.5000

(a) Trapezoidal rule gives

I = %[1.0000 +2(0.6667) +0.5] = 0.70835.
(b) Simpson’s rule gives

I = % [1.0000 +4(0.6667) + 0.5] = 0.6945.

(ii)) 5~ =0.25: The tabulated values of x and y are given below:

X y
0.00 1.0000
0.25 0.8000
0.50 0.6667
0.75 0.5714
1.00 0.5000

(a) Trapezoidal rule gives
I = %[1.0 +2(0.8000 + 0.6667 +0.5714) + 0.5] = 0.6970.
(b) Simpson’s rule gives

= %[1.0+ 4(0.8000 + 0.5714) + 2(0.6667) + 0.5] = 0.6932.
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(iii) Finally, we take 4 =0.125: The tabulated values of x and y are

X y X y
0 1.0 0.625 0.6154
0.125 0.8889 0.750 0.5714
0.250 0.8000 0.875 0.5333
0.375 0.7273 1.0 0.5
0.5 0.6667

(a) Trapezoidal rule gives

| = %[1.0+ 2(0.8889 +0.8000 + 0.7273 + 0.6667)
+0.6154 + 0.5714+0.5333) + 0.5]
=0.6941.

(b) Simpson’s rule gives

| = %[1.0+ 4(0.8889 +0.7273+ 0.6154 + 0.5333)
+2(0.8000 + 0.6667 +0.5714) +0.5]
= 0.6932.

Hence the value of / may be taken to be equal to 0.693, correct to three decimal
places. The exact value of 7 islog,2, which is equal to 0.693147.... This
example demonstrates that, in general, Simpson’s rule yields more accurate
results than the trapezoidal rule.

Example 6.11 Use Romberg’s method to compute

correct to three decimal places.

We take 7 =0.5, 0.25 and 0.125 successively and use the results obtained in
the previous example. We therefore have

I (h) = 0.7084, |(%h)=0.6970, and I(%h)=0.6941

Hence, using Eq. (6.49), we obtain

I (h, %h )z 0.6970 +%(0.6970 —0.7084) =0.6932.
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I 1h,lh =0.6941+1(0.6941—0.6970)=0.6931
2 4 3
Finally,

I (h,%h,%h ]z 0.6931+%(0.6931— 0.6932) = 0.6931.

The table of values is, therefore,

0.7084
0.6932

0.6970 0.6931
0.6931

0.6941

An obvious advantage of this method is that the accuracy of the computed
value is known at each step.

Example 6.12 Apply trapezoidal and Simpson’s rules to the integral

1
| :J- «/1—x2dx
0

continually halving the interval / for better accuracy.

Using 10, 20, 30, 40 and 50 subintervals successively, an electronic computer,
with a nine decimal precision, produced the results given in Table below. The
true value of the integral is 7/4=0.785398163.

No. of subintervals Trapezoidal rule Simpson’s’s rule
10 0.776 129 582 0.781 752 040
20 0.782 116 220 0.784 111 766
30 0.783 610 789 0.784 698 434
40 0.784 236 934 0.784 943 838
50 0.784 567 128 0.785 073 144

Example 6.13 Evaluate
1
I = I sin x dx
0

using the cubic spline method.

The exact value of 7 is 2/ = 0.63661978. To make the calculations easier,
we taken = 2,i.e. h = 0.5. In this case, the table of values of x and
y = sin px is
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X y
0 0
0.5 1.0
1.0 0.0

Using Eq. (5.32) with M, = M, = 0, we obtain M; = —12. Then formula
(6.44) gives

1 1 1 1
I ==(Yo + Y1) ——(Mg + My) +=(¥; + Y) ——(M; + M
(Yo+y1) 192( 0 1) 4(y1 Y2) 192( 1 2)

4
1 1 1 1
R
4 16 4 16
_S

8
=0.62500000;

which shows that the absolute error in the natural spline solution is 0.01161978.
It is easily verified that the Simpson’s rule gives a value with an absolute
error 0.03004689, which is more than the error in the spline solution.

Example 6.14 Derive Simpson’s 1/3-rule using the method of undetermined
coefficients.
We assume the formula
h
J- ydx=a_1y 3 +agYo+ay, V)
-h
where the coefficients @ |, ay and a have to be determined. For this, we
assume that formula (i) is exact when y(x) is 1, x or x°. Putting, therefore,
y(x) = 1, x and x* successively in (i), we obtain the relations

h
a_1+a0+a1=J dx =2h, (i)
—h
—a_t+a = J‘ xdx=0 (lll)
~h
a+a =—h .
and 3 (iv)

Solving (ii), (iii) and (iv) for a_;, ay, and a;, we obtain

a_lzgzal and ay=—.
3 3
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Hence formula (i) takes the form
¢ h
[ yox=2 (s +4y0+w),
—h 3
which is the Simpson’s 1/3-rule given in Section 6.4.2.

6.5 EULER-MACLAURIN FORMULA

Consider the expansion of 1/(¢* — 1) in ascending powers of x, obtained by
writing the Maclaurin expansion of ¢* and simplifying

1 1 1

ex_1:;_§+E’-LX+B3X3+B5X5+"" (6.57)
where
1 1 1
= - By=—" B =———, etc.
B =0 Bi=3 BT BT a0240

In Eq. (6.57), if we set x=hD and use the relation £ = ¢"?

(see Section 3.3.4), we obtain the identity
1, B,hD + B3h®D® + B:h°D° + -
E-1 hD 2

or equivalently
E"-1
E-1
Operating this identity on y,, we obtain

=%(E”—l) —%(E”—1)+ B,hD (E"-1) + B;h*D3(E"-1) +--- (6.58)

E"-1

1 1
HYO =E(E” =Dy —E(E” ~1)yo +BhD(E" —1)yq +--

1 1 ’ 4 7”7 77
=15 U =¥0) = (% = Yo) + Bih(y7 = ¥6) + Baf" (v~ ¥5)

+Bsh®(yp = yo') +++- (6.59)

It can be easily shown that the left-hand side denotes the sum
Yo+t vy +y, + -+ + y,, whereas the term

1
E(Yn ~Yo)
on the right side can be written as
Xn
1
n J y dx
X0

since 1/D can be interpreted as an integration operator.
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Hence, Eq. (6.59) becomes

Xn 2
h h 7 ’
| Y AX = (Yo + 23+ 2Y5 ++++ 2Yn 1+ Ya) = 1 (¥ = ¥0)
X0
4 6 v
o (6.60)
(y Yo ) - 20, 240()’n Yo)

which is called the Euler—Maclaurin’s formula for integration. The first
expression on the right-hand side of Eq. (6.60) denotes the approximate
value of the integral obtained by using trapezoidal rule and the other expressions
represent the successive corrections to this value. It should be noted that this
formula may also be used to find the sum of a series of the form y, + y,
+ y, + -+ + y,. The use of this formula is illustrated by the following
examples.

Example 6.15 Evaluate
ml2

I = J sin x dx
0
using the Euler—-Maclaurin’s formula.
In this case, formula (6.60) simplifies to

wl2 2 4

6
J SInXdX_—(y0+2y1+2y2+ +2Yn 1+ Yn)+ d
0

+
12 720 30, 240

To evaluate the integral, we take # = m/4. Then we obtain

w2 2 4
J. smxdx——(0+2+0)+ A —
192 184 320
n  w? 4

=—+4+_—4+———— approximatel
4 192 1,84,320 PP Y

=0.785398 + 0.051404 +0.000528

=0.837330.

On the other hand with # = 7/8, we obtain
nl2

j sinxdx = %[(o +2(0.382683) +.707117 + 0.923879 +1.000000)]
0

=0.987119 +0.012851 + 0.000033
=1.000003.
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Example 6.16 Use the Euler—Maclaurin formula to prove

i 2 _N(+D(2n+1)
T 6
In this case, rewrite Eq. (6.60) as

VoMYt Yaa oy —le de+£(y’—y’)—h—3(y”’—y”’)

20 17y2 n712nhx 12270 0 720 7" 0
0
LI (i)
30,240 " 7°

Here y (x) = x% »(x) = 2x and / = 1.
Hence Eq. (i) gives

n
Sum:J- x? dx+1(n2 +1)+i(2n—2)
1 2 12
1 3 1,5 1
=M -)+=-Mn"+D+—=-(n-1
3( )+ ( )6( )

= %(Zn3 +3n% + n)

_ n(n+1)(2n+1)
-

6.6 NUMERICAL INTEGRATION WITH DIFFERENT STEP SIZES

We have so far considered integration formulae which use equally spaced
abscissae. In practical problems, however, we often come across situations
which require the use of different step-sizes while solving a problem. This
would be so if the interval in question contains parts over which the function
varies too rapidly or too slowly. For better accuracy and efficiency, it would
be desirable to take a smaller size in parts of the interval over which the
function variation is large. Similarly, it would be efficient to take larger step
sizes over parts in which the function varies too slowly. A numerical integration
procedure which adopts automatically a suitable step-size to solve an integration
problem numerically is called adaptive quadrature method. We describe below
an ‘adaptive quadrature method’ based on Simpson’s (1/3)-rule.
Suppose that we wish to approximate the integral

D — T

y(x) dx (6.61)



SecTiON 6.6: Numerical Integration with Different Step Sizes

235

to within an accuracy € > 0. Using Simpson’s (1/3)-rule with 4 = (b — a)/2,

we obtain

Il
D — T

=l(ab) -

where

(b a)h“ Jv

5
y(x) dx = [y(a>+4y(a+b)+y(b)}—g—oy”(él), a<f<b

&)

I(a, b)=g[ (a )+4y(a+b)+ y(b)].

Now, we subdivide the interval and set 2 = (b — 1)/4. Simpson’s (1/3)-rule

then gives

b
Izjy(x)dx_—|: (a)+ 4y(

3a

h4 (b—a) |v

180 x 16

)t ol

(&)

h 3a+b a+b
=€[y(a)+4y( 1 )”( 2 H

+D (a+b
6 y 2

:.(a,

where

( a+b)

lla,—

2

and

| (a_+bb)

2

Assuming

Jeo
Ml

i (a+b
y

a+3b) y(b)]

180 x 16

(b-a)h*

a+b’b)_
2

(3a+b)+ (a+b)_
y 7 y 2 )

y(@)+4

180<16 ) &),

2

yv(&) =

)+4y(az3b) +y(b) |.

YV (&)

a+3b

(b-ah* SV

(6.62)

(6.63)

o)

(6.64)

(6.65a)

(6.65b)
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Eqgs. (6.62) and (6.64) give on simplification
a+b a+b (b-a)h*
I(a,b)—1 | === ||= 6.66
1[()(2)(2)}18016 &). (666

Substituting Eq. (6.66) in Eq. (6.64), we obtain an estimate for the error,
viz.

b

a+b a+b
dx—1la,— |- 1| —.b
[ yoodx (a 2) (2
a
1 a+b a+b
=—|l(a,b)-1]a,— |- 1| —,b |. 6.67
i@ ( ! ] ( ’ ] (6.67)
If we suppose
I(ab)—l( a+b)—|(a+bb <e (6.68)
2 2
for some € > 0 in the interval [a, b], then Eq. (6.67) means that
; b b
jy(x)dx—l(ai)— (‘” bl<e (6.69)
2 2
a
and that
2 b b
I (x)dX~I(a%)+ (a; b] (6.70)
a

to within an accuracy of &€ > 0.

If the inequality (6.68) is not satisfied, then the procedure is applied to
each of the intervals [a, (a + b)/2] and [(a + b)/2,b] with the tolerance &/2.
If the inequality is satisfied in both the intervals, then the sum of the two
approximations will give an approximation to the given integral. If the test
fails in any of the intervals, then that particular interval is subdivided in to
‘two subintervals’ and the above procedure is applied with a tolerance which
is half of the previous tolerance. The following example demonstrates the
testing procedure.

Example 6.17 Test the error estimate given by Eq. (6.67) in the evaluation
of the integral
w2
I = J Cos X dx.
0
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Let 2 = m/4. Then

N

T 4
110,= |==|1+—=+0 |=1.00228.
( 2) 12[ J2 J

Also
T\ & V3
I10,— [=—|1+4cos—+
o5 3ot
and
| E,Z _ i+4<3053—7T+0.
472 ) 24(2
Hence

o Z || Z 2L 1+\/§+4cos—+4cos3—ﬂ =1.00013.
4 24 8 8

It follows that

(5 PEH(E

= l(0.00215) =0.00014.
15 15

It can be verified that the
7l2

foscfoi (53]

which is less than that obtained above.

Actual error = =0.00013,

Example 6.18 Test the error estimate given in Eq. (6.67) in the evaluation
of the integral
72
= J. (8 + 4sin x) dx.
0
Exact value = 4(mr + 1)

Now,
|(o,§ :% 8+4(8+ )+12} (52+1T)

V4 /9 4 /9 .. 4
110,— |=—|8+4|8+4sin— |+8+ =—]48+16sin—+— |,
( ) ﬁ} 24( 8 ﬁ)

T /4 4

3r
I(ZE =£_ ﬁ (8+4sm?)+12}
f

+16sin 371::|
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Therefore,

| (0, £)+ | (E EJ—l[mo +i+16 sin%+16sin3§}

4 4’2 ) 24 V2
Hence
1 | O,E -1 oyf —1 E,E
15 2 4 4 2
1 32 8 . . 3
=——|104+ —=-100 — —=—-16sin — —-16sin —
15 24[ V2 V2 8 8 }
:L[4+ﬁ—165in£—165in 3—”]
360 V2 8 8
=0.00057 .
w2
Actual Error = J (B8+4sinx)dx— 1 O,E -1 E,E
4 4 2
0
T 8 . . 3
={4(r+1)—-—|100 + — +16 sin — —16sin —
(e 24( V2 8 8 )
=|16.56637 —16.56691 |
=0.00054.
6.7 GAUSSIAN INTEGRATION
We consider the numerical evaluation of the integral
b
a

In the preceding sections, we derived some integration formulae which
require values of the function at equally-spaced points of the interval. Gauss
derived a formula which uses the same number of function values but with
different spacing and gives better accuracy.

Gauss’ formula is expressed in the form

1 n
j F(u)du=WF(u)+WoF(us)+---+W,F(u,) = ZWi F(yu) (6.72)
-1 i=1

where W; and u; are called the weights and abscissae, respectively.
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In Eq. (6.72), there are altogether 2n arbitrary parameters and therefore the
weights and abscissae can be determined such that the formula is exact when F(u)
is a polynomial of degree not exceeding (2n—1). Hence, we start with

F(U) =co +cu+cou? +cgud + -+ ¢y qu2™ L (6.73)
We then obtain from Eq. (6.72)

1 1
J F(U)du = J (CO +GU+ C2U2 + C3U3 e C2n—1U2n_1) du
-1 )

2 2
=2C0+—Cr+—Cq+--- 6.74
0t 3G+ 0 (6.74)

Substituting these values on the right-hand side of Eq. (6.72), we obtain
1
I F (u)du =W, (cq + ¢y +c2u12 +---+Cop4U
-1

2n-1
1 )

2 2n-1
+W,(cq +cyu, +CoUJ, + -+ Cop U )
+Ws(cy +cug + czu:f +oeet c2n_1u§“—1) +-

+ W, (Co + CoUy +CoU2 +-+- 4+ Cpp_qu2™ ™),

which can be written as

1
I F(u) du=coWy +W, +---+W,)
-1

+ ¢ (Wyuy +Wouy +Waug +---+Wju,,)

+0C (\Nluf +W2u§ +W3u§ + ---+Wnuf]) +-
+ Con g Wau2" ™+ Wou 2" WauZ" 4 W), (6.75)

Now, Egs. (6.74) and (6.75) are identical for all values of ¢; and hence
comparing the coefficients of ¢;, we obtain the 2n equations

W +Wyo + W3 +---4+W,, =2
Wity +Wouy +Walg +---+Wuu, =0

W2 +Wou? +Wau2 + - +Wyu? = 2/3 (6.76)

2n-1 2n-1 2n-1 2n-1
WU +Wous " +Wau g -+ Wou T =0

in 2n unknowns W;and u; (i = 1, 2, ..., n).
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As an illustration, we consider the case n =2. Then the formula is
1
J F(u) du =W, F (uy) +W, F (uy). (6.77)
-1

Since this formula is exact when F(u) is a polynomial of degree not exceeding
3, we put successively F(u) = 1, u, 4> and «’. Then Eq. (6.77) gives the four
equations:

Wl +W2 = 2
Wiug +Wou, =0
6.78
Wou?Z +W,u3 =2/3 (678
W1U13 +W2u§ =0.
The solution of these equations is
1
Wl =W2 =1, U2 = —Ul == (679)

NE
This method, when applied to the general system given in Eq. (6.76) above,
will be extremely complicated and difficult, and an alternate method must
be chosen to solve the nonlinear system (6.76).
It can be shown that the u; are the zeros of the (n + 1)th Legendre
polynomial P,.;(x) which can be generated using the recurrence relation

(N+1)P, 1 () =(2n+1)uPR, (u) —nR,_; (u), (6.80)

where Po(#) = 1 and Pi(#) = u. The first-five Legendre polynomials are
given by

R(u)=u
P, (u) = (1/2) (3u® -1) (6.81)

Py(u) = (1/2) (5u®—3u)

P, (u) = (1/8) (35u* — 30u? +3). |
It can also be shown that the corresponding weights W, are given by

1 n

wi=[ TI

-1 =0, j=i

U—Uj

du,
— (6.82)

where the u; are the abscissae.
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As an example, whenn = 1 we solve P,(u) = 0, i.e.
1,2
=@Bu° -1 =0,
2( )
which gives the two abscissae:
bt __ N3 1
TR md = ge

The corresponding weights are given by

u-u 1| u? '
WO:J- L du= ——uwu| =1
7 Vo~ Up—U | 2 4

and

1 1
u-u
W1:J- 0 gy=—1 Uo_uu| =1
U —Ug U —Ug | 2 3
Similarly, forn = 3 we solve Py(u) = 0. That is,
%(35u4—30u2+3)=0,
which gives the four abscissae:

15+2/30 '
U=+ SN
35

The weights 7, can then be obtained from Eq. (6.82). It should be noted,
however, that the abscissae #; and the weights 7, are extensively tabulated
for different values of n. We list below, in Table 6.1, the abscissae and
weights for values of n up ton = 6.

Table 6.1 Abscissae and Weights for Gaussian Integration

*Uu;

W

0.57735 02692

0.0
0.77459 66692

0.33998 10436
0.86113 63116

0.0
0.53846 93101
0.90617 98459

0.23861 91861
0.66120 93865
0.93246 95142

1.0

0.88888 88889
0.55555 55556

0.65214 51549
0.34785 48451

0.56888 88889
0.47862 86705
0.23692 68851

0.46791 39346
0.36076 15730
0.17132 44924
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In the general case, the limits of the integral in Eq. (6.71) have to be
changed to those in Eq. (6.72) by means of the transformation

1 1
X—Eu(b—a)+5(a+b). (6.83)

The use of Table 6.1 is illustrated by the following example:

Example 6.19 Find | =j é x dx, by Gauss’ formula.
The first step is to change the limits by Eq. (6.83). So, we get

1
X=—(Uu+1
, U+l

This gives

1 n
1 1
=2 L (u+1) du=ZiZ{ Wi F (uj),

where F(u;)) = w; + 1.
For simplicity, we take n = 4 and using the ‘abscissae and weights’
corresponding ton = 4 in Table 6.1, we obtain

| = % [(~0.86114 +1) (0.34785) + (~0.33998 + 1) (0.65214)
+(0.33998 +1) (0.65214) + (0.86114 +1) (0.34785)]
=0.49999. ..,

where the abscissae and weights have been rounded to five decimal places.

6.8 GENERALIZED QUADRATURE

In evaluating singular integrals which arise in practical applications, it will
often be convenient to develop special integration formulae.

We consider, for instance, the numerical quadrature of integrals of the
form

b
15)=[ f®o-9)t, (6.84)

where f(f) is continuous but ¢ (¥) may have an integrable singularity, e.g.
log |s —t| or|s —t|*for > —1. For the numerical integration, we divide
the range (a, b) such thats; = a + jh (j =0, 1, 2, ..., n), with b=a+nh,
Then Eq. (6.84) can be written as
n-1 tix
1=, | tOot-9s)t. (6.85)

j=0 tj
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The method to be followed here is to approximate f'(¢) in (6.85) by the linear
interpolating function f,(f), where

o =T~ () + 1) TGl (6.86)
Substituting 7,(¢r) for f(¢) in (6.85), we obtain
n-1 tj+1
=7 > [ (-0 1) +E-1) fGale-s)dt
i=0

i
Setting ¢ = #; + ph this becomes

n-1 1
16)=h > [ [@-p)FE;)+pf (.10 ¢ + ph—s)dp,
i=0 0

which can be written as

n-1
1(s)=h Y, [oj f(t))+B;f(tjs0)]l (6.87)
j=0
where 1
ocj=hJ- @-p)o(tj+ph-s)dp (6.88a)
and i
1
Bi=n[ po(t;+ph-s)dp. (6.88b)
0

It is clear from Eqs. (6.88a) and (6.88b) that if ¢ (1) = 1, then o; = f; = h/2,
and hence Eq. (6.87) gives

I(s):g[f(t0)+2f(t1)+2f(t2)+---+2f(tn_1)+ f ()1,

which is the trapezoidal rule deduced in Section 6.4.1. Hence the rule defined
by Egs. (6.87), (6.88a) and (6.88b) is called the generalized trapezoidal rule
and is due to Atkinson [1967]. When ¢ (u) = log | u |, this rule finds important
applications in the numerical solution of certain singular integral equations.” In
practice, the computation of the weights ¢; and ; may be difficult, but they
can be evaluated once and for all, for a given ¢ (u).

In a similar way, one can deduce the generalized Simpson’s rule—analogous
to the ordinary Simpson’s rule—by approximating f(¢) by means of a quadratic
in the interval (¢, tjﬂ).**

“ See, for example, Sastry [1973; 1976].
" See, Noble [1964], p. 241.
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The error in generalized quadrature can also be estimated by the method
outlined in Section 6.4.1. For example, it can be shown that the error in the
generalized trapezoidal rule is of order A4?, assuming that f” is continuous
in [a, b].

6.9 NUMERICAL CALCULATION OF FOURIER INTEGRALS

We consider, in this section, the problem of computing integrals which
involve oscillatory functions, i.e., integrals of the form

b
I =jf(x) COS w X dx (6.89)
a
and
b
Ig =I f(x) sin @ x dx (6.90)
a

Such integrals, called the Fourier integrals, occur in practical applications,
e.g. spectral analysis. Einarsson [1972] described three methods for the
numerical integration of these integrals, namely, the trapezoidal method,
Filon’s formula [1928] and cubic spline method. Since the derivations of
Filon’s formula and the cubic spline solution are quite involved, we omit
them here but refer the reader to Einarsson’s paper. In this section, we
consider the evaluation of

1
- 6.91)

Izje‘x cos m X dx =
0 1+ w

by the trapezoidal rule. Using this rule, we obtain
h
=2+ 2(e™" coswh + 672" cos 2wh + e cos 3wh + -+)]
L Ze‘”h cos wnh
2 n=1

DY e Re ™)
2 n=1

=h %+ Re ie(i“"l)”h
n=1
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[ (-1+iw)h
=h l+ Re e—_
2 1_e(—1+|a))h

on simplification (6.92)

"2 1+e2 _ 26" cos wh

The right side of Eq. (6.92) can be further simplified by using hyperbolic
functions.
With 2 = 0.1 and w = 1, formula (6.92) gives

| = Je’x cos X dx
0

0.1 e¥2 -1 1 1

T 1,02 501 [ 22_20'1'0’23]
2 1+e"° —2e”"cos(0.1) 1+~ 10

_E' 0.221402758
2 2.221402758 — 2.199299334

=0.500833622,

so that the absolute error in the above result is 0.000833622. Table 6.2 gives
the values of the integral given in Eq. (6.91) for different values of @ and
h = 0.1. For comparison, exact values of the integral are also tabulated.

Table 6.2 Values of the Integral (6.91)

0] Exact value Value obtained by using (6.92)
1.0 0.500 000 000 0.500 833622
3.0 0.100 000 000 0.100 836 955
6.0 0.027 027 027 0.027 875 426
9.0 0.012195121 0.013 063154
12.0 0.006 896 552 0.007 793 302
20.0 0.002 493 766 0.003524 142

6.10 NUMERICAL DOUBLE INTEGRATION

Formulae for the evaluation of a double integral can be obtained by repeatedly
applying the trapezoidal and Simpson’s rules derived in Sections 6.4.1 and 6.4.2.
We consider, as an example, the double integral defined by
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Yi+l Xiq
I = f J f(x,y) dxdy, (6.93)
Yj X

where
Xip =x;th oand y =yt ok
By the repeated ‘application of trapezoidal rule’ to Eq. (6.93), we get
Yj+1
1=2 [ TFC)+ £, ]dy
Yj

hk
T[f(xiyyj)"' f(Xig2, Vi) + £ 60 Yja) + T (Xiga, Vaa)]

hk
= T[ fij+ fisnj+ fijur + fisn (6.94)

where f;; = f(x; ), ete.
Similarly, applying Simpson’s rule to the integral
Yi+l Xy

|=j Jf(x,y)dxdy,

(6.95)
Yj-1 X1

we obtain
Yj+1
=3 ] 00 )+ 41069 + £ (X, Y01y
Y1
hk
zg[f(Xi—liyj—1)+4f(xi—11yj)+ f(Xi_1: Yjs1)
+M{F (G, yj) +41 06, y) + (%, Yja)}
+ 1 (642, Vi) +4F (G40, V) + F (X1, Yjaa)]
hk
=?[fi71,j71 +figjut fisja + i ja
+ 4( fi—l,j + fi,j—l + fi,j+1 + fi+l,j) +16 fI,J] (696)
A numerical example is given here.

Example 6.20 Evaluate
1

Izj J e*Ydx dy,
00
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using the trapezoidal and Simpson’s rules. With 42 = £ = 0.5, we have the
following table of values of * 7.

X
y 0 05 1.0
0 1 1.6487 2.7183

0.5 1.6487 2.7183 4.4817
1.0 2.7183 4.4817 7.3891

Using the ‘trapezoidal rule’ from Eq. (6.94) repeatedly, we obtain

| :% [1.0+4(L.6487) + 6(2.7183) + 4 (4.4817) + 7.3891]

_ 12.3050
4

=3.0762.

Using ‘Simpson’s rule’ given in Eq. (6.96) repeatedly, we obtain

I = 0'93[1.0 +2.7183+7.3891+ 2.7183

+4(1.6487 + 4.4817 + 4.4817 +1.6487) + 16 (2.7183)]
_ 26.59042
9
= 2.9545.

The ‘exact value of the double integral is 2.9525° and therefore it can
be verified that the result given by Simpson’s rule is about sixty times more
accurate than that given by the trapezoidal rule.

EXERCISES

6.1 Find diJo(x) at x = 0.1 from the following table:
X

(0, 1.0), (0.1, 0.9975), (0.2, 0.9900), (0.3, 0.9776), (0.4, 0.9604).

6.2 The following table gives angular displacements 6 (in radians) at different
times ¢ (seconds):
(0, 0.052), (0.02, 0.105), (0.04, 0.168), (0.06, 0.242), (0.08, 0.327),
(0.10, 0.408), (0.12, 0.489).
Calculate the angular velocity at ¢ = 0.06.
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6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

From the following values of x and y, find % at x = 0.6.
X

(0.4, 1.5836), (0.5, 1.7974), (0.6, 2.0442), (0.7, 2.3275),
(0.8, 2.6511).

The distances (x cm) traversed by a particle at different times
(¢ seconds) are given below.

t 00 0.1 0.2 0.3 0.4 0.5 0.6
x 301 316 329 336 340 338 332
Find the velocity of the particle at # = 0.3 seconds.

From the following values of x and y, find % when (a) x = 1,
X

d2
® x=3, ) x=6and (d 9V atx=3.
dx?

X 0 1 2 3 4 5 6
y 6.9897 7.4036 7.7815 8.1291 84510 8.7506 9.0309

A rod is rotating in a plane about one of its ends. The angle 6 (in radians)
at different times ¢ (seconds) are given below.

t 0 0.2 0.4 06 08 10
6 00 015 050 115 20 320

Find its angular velocity and angular acceleration when ¢ = 0.6 seconds.

Tabulate the function y = f(x) = x> — 10x + 6 at x, = —0.5, x; = 1.00
and x, = 2.0. Compute its first and second derivatives at x = 1.00 using
Lagrange’s interpolation formula. Compare your results with true values.

Given the following values of x and y, find ﬂat x=2:

(09 2)9 (25 _2)3 (37 _1)
A cubic function y = f(x) satisfies the following data:

X 0 1 3 4
fx) 1 4 40 85
Determine f(x) and hence find f’(2) and f”(2).

The function y = 3xe™ is tabulated below.
(3, 0.4481), (4, 0.2198), (5, 0.1011).

Find y’(x) at x = 3, 4 and 5 and compare your results with the exact
values.
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6.11

6.12

6.13

6.14

6.15

6.16

6.17

From the following values of x and y, find % at x = 2 using the cubic
X

spline method.
(2, 11), (3, 49), (4, 123)

From the following values of x and y, determine the value of dy at

X
each of the points by fitting a natural cubic spline through them.
(1, 3), (2, 11), (4, 69), (5, 131).

Given the values of x and y:
(1.2, 0.9320), (1.3, 0.9636), (1.4, 0.9855), (1.5, 0.9975), (1.6, 0.9996),
find x, correct to two decimal places, for which y is maximum and find
this value of y.
If y=A + Bx + Cx? and yo, y, y» are the values of y corresponding
to x = 0, & and 2h, respectively, prove that

2h h

[yde=2 (s +4y+ ).

0

Evaluate
b 2 X
(a) jx sinxdx and (b) j dx
5+ 2x
0 -2
using the trapezoidal rule with five ordinates.
State the trapezoidal rule for finding an approximate area under a given

curve. A curve is given by the points (x, y) given below.

0, 23), (0.5, 19), (1.0, 14), (1.5, 11), (2.0, 12.5), (2.5, 16),
(3.0, 19), (3.5, 20), (4.0, 20).

Estimate the area bounded by the curve, the x-axis and the extreme
ordinates.

Write an algorithm to evaluate the integral
Xn
I = '[ y dx
X0
by the trapezoidal rule with step size 4. Given the values of x and y(x);

(0, 0.399), (0.5, 0.352), (1.0, 0.242) (1.5, 0.129), (2.0, 0.054)
find an approximate value of

2
'[y(x) dx.
0
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6.18

6.19

6.20

6.21

6.22

6.23

Estimate the value of the integral

3
1
J— dx
X
1
by Simpson’s rule with 4 strips and 8 strips respectively. Determine the
error in each case.

Evaluate
7l2

I = j\/siﬂdx

0

using Simpson’s %—rule with 2 = 7/12.

Using Simpson’s %-rule with # = 1, evaluate the integral

7
I =J‘x2 log X dXx.
3

X2n
1
Write an algorithm to evaluate I y dx using Simpson’s E—rule when
Xo
y(x) is given at xg, xo+ A, ..., xg + 2nh. Evaluate

1 2
Ie sin x dx
0

1
using Simpson’s g—rule with 2 = 0.1.

Compute the values of

Izj‘ dx
01+x2

using the trapezoidal rule with 2 = 0.5, 0.25 and 0.125. Then obtain a
better estimate using Romberg’s method. Compare your results with
the true value.

Determine the maximum error in evaluating the integral
ml2
I = J sin x dx
0
by both the trapezoidal and Simpson’s %—rules using four subintervals.
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6.24 Estimate the value of the integral
1/2

Jva——‘

using the trapezoidal rule. What is its exact value?

6.25 Derive Simpson’s g-rule,

X3
3
Iydx=§h(y0 +3y; + 3y, +Y3)

X0

Using this rule, evaluate

de
1+x

O t———y

| -

1
with h==. Evaluate the integral by Simpson’s g-rule and compare

[2Nep]

the results.
6.26 Using the method of undetermined coefficients, derive the formula

[yoax =000+ v+ 35 - v
oy —2y0 Y1 1 Yo— N1

6.27 The function y = ¢ satisfies the following data which is unequally
spaced:
(1.00, 2.7183), (1.05, 2.8577), (1.10, 3.0042),
(1.15, 3.1582), (1.25, 3.4903), (1.30, 3.6693).
Evaluate the integral
1.3
_[ y dx,
1.0

as accurately as possible.

6.28 Evaluate
2
J' dx
X2+ x+1
0

by Simpson’s %—rule with 2 = 0.25.
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6.29

6.30

6.31

6.32

6.33

6.34

6.35

Use Euler—-Maclaurin formula to evaluate the integral
2
I =I(cosx+|n x —e*)dx
1
Use Euler—Maclaurin formula to sum the series

S=13+22+3%+...4n%

Derive the Gauss integration formula when n = 2 and apply it to
evaluate the integral

1
J L 5 dx.
S 1+x

Use the three-point Gauss formula to evaluate the integral

Compare this result with that obtained by Simpson’s l-rule with
h = 0.125. 3

Let

2

szf(x)dx=k0 fO)+k f@)+k,f(2).

0
If £(x) is approximated by a quadratic through the points x = 0, 1, and
2, then find the values of &y, k; and 4.

Using the trapezoidal rule, show that

Je‘x cos w X dx = h___sinhh (Einarsson)
5 2 cosh h—coswh

Einarsson [1972] derived the formula

oo

Je’x cos w xdx = hsinh h (¢, coshh + ¢, cos wh),
0 cosh 2h — cos 2wh
where

3h3

_,|L+cos’@h _sin2eh
w’h? )
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6.36

6.37
6.38

6.39

6.40

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

sinwh coswh
and c, =4

o°h® w?h?

use this formula to show that

j e~ cos x dx = 0.500001391
0

If
ml4
I = J. cos? x dx,
0
compute
1o, 2] 1o, and1| Z, 2
8 8 4
Verify the error estimate given in Eq. (6.67) for Problem 6.36.

Test the error estimate given in Eq. (6.67) in the evaluation of the
integral

/2
| = Icosx dx
0

Use the trapezoidal rule to evaluate the double integral

2 4
Jj(xz—xy+ y2)dxdy.
20

1
Use Simpson’s g-rule to evaluate the double integral in Problem 6.39

and compare the results with the exact value.

Answers to Exercises
—0.0505
3.975
2.6444
0.55
(a) 0.3931 (b) 0.3341 (c) 0.2706 (d) —0.0256.
3.73 rad/s; 4.48 rad/s®
-5.5; 5.0.
0
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6.9 17;6

6.10 (a) —0.2831 (b) —0.1735  (c) —0.0639.
6.11 29

612 5;(x) =2(x — 1> + 32 —-x) +9(x — 1), | < x < 2.
6.13 1.0

6.15 (a) m, (b) —1.079%4

6.16 66.5

6.17 0.475

6.18 (a) 1.1000, (b) 1.0987
6.19 1.1873

6.20 177.4816

6.21 0.2947

6.22 0.7855

6.23 I; = 0.9871, I, = 1.0002
6.24 1.570858

6.25 0.69319; 0.69317

6.27 0.9513

6.28 0.815

6.29 —4.21667

6.31 1.5

6.32 0.693122

6
6.33 koz——, k]_:—, k2 zg.

6.36 0.269583

6.37 See Example 6.16.
6.38 Error = 0.00014
6.39 112

6.40 106.6667



Chapter

Numerical Linear Algebra

7.1 INTRODUCTION

Most problems arising from engineering and applied sciences require the
solution of systems of linear algebraic equations and computation of eigenvalues
and eigenvectors of a matrix. We assume that the readers are familiar with
the theory of determinants and elements of matrix algebra since these provide
a convenient way to represent linear algebraic equations. For example, the
system of equations.

anxy + apxy +apxs = by

aynxy + apxy + apx; = by

asixy + azxy +oasxs = by

may be represented as the matrix equation, where

AX = b
a1 A A3 X by
A= dsy doo drs |, X = X and b= b2
ay Ay g3 X3 bs

In Section 7.5, we discuss the Gauss-elimination method and also the
method of LU decomposition which is particularly useful in the cases where
a system has to be evaluated for several righthand side vectors. Iterative
methods of Jacobi and Gauss—Seidel are discussed in Section 7.6.

255



256 CHAPTER 7: Numerical Linear Algebra

The eigenvalues of a matrix are of great importance in many engineering
problems. For example, problems concerning the stability of an aircraft and
those on vibrations of a beam require the computation of eigenvalues of a
matrix. The matrix eigenvalue problem is discussed in Section 7.7 and
finally Section 7.8 is devoted to a brief discussion of singular value decomposition
of a matrix.

7.2 TRIANGULAR MATRICES

A square matrix is said to be triangular if the elements above (or below)
of the main diagonal are zero. For example, the matrices

a1 A A3 by O 0
A=| 0 a22 a23 and B= b21 b22 0
0 0 ag by by bgg

are triangular matrices where A4 is called an upper triangular matrix and B
is a lower triangular matrix.

It is clear that in 4, a; = 0 for i > j, and b; = 0 for j > i in B. It is
also easily seen that a triangular matrix is nonsingular only when all its
diagonal elements are nonzero. The following properties hold for triangular
matrices:

(i) If 4, and 4, are two upper triangular matrices of the same order,
then 4; + A4, and A;A4, are also upper triangular matrices of the
same order. Similar results hold good for lower triangular matrices
also.

(ii) The inverse of a nonsingular lower triangular matrix is also a lower
triangular matrix. Similar result holds good for an upper triangular
matrix also. This property enables us to invert a triangular matrix
easily.

Example 7.1 Find the inverse of the matrix

1 2 3
A=|0 1 2
0 0 1

Let

&1 Qo A3
A_l =0 doo dos
0 0 az3
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Since A4 = I, we write

&y 9o 3|1 2 3 1
O 322 a23 O 1 2 = O
1 0

0 0 agl|lo O 0

Multiplying the matrices on the left side and equating corresponding elements
on both sides, we obtain

app =1, ayp =1,
2a +ap =0, 2a5 + ap =0,
= ap = -2, = ayi = -2,
3a;; + 2a;, + a3 =0 azy = 1.
= ap = 1.

Hence

o
o
=

Since the inverse of a triangular matrix is easily computed, it follows that
the inverse of a nonsingular matrix 4 can be easily obtained if 4 is expressed
as a product of two triangular matrices.

In particular, if 4 = LU, where L and U are lower and upper triangular
matrices, then it follows that

A= @uy! (7.1)
— U71L71
The next section will be devoted to the LU decomposition of a nonsingular

square matrix and this will be used in the solution of a system of linear
algebraic equations.

7.3 LU DECOMPOSITION OF A MATRIX

Let
&1 &2 vt @
o ! 22 2n
81 @2 0 @m

be a nonsingular square matrix. Then 4 can be factorized into the form LU,
where
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1 0 0 Up U U
| 1 0 0 u u
! and U= 22 2n ’
T2 1 0 0 Unn
if
&1 a2 93

&1 A
a1 20 £0, |a a a,3|#0, and so on.
11 7Y, y (@21 22 23 '

dy1  axp

31 43 433

It is a standard result of linear algebra that such a factorization, when it
exists, is umique. Similarly, the factorization LU where

| 0
1 1 0 0
I, 1, O
L= and U=(0 1 Uop,
0 O 1

is also a unique factorization. We outline below the procedure for finding
L and U with a square matrix of order 3.

Let
a1 A&y a3 1 0 Offw Uy g
A=lay ap A3z |=[lb1 1 0| 0 up Uy (7.2)
a3 Ay Az |l l 1|0 0 ugs

Multiplying the matrices on the right side of Eq. (7.2) and equating the
corresponding elements of both sides, we get

Uy = aus Upp = dios Uiz = dpz,
byup, = ay;,  byup + uyp = ap, byuys + w3 = ans, (7.3)
Lyupy = az,  Lgupn + oy = as, By + Ipiyy + uzz = as

From the above equations, we obtain

Iy =2 Iy =2
a1 T
az1 a
Upp =8 — &, Upz =83 ——— &3 (7.4)
a3 a1 e
as1
83p — =
I3, = G
Uz

from which w33 can be computed.
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The given procedure is a systematic one to evaluate the elements of L
and U (where L is unit lower triangular and U upper triangular). First, we
determine the first row of U and the first column of L, then we determine
the second row of U and the second column of L, and finally, we compute
the third row of U. It is obvious that this procedure can be generalized.
When the factorization is complete, the inverse of 4 can be computed from
formula (7.1).

Example 7.2 Factorize the matrix

2 3 1
A=l1 2 3
3 1 2

into the LU form.
Let

1 1 0 OJlug Up U
1 2 3= |21 1 0 0 Uso Usz
2| | 1 1]{0 0 ug

From Eq. (7.4), we obtain

uy = 2, up = 3, upz = 1,
1 3
Ly = E’ I3 = E,
1 5
Uy = PR Uy = PR
132 = —7, and Uzz = 18
It follows that
1 0 0 2 3 1
L= 1 1 Ofland U=]|0 1 E
2 2 2
E 7 1 0O O 18
2

7.4 VECTOR AND MATRIX NORMS

The distance between a vector and the null vector is a measure of the size
or length of the vector. This is called a norm of the vector. The norm of the
vector x, written as || x ||, is a real number which satisfies the following
conditions or axioms:
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[x]|20 and | x||=0 if and only if x=0 (7.5)
lox||=|c|||X|| for any real o (7.6)
Ix+yl|<IIx]|+]|y|l (triangle inequality). (7.7)
For the vector
X
X2
x=|", (7.8)
Xn

some useful norms are

m

Xl = Xl |+ o = Y, 1] (7.9)
i=1
n 1/2
2 2 2 2
Xl =y 1% P+ 4t B = Y 5P| =lixlle  (7.10)
i=1
[ X |l = max|x;]. (7.11)
I

The norm ||s||, is called the Euclidean norm since it is just the formula for
distance in the three-dimensional Euclidean space. The norm ||¢||, is called
the maximum norm or the wuniform norm.

It is easy to show that the three norms || X ||, || X ||, and || x ||.. satisfy the
conditions (7.5) to (7.7), given above. Conditions (7.5) and (7.6) are trivially
satisfied. Only condition (7.7), the triangle inequality, needs to be shown to
be true. For the norm || x||; we observe that

n
Ix+ylI= %+l
i=1

n

<2 (xil+1vl)

=_2 x.|+2|y.

5
[N

=[xl +11y [l (7.12)
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Similarly, for || x||,, we have

||X+y||o<,=miaX [ X + Vil
< max (% l+1yil)

=[xl 11V lee - (7.13)

The proof for the Euclidean norm is left as an exercise to the reader.
To define matrix norms, we consider two matrices 4 and B for which

the operations A+ B and AB are defined. Then,

|A+B|<|Al+|B] (7.14)
|AB|<|A[| B (7.15)
lcAl=|o|| Al (o a scalar). (7.16)

From Eq. (7.15) it follows that
[AP|<|A|P, (7.17)

where p is a natural number. In the above equations, |4 | denotes the matrix
A with absolute values of the elements.
By the norm of a matrix A =|a;;|, we mean a nonnegative number, denoted

by || A||, which satisfies the following conditions

[|Al|=0 and ||Al|=0 if and only if A=0 (7.18)

||axAll=o ||| All (e a scalar) (7.19)
A+ BlI<[[All+]IB (7.20)
IABI<[[AlllIBII- (7.21)

From Eq. (7.21), it easily follows that
IAPII<]I AP, (7.22)

where p is a natural number.
Corresponding to the vector norms given in Eqs. (7.9)—(7.11), we have
the three matrix norms

|| Ally = max Z |aij| (the column norm) (7.23)
b

12
Al =[z | & |2] (the Euclidean norm) (7.24)
i,
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| All . =max 2 |aij| (the row norm). (7.25)
I "
J
In addition to the above, we have ||A]|, defined by

A|l, = (Maximum eigenvalue of ATA)1/2. (7.26)
2

The eigenvalues of a matrix will be discussed in Section 7.7.

The choice of a particular norm is dependent mostly on practical
considerations. The row-norm is, however, most widely used because it is
easy to compute and, at the same time, provides a fairly adequate measure
of the size of the matrix.

The following example demonstrates the computation of some of these
norms.

Example 7.3 Given the matrix

A=

~N A~ P
o

find || All, [|Alle and [[A]]e..
We have

|All;=max[1+4+7, 2+5+8, 3+6+9]=max[12,15,18] =18
Al = @2 +22 +32 +4% +5% + 6% + 7% +82 + 972

= (1+4+9+16+25+36+49 + 64 +81)2

= (285)/2

=16.88.
[|All. =max[1+2+3, 4+5+6, 7+8+9]

=max [6, 15, 24]

=24.

The concept of the norm of a matrix will be useful in the study of the
convergence of iterative methods of solving linear systems. It is also used
in defining the ‘stability’ of a system of equations.

7.5 SOLUTION OF LINEAR SYSTEMS—DIRECT METHODS

The solution of a linear system of equations can be accomplished by a
numerical method which falls in one of two categories: direct or iterative
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methods. Amongst the direct methods, we will describe the elimination
method by Gauss as also its modification and the LU decomposition method.
About the iterative types, we will describe only the Jacobi and Gauss—Seidel
methods.

7.5.1 Gauss Elimination

This is the elementary elimination method and it reduces the system of
equations to an equivalent upper-triangular system, which can be solved by
back substitution.

Let the system of » linear equations in » unknowns be given by

1% + 342Xy +A3Xg +o A Xy = by

Ay Xy +agoXy + Aoz Xg + -+ Ay Xy =b2 (727)

an X +apoXo +an3Xg +---+ap X, =Dy

There are two steps in the solution of the system given in Eq. (7.27), viz.,
the elimination of unknowns and back substitution.
Step 1:  The unknowns are eliminated to obtain an upper-triangular system.
To eliminate x; from the second equation, we multiply the first equation
by (—ayi/a;;) and obtain
~ag1Xy —B1p b X, — B Zh Xy~ — gy 2 Xy = by 2L
11 1 a1 a1

Adding the above equation to the second equation of Eq. (7.27), we obtain

a1 a1 a1 a1
Ay —qy — X +| Qg —Aqz— [Xg +-o-+| A — Q= Xy =y —bp ==,
a1 a1 a3 a3

(7.28)
which can be written as

’ ’ ’ ’
8.22X2 + 323)(3 +--- 4+ aZan = b2,

where @5, =ay — & (821/a11), etc. Thus the primes indicate that the original
element has changed its value. Similarly, we can multiply the first equation
by —azi/a;; and add it to the third equation of the system (7.27). This
eliminates the unknown x; from the third equation of Eq. (7.27) and we
obtain

az0Xy + Ag3Xg + -+ + A3 X, = b3. (7.29)

In a similar fashion, we can eliminate x; from the remaining equations and
after eliminating x; from the last equation of Eq. (7.27), we obtain the
system



264 CHAPTER 7: Numerical Linear Algebra

1% + A%y + 343X oo+ Xy =Dy
Ay Xy + 3%y + -+ Aop Xy = D5
, , C (7.30)
AgxXp +agzXg -+ A3 X, =3

’

anpXp +apgXg + -+ @ Xy =by. |

We next eliminate x, from the last (n —2) equations of Eq. (7.30). Before
this, it is important to notice that in the process of obtaining the above
system, we have multiplied the first row by (—ayi/a;;), i.e. we have divided
it by a;; which is therefore assumed to be nonzero. For this reason, the first
equation in the system (7.30) is called the pivot equation, and a;; is called
the pivot or pivotal element. The method obviously fails if a;; = 0. We shall
discuss this important point after completing the description of the elimination
method. Now, to eliminate x, from the third equation of Eq. (7.30), we
multiply the second equation by (—a3,/a3,) and add it to the third equation.
Repeating this process with the remaining equations, we obtain the system

Q1% +apXy +y3Xg + o+ A Xy =by
Ay Xy +Ap3Xg + -+ Ao Xy =D

33X + -+ AgnXn =3’ (7.31)

angXg +-+++an X, =by. |

In Eq. (7.31), the ‘double primes’ indicate that the elements have changed
twice. It is easily seen that this procedure can be continued to eliminate x3
from the fourth equation onwards, x4 from the fifth equation onwards, etc.,
till we finally obtain the upper-triangular form:

1% + 31Xy +343Xg +- -+ Xy =Dy
Q99 Xy +AogXg + -+ Ay X, =)

AgaXg + -+ agn Xy = b3 (7.32)

n-1 n-1
ar(m )Xn :brg )! ]
where ar(]?]‘l) indicates that the element a,, has changed (n—1) times. We
thus have completed the first step of elimination of unknowns and reduction
to the upper-triangular form.
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Step 2:  'We now have to obtain the required solution from the system
(7.32). From the last equation of this system, we obtain

b r(1n—1)

=R (7.33)

X, =
(n
&

n

This is then substituted in the (n—1)th equation to obtain X,_; and the process
is repeated to compute the other unknowns. We have therefore first computed
X, then X,_1, X,_2, ..., X9, X, in that order. Due to this reason, the process is
called back substitution.

7.5.2 Necessity for Pivoting

We now come to the important case of the pivot being zero or very close
to zero. If the pivot is zero, the entire process fails and if it is close to zero,
round-off errors may occur. These problems can be avoided by adopting a
procedure called pivoting. If ay; is either zero or very small compared to the
other coefficients of the equation, then we find the largest available coefficient
in the columns below the pivot equation and then inferchange the two rows.
In this way, we obtain a new pivot equation with a nonzero pivot. Such a
process is called partial pivoting, since in this case we search only the
columns below for the largest element. If, on the other hand, we search both
columns and rows for the largest element, the procedure is called complete
pivoting. It is obvious that complete pivoting involves more complexity in
computations since interchange of columns means change of ‘order’ of
unknowns which invariably requires more programming effort. In comparison,
partial pivoting, i.e. row interchanges, is easily adopted in programming. Due
to this reason, complete pivoting is rarely used.

Example 7.4 Use Gauss elimination to solve the system
2x+y+2=10
3Xx+2y+3z2=18
X+4y+9z =16.

We first eliminate x from the second and third equations. For this we
multiply the first equation by (-3/2) and add to the second to get

y+32=6. @)
Similarly, we multiply the first equation by (-1/2) and add it to the third to get
Ty +17z2 =22. (ii)

We thus have eliminated x from the second and third equations. Next, we
have to eliminate y from (i) and (ii). For this we multiply (i) by —7 and add
to (ii). This gives

—4z=-20 or z=5,
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The upper-triangular form is therefore given by

2x+y+2=10
y+3z=6
z=5.

It follows that the required solution is X=7, y=-9 and z=5.

The next example demonstrates the necessity of pivoting in the elimination
method.

Example 7.5 Solve the system
0.0003120x; + 0.006032x, = 0.003328
0.5000x; + 0.8942x, = 0.9471
The exact solution is x; = 1 and x, = 0.5.
We first solve the system with pivoting. We write the given system as
0.5000x; + 0.8942x, = 0.9471
0.000312x; + 0.006032x, = 0.003328
using Gaussian elimination, the above system reduces to
0.5000x; + 0.8942x, = 0.9471
0.005474x, = 0.002737
Back substitution gives: x, = 0.5 and x; = 1.0.
Without pivoting, Gaussion elimination gives the system
0.000312x; + 0.006032x, = 0.003328
—8.7725x, = =5.3300
The back substitution process gives
X, = 0.6076 and x; = —1.0803

The effect of pivoting is clearly seen.

7.5.3 Gauss—Jordan Method

This is a modification of the Gauss elimination method, the essential difference
being that when an unknown is eliminated, it is eliminated from all equations.
The method does not require back substitution to obtain the solution and is
best illustrated by the following example.

Example 7.6 Solve the system (see Example 7.4)

2x+y+2=10
3x+2y+3z2=18
X+4y+9z =16.

by the Gauss—Jordan method.
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Elimination of x from the second and third equations is done as in
‘Gauss elimination’ and we obtain the system

2X+y+2=10
@/2)y+(3/2)z=3
(712)y +(17/2)z =11.

Next, the unknown y is eliminated from both the first and third equations. This
gives us

x-z=2 and z=5
Hence the system becomes:
X—2=2
y+3z=6

z="5.
Evaluation of y and z is trivial and the result is the same as before.

7.5.4 Moaodification of the Gauss Method to Compute the
Inverse
We know that X will be the inverse of A4 if
AX =1, (7.34)

where [ is the unit matrix of the same order as A. It is required to determine
the elements of X such that Eq. (7.34) is satisfied. For example, for third-
order matrices, Eq. (7.34) may be written as

8 A &3 || X1 X2 X3 1 0 O
A1  Ap Ay [[Xa X X3 [=[0 1 0
a1 A8 A3 (X1 X X | [0 0 1

The reader can easily see that this equation is equivalent to the three equations

&1 dp A3 || X1

Ay Ay A3 [[X1 |=

(331 33 833z [[X31 [~

Q1 QA3 || X2

dy ax»n A3 |[X2 |=|1
331 33 a3z [[X32 ] 0]
1 8 A3 || X3 [0]

Q1  Ap A3 [[X3 [=

d31 A3 a3z [[X33 L=
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We can therefore apply the Gaussian elimination method to each of these
systems and the result in each case will be the corresponding column of
A7, Since the matrix of coefficients is the same in each case, we can solve
all the three systems simultaneously. Starting with the ‘augmented system’

&1 @& &3 : 1 0 O
ay a»y a3 : 0 1 0
agy a a3 : 0 0 1

we obtain at the end of the first and second stage, respectively

&1 a9 3 1 0 0
0 ay a3y : -apyly; 1 0
0 a3 a3 : -aply, 0 1
and
&1 o 3 1 0 0
0 ap ay oy 1 0]
0 0 a3y ! o3 oz 1
where
0‘21:_%’ 0‘31=%@—&, 0‘32=—a§2-
a & dp ap az

The inverse can now be obtained easily, since the back-substitution process
with each column of the matrix 7 will yield the corresponding column of 47!,
where [ is given by

1 0 0
I = O‘Zl l O
031 Oz 1

Example 7.7 We shall consider again the system given in Example 7.6.
We have here

2 1 1
A=[3 2 3
1 4 9
The augmented system is
2 1 1 1 0 O
3 2 3 0 1 0
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After the first stage, this becomes

2 1 1 1 0 O
0 12 32 -3/2 1 O
o 72 172 : Y2 0 1

Finally, at the end of the second stage, the system becomes:

2 1 1 1 0 0
0 12 32 : -3/2 1 0}
0 o -2 : 10 -7

This is equivalent to the three systems:

2 1 1 1
0 12 3/2 : =32,
0 0o -2 : 10

2 1 1

0 V2 3/2 : 1

0 o -2 : -

and

2 1 1 : 0

0 12 3/2 : ,

0 0 -2

whose solution by back substitution yields the three columns of the matrix:

-3 5/2  -1/2
12 -17/2 312,
-5 772 =12

which is the required inverse 47"

|A|=2(%)(—2)=—2

by looking at the triangulated coefficient matrix. If this value is zero, then we
cannot back substitute and the matrix has no inverse.

We can also find
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7.5.5 Number of Arithmetic Operations

Since the total execution time depends on the number of multiplications and
divisions in Gaussian elimination, we give below a count of the total number
of floating-point multiplications or divisions in this method.

For eliminating x;, i.e. in Eq. (7.28), the factor a,;/a;; is computed once.
There are (n — 1) multiplications in the (» — 1) terms on the left side and
I multiplication on the right side. Hence the number of ‘floating-point’
multiplications/divisions required for eliminating x;is 1 +n—-1+1=n+1.
But x; is eliminated from (n — 1) equations. Therefore, the total number of
multiplications/divisions required to eliminate x; from (n — 1) equations is

(=) (n+)=(Mn-1) (n+2-1).
Similarly, the total number of multiplications/divisions required to eliminate x,
from (n — 2) equations is

(n=2)n=(n-2) (n+2-2).

The total number of multiplications/divisions required to eliminate x; from
(n — 3) equations is

n=-3)(n-)=(n-3) (n+2-3).
Similarly, the total number of multiplications/divisions required to eliminate x,
from (n — p) equations is

(n-p)(n+2-p),

and finally, x,,; is eliminated in

[n—(n=-D][n+2-(n-1)]=13.
Summing up all the above, we can write the total number of arithmetic
operations (i.e. multiplications/divisions) as

-1

(n-p) (n+2-p)= Y [(n-p)*+2(n- p)]

>S5

p=1

n-1

=z (n2+ p2—2np+2n—2p)
p=1

=n2(n—1)+(n_1) (n) (2n—2+1)_2n (n=Dn

6 2
+2n(n—1)—2(n_1)n
2

_n

3 )
where we have used the formulae:

n(n+1) 2 n(n+l) (2n+1).

and 1242243%4...4n? = 5

1+2+434--+n=
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It follows that the total number of ‘floating-point’ multiplications or divisions
in Gaussian elimination is #*/3. In a similar way, it can be shown that the
Gauss—Jordan method requires #°/2 arithmetic operations. Hence, Gauss
elimination is preferred to Gauss—Jordan method while solving large systems
of equations.

7.5.6 LU Decomposition Method

In Section 7.3, we described a scheme for computing the matrices L and U
such that

A=1LU (7.35)

where L is unit lower triangular and U an upper triangular matrix, and these
are given in Eq. (7.2). Let the system of equations be given by

anx) + apx, +oapxs = by
ayX) + aypx, + ayxs = b, (7.36)
azx; + apx, +oasx; = by

which can be written in the matrix form

AX = B (7.37)
or
LUX = B (7.38)
If we set
Ux =7, (7.39)
then Eq. (7.38) becomes
LY = B (7.40)
which is equivalent to the system
1= b
biyi + » = by (7.41)

Ly + Loy, + y3 = by
where
(y1> ¥ ¥3)' = Y and (by, by, b3)' = B.

The system (7.41) can be solved for y;, ¥, and y; by forward substitution.
When Y is known, the system (7.39) becomes

upxy + upxy +oupxs = g
UppXy T Up3X3 = )2 (7.42)
Uz3Xz = y3

which can be solved for xj, x,, x3 by backsubstitution process. As noted
earlier, this method has the advantage of being applicable to solve systems
with the same coefficient matrix but different right-hand side vectors.
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7.5.7 Computational Procedure for LU Decomposition Method

Given any nonsingular square matrix 4, the LU decomposition, where L is
unit lower triangular and U an upper triangular matrix, can be achieved by

the following computational steps:

Do i = 1(1)N - 1

Do j = 1 + 1(1)N

A(j, 1) = A(j, 1)/A(i, 1)

Do M = i + 1(1) N

A(j, M) = A(j, M) - A(i, M) *A (j, 1)
Next M

Next 7

Next 1

End

To save storage space, the elements of L and U are stored in the space
occupied by A, the elements /; being omitted. Thus, after the factorization
is effected, the layout of the store for a (4 x4) matrix is given by

Ug U Uz Uy
ly Uy Uz Uy
ls; |3 Uz Uy
g g lai3  Usa

If the right-hand side vector is B = (b;, b,, b3), then the forward substitution

can be accomplished by the statements:

Do j = 1(1)N - 1

Do i1 = j + 1(1) N

b(i) = b(i) - 1(i, J) *b(7H)
Next 1

Next 7

End.

Similarly, the backsubstitution can be effected by the steps:
Do j = N(-1)1

b(37) = b(j)/ulj, 7)

Do i =1(1) F - 1
b(i)=b(1) - u(i, J) *b(7)
Next 1

Next j

End
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Example 7.8 Solve the equations
2x+3y+z=9
x+2y+3z2=6
3x +y+2z=28

by the method of LU decomposition.

We have
2 3 1 9
A=|1 2 3|and B=|6
3 1 2 8

In Example 7.2, we obtained the LU decomposition of A. This is

1 0 O 2 3 1
L=|05 1 O0f and U=|0 05 25
15 -7 1 0 0 18

If Y = [y, ¥ »3]", then the equation LY = B gives the solution:

=9, J’2:g and y; = 5.
Finally, the matrix equation

UX =Y where X = [x, y, z]",
gives the required solution

35 29 5
X=—, y=— and z=—.
18 18 18

7.5.8 LU Decomposition from Gauss Elimination

We have seen that Gaussian elimination consists in reducing the coefficient
matrix to an upper-triangular form. We show that the LU decomposition of
the coefficient matrix can also be obtained from Gauss elimination. The
upper-triangular form to which the coefficient matrix is reduced is actually
the upper-triangular matrix U of the decomposition LU. Then, what is the
lower-triangular matrix L? For this, we consider the system defined by
AX = b, (7.43)
where
&1 a8y a3 Xt by
A=lay ap ay| X=|x| b=|b

a; g  ag X3 bs
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To eliminate x; from the second equation, we multiply the first equation by
a»i/a;; and subtract it from the second equation. We then obtain

ay1 a1 a1
Ay — 8y~ X +| @z —az— [Xg=| by —b—==
a1 a3 a3

ago%p +ag3%3 =), (7.44)

or

The factor 1,y =a,¢/ay; is called the multiplier for eliminating x; from the second
equation. Similarly, the multiplier for eliminating x; from the third equation is
given by l3; =ag;/a;. After this elimination, the system is of the form

1% +agoX +343X3 =by

A Xy +assX3 =hy (7.45)

7 ’ ’
Az Xy +az3X3 =bs.

In the final step, we have to eliminate x, from the third equation. For this
we multiply the second equation by a3,/aj, and subtract it from the third
equation. We then obtain

azsXs = by, (7.46)

where the double primes indicate that the concerned elements have changed
their values twice. In this step, the multiplier is given by l3, =a3,/a5,. The
final form of the matrix of coefficients is the upper-triangular matrix given by

&1 Q2 &3
Uu=|0 aéz aég
0 0 az;

Equation (7.47) suggests that in any computer program, the places occupied
by the zero elements may be used to store the values of the multipliers. Thus,
after elimination, the matrix 4 may be written as

(7.47)

a1 V) a3

’ ’
ly  ax a3 | (7.48)
7”7
31 l32 ags

which represents the storage of the LU decomposition of 4 with

1 0 O 8y a5 &3
L= |21 1 0 and U=|0 aéz aé3 .
|31 |32 1 0 0 aé’g,

It is easily verified that A=LU.
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7.5.9 Solution of Tridiagonal Systems

Consider the system of equations defined by

by +cup =dy |
azul + b2U2 + C2U3 = d2
aglly +bsu3 +cguy =ds (7.49)

apUn_g +byu, =d,.

The matrix of coefficients is

bhh ¢ 0 0o .. 0
a2 b2 C2 0 0
0 a c 0
0 0 0 o 0 apy by Cg
0 0 0 -« 0 0 & ob]

Matrices of the type, given in Eq. (7.50), called the tridiagonal matrices,
occur frequently in the solution of ordinary and partial differential equations
by finite difference methods. The method of factorization described earlier
can be conveniently applied to solve the system (7.49). For example, for a
(3 x 3) matrix we have
bh ¢ O 1 0 Oy ¢ 0
ay b2 Co |= |21 1 0l 0 Uso Cy
0 a b 0 I 1f|0 0 Uug
This matrix equation gives
biby = a3, bLyey + uxpn = by, (7.51)
Ipup = a3, Ipcy + usy = by ’

From these four equations, we can compute /5y, 5, /3, and u33 and these
values are stored in the locations occupied by a,, b, a3 and b3, respectively.
These computations can be achieved by the following statements:

Do i = 2(1)N

a(@) = a(i)/b(i—-1)

b(@) = b(i) — a(i) c@i -1)
Next i

When the decomposition is complete, forward and back substitutions give
the required solution. This algorithm is due to Thomas and possesses all the
advantages of the LU decomposition.
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7.5.10 lll-conditioned Linear Systems

In practical applications, one usually encounters systems of equations in
which small changes in the coefficients of the system produce large changes
in the solution. Such systems are said to be ill-conditioned. On the other
hand, if the corresponding changes in the solution are also small, then the
system is well-conditioned.

Ill-conditioning can usually be expected when |A4 |, in the system
AX = b, is small. The quantity c(4) defined by

cd) = |4 147", (7.52)

where || 4 || is any matrix norm, gives a measure of the condition of the
matrix. 1t is, therefore, called the condition number of the matrix-Large
condition numbers indicate that the matrix is ill-conditioned. Again, let
A4 =[a;] and

1/2
2 2 2
s =[af +ah+-+ad | (7.53)
If we define
o 1AL
S (7.54)

then the system is ill-conditioned if & is very small compared to unity.
Otherwise, it is well-conditioned.

Example 7.9 The system

2Xx+y=2 )
@
2x+1.01y=2.01
has the solution
x=05 and y = 1.
But the system
2X+y=2
d (i)
2.01x+y=2.05
has the solution x = 5 and y = -8.

Also,
|4, = 3.165 and || 47|, = 158.273

Therefore, condition number c(4) = |4 ||| 47| = 500.974.
Hence the system is ill-conditioned.
Also

|4] = 0.02

N \/g and Sy, = 2.24
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So,

k= 4468 x 107

Hence the system is ill-conditioned.

Example 7.10 Let

>
1l
|l Gk N

which is called Hilbert’s matrix.

Now,

| 4] = 0.0000297, which

Hence A is ill-conditioned.

Example 7.11 Let

Ol Ol Wk

)|

Slr NIk &l

L

is small compared to 1.

10
37

s; = 36.0694, s, = 108.6692 and s = 142.1021.

25 24
A=|66 78
92 -73
Now,
|4] = 1.0.
Also,
Therefore,

k=1.7954 x 10°.

which shows that 4 is ill-conditioned.

7.5.11 Method for Ill-conditioned Systems

In general, the accuracy of an approximate solution can be improved upon

by an iterative procedure. This is described below. Let the system be

A1X +apXy +azXg =0

Ap1Xq +axpXy + ap3Xp =Dy

A31Xq +agpXp +ag3Xz =g

(7.55)
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Let xl(l), xgl) and xél) be an approximate solution. Substituting these values

in the left side of Eq. (7.55), we get new values of by, b, and b;3. Let these
new values be bl(l), bgl) and bél) . The new system of equations is given by

@
1%

ey
a1 X

1 1 1
+ alzxg) + a13xé )= bl( )
1 1 1
+ ayxS) + apgx{ = b (7.56)

1 1 1) _p
aq1X{" +agXy) +agyxg = by

Subtracting each equation given in Eq. (7.56) from the corresponding
equation given in Eq. (7.55), we obtain

a8 +aye) +azey =d;
ay1€ + 8x0€) + ax383 =0, (7.57)
8318 + 832€) + 83383 =03
where e; = x; — xi(l) and d; = b; — bl(l) . We now solve the system (7.57) for
ey, eo and e3. Since ¢; = x; — xi(l) , We obtain
X = xi(l) +6, (7.58)

which is a letter approximation for x;. The procedure can be repeated to
improve upon the accuracy.

Example 7.12 Solve the system
2x +y =2
2x + 1.01y = 2.01
Let an approximate solution of the given system be given by
D=1 and yV=1.

Substituting these values in the given system, we obtain

2xW 4 y® =3
i

and 2x® +1.01y® =3.01 ®
Subtracting each equation of (i) from the corresponding equation of the
given system, we get

200 =Xy + =y =1
and
20 — x) + 1.01(y — y) = —1.

Solving the above system of equations, we obtain

x —xY =—% and y-y® =0,
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Hence
1
Xx== and y=1,
5 y

which is the exact solution of the given system.

7.6 SOLUTION OF LINEAR SYSTEMS—ITERATIVE METHODS

We have so far discussed some direct methods for the solution of simultaneous
linear equations and we have seen that these methods yield the solution after
an amount of computation that is known in advance. We shall now describe
the iterative or indirect methods, which start from an approximation to the
true solution and, if convergent, derive a sequence of closer approximations—
the cycle of computations being repeated till the required accuracy is obtained.
This means that in a direct method the amount of computation is fixed,
while in an iterative method the amount of computation depends on the
accuracy required.

In general, one should prefer a direct method for the solution of a linear
system, but in the case of matrices with a large number of zero elements,
it will be advantageous to use iterative methods which preserve these elements.

Let the system be given by

1% 31Xy +343Xg +- -+ Xy =Dy
Ao Xy + oo X + 893Xy + -+ Ao Xy =0y

3% +agpXp +AggXg oo+ Ay Xy =D3 (7.59)

an1 X +apoXo +an3Xg + -+ 8 Xy = by, ]

in which the diagonal elements a;; do not vanish. If this is not the case, then
the equations should be rearranged so that this condition is satisfied. Now,
we rewrite the system (7.59) as

by ap 3 A
X =— Xy ——2Xg =+ — =X,
R a1 a1
b, ay ., axg An
Xy = X Xy —+oe— X,
Ay ap 22 a
D T AV SV |1 (7.60)
3~ 1 2 n
Az as3 33 az3
b a a a,
Xq =—" My =2y e rmlxnfl
ann ann ann nn
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Suppose xl(l), Xgl), Xr(]l) are any first approximations to the unknowns

X1, Xp, ..., Xn . Substituting in the right side of Eq. (7.60), we find a system
of second approximations

2 a 1 a 1
x{)zi_ﬁxg) o Ban @)
&1 9 a1
2 b a 1 a.
X =22 Ba,m . %0
y Ay ay
7.61
MO T TV B Y (7.61)
= o
833 dg3 as3
an n—
ng)::_n_;il LN
nn nn nn

Similarly, if xl(n), xg'),...,xr(]n) are a system of nth approximations, then the

next approximation is given by the formula

MU W PR ORI TN O}
&1 an a1
X - Do Bo1 8o ()
= )
8 Ay a2 (7.62)
an
X0 = Do By et
ann ann nn
If we write Eq. (7.60) in the matrix form
X =BX +C (7.63)
then the iteration formula (7.62) may be written as
x (D =gx ™ 4, (7.64)

This method is due to Jacobi and is called the method of simultaneous
displacements. It can be shown that a sufficient condition for the convergence
of this method is that

IB|l<1. (7.65)

A simple modification in this method sometimes yields faster convergence
and is described below:

In the first equation of Eq. (7.60), we substitute the first approximation
(Xl(l), Xgl), Xél),..., X,(]l)) into the right-hand side and denote the result as Xl(z).
In the second equation, we substitute (xl(z), Xgl), Xél),..., Xrgl)) and denote
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the result as Xéz). In the third, we substitute (xl(z), xgz), xél),..., X,(]l)) and
call the result as Xéz). In this manner, we complete the first stage of iteration
and the entire process is repeated till the values of X, X,, ..., X,, are obtained
to the accuracy required. It is clear, therefore, that this method uses an
improved component as soon as it is available and it is called the method of
successive displacements, or the Gauss—Seidel method.

The Jacobi and Gauss—Seidel methods converge, for any choice of the
first approximation X 51) (j=12,...,n), if every equation of the system (7.60)
satisfies the condition that the sum of the absolute values of the coefficients
agla;; is almost equal to, or in at least one equation less than unity, i.e.
provided that

n

>

=1 j=i

aij

. <1 (i=12..,n), (7.66)

where the ‘<’ sign should be valid in the case of ‘at least’ one equation. It
can be shown that the Gauss—Seidel method converges twice as fast as the
Jacobi method. The working of the methods is illustrated in the following
examples:

Example 7.13 We consider the equations:
10% — 2%, = X3 — X4 =3
—2% +10X; — X3 —%X4 =15
=X — Xo +10X3 — 2%, =27
=X — X9 —2%3 +10%, =-9.

To solve these equations by the iterative methods, we re-write them as
follows:

X =0.3+0.2%, + 0.1x3 +0.1x,

Xo =1.5+0.2% +0.1X3 + 0.1x,
X3 =2.74+0.1% +0.1x5, +0.2%4

X4 =—0.9+0.1x +0.1x, + 0.2x5.

It can be verified that these equations satisfy the condition given in
Eq. (7.66). The results are given in Tables 7.1 and 7.2:

Table 7.1 Gauss-Seidel Method

n X1 X2 X3 X4
1 0.3 1.56 2.886 —0.1368
2 0.8869 1.9523 2.9566 —0.0248
3 0.9836 1.9899 2.9924 —0.0042
4 0.9968 1.9982 2.9987 —0.0008
5 0.9994 1.9997 2.9998 —0.0001
6 0.9999 1.9999 3.0 0.0

7 1.0 2.0 3.0 0.0
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Table 7.2 Jacobi’'s Method

n Xy Xo X3 Xy
1 0.3 1.5 2.7 -0.9

2 0.78 1.74 2.7 -0.18

3 0.9 1.908 2.916 —-0.108
4 0.9624 1.9608 2.9592 —0.036
5 0.9845 1.9848 2.9851 —0.0158
6 0.9939 1.9938 2.9938 —0.006
7 0.9975 1.9975 2.9976 —-0.0025
8 0.9990 1.9990 2.9990 —-0.0010
9 0.9996 1.9996 2.9996 —0.0004
10 0.9998 1.9998 2.9998 —0.0002
11 0.9999 1.9999 2.9999 —-0.0001
12 1.0 2.0 3.0 0.0

From Tables 7.1 and 7.2, it is clear that twelve iterations are required by
Jacobi’s method to achieve the same accuracy as seven Gauss—Seidel iterations.

Example 7.14 Solve the system
6x +y+z=20
x+4y —-z=6
x—y+52=7
using both Jacobi and Gauss—Seidel methods.

(a) Jacobi’s method
We rewrite the given system as

X =§—ly —%z =3.3333-0.1667y — 0.1667z

6 6
y=15-0.25x+0.25z

z=1.4-0.2x+0.2y
In matrix form, the above system may be written as

X=C+ BX
where
3.3333 0 —0.1667 —0.1667 X
C=| 15 |, B=|-0.25 0 0.25 |and X =|y|.
14 -0.2 0.2 0 z
Assuming
3.3333

x9=| 15 |, we obtain
14
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3.3333 0  -0.1667 -0.1667][3.3333] [2.8499
x®=| 15 [+[-025 0 0.25 15 |=|1.0167
1.4 0.2 0.2 0 1.4 1.0333

3.3333 0  -0.1667 -0.1667][2.8499] [2.9647
Xx@=| 15 |+]|-0.25 0 025 |[1.0167 |=|1.0458
1.4 -0.2 0.2 0 1.0333| |[1.0656

Proceeding in this way, we obtain
2.9991 2.9995
X® =[1.0012| and X® =|1.0005|.
1.0010 1.0004

We, therefore, conclude that
3
X=|1lie, x=3, y=1 and z=1.
1

(b) Gauss—Seidel method
As before, we obtain the first approximation as

2.8499
x® =|1.0167

1.0333
Then
¥ = 3.3333 — 0.1667 x 1.0167 — 0.1667 x 1.0333 = 2.9916

Y2 = 1.5 -0.25 x 2.9916 + 0.25 x 1.0333 = 1.0104
Z? =14 -0.2 x 29916 + 0.2 x 1.0104 = 1.0038
Similarly, we find
x®=12.9975 3 =1.0016, z* = 1.0008,
x® =2.9995, »® = 1.0003, = 1.0002,
x® =2.9998, y = 1.0001, z® = 1.0001.
At this stage, we can conclude that

N
)y
~
=
|

x=3, y=1, z=1.
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7.7 MATRIX EIGENVALUE PROBLEM

Let 4 be a square matrix of order n with elements a;. We wish to find a
column vector X and a constant A such that

AX = AX (7.67)
In Eq. (7.67), Ais called the eigenvalue and X is called the corresponding
eigenvecltor.

The matrix Eq. (7.67), when written out in full, represents a set of
homogeneous linear equations:

(ag1 —A)X +apX +...+ 8%, =0

do1 X + (322 - A)XZ +...+ Xy = 0 (768)

an X +apoXs +...+ (&g, — )X, =0.

A nontrivial solution exists only when the coefficient determinant in (7.68)
vanishes. Hence, we have

a — 4 Y, &3 .. 4
a ap-4 a a
a2 2 =0 (7.69)
am an anz ... ayp—4

This equation, called the characteristic equation of the matrix 4, is a polynomial
equation of degree n in A, the polynomial being called the characteristic-
polynomial of A. If the roots of Eq. (7.69) be given by A,(i = 1, 2, ..., n),
then for each value of A there exists a corresponding X; such that

AXi =/1iXi. (770)

The eigenvalues A; may be either distinct (i.e. all different) or repeated. The
evaluation of eigenvectors in the case of the repeated roots is a much
involved process and will not be attempted here. The set of all eigenvalues,
A;, of a matrix 4 is called the spectrum of A and the largest of | 4;| is called
the spectral radius of A.

The eigenvalues are obtained by solving the algebraic Eq. (7.69). This
method, which is demonstrated in Example 7.15, is unsuitable for matrices
of higher order and better methods must be applied. For symmetric matrices,
in particular, several methods are available and a recent method, known as
Householder’s method, is described in a subsequent section.

In some practical applications, only the numerically largest eigenvalue
and the corresponding eigenvector are required, and in Example 7.16, we
will describe an iterative method to compute the largest eigenvalue. This
method is easy of application and also well-suited for machine computations.
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Example 7.15 Find the eigenvalues and eigenvectors of the matrix:

5 0 1
A=(0 -2 0
1 0 5

The characteristic equation of this matrix is given by

5-1 0 1
0 -2-2 0 |=0.
1 0 5-1

which gives A; = -2, 4, = 4 and A4; = 6. The corresponding eigenvectors are
obtained thus

(i) A; = =2. Let the eigenvector be

X
X1=| % |.
X3
Then we have:
X X
Al X |=-2[ X, |,
X3 X3

which gives the equations

7% +% =0 and x +7x3=0

The solution is x; = x3 = 0 with x, arbitrary. In particular, we take x, = 1
and the eigenvector is

X1=1.

(i) A, = 4. With

Xo={X

as the eigenvector, the equations are
X1 + X3 = 0 and —6XQ = 0,

from which we obtain
X1 = —X3 and Xy = 0.
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We choose, in particular, ¥ =1/\/§ and X3 = —1/\/5 so that X12 + X22 + X§ =1.
The eigenvector chosen in this way is said be normalized. We, therefore, have

12
o |
-12

X2 =
(i) As = 6.1f
X
X3 =X
X3

is the required eigenvector, then the equations are

—X +X3=0
—8X2:0
Xl—X3=0,

which give x;=x3; and x,=0.

Choosing % = X3 =1/\/§ , the normalized eigenvector is given by
uJ2

0 |
uJ2

Example 7.16 Determine the largest eigenvalue and the corresponding
eigenvector of the matrix

X3=

1 6 1
A=|1 2 O©
0 0 3
Let the initial eigenvector be
1
0|=xO, say
0
Then we have
1 6 1)1 1
AX@ =1 2 ollo|l=[1|=x®, say
0 0 3f0 0
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Hence an approximate eigenvalue is 1 and an approximate eigenvector is X!,
Hence we have

1 6 1|[1] [7 2.3
Ax®=|1 2 oll1]|=]3]=3] 1
0 o0 3Jo] |o
from which we see that
2.3
X@ =1

and that an approximate eigenvalue is 3.
Repeating the above procedure, we successively obtain

2.1 2.2 2 2 2
4111, 4|11, 44|11, 4|1|, 41|
0 0 0 0 0

It follows that the largest eigenvalue is 4 and the corresponding eigenvector is

2
1]
0

7.7.1 Eigenvalues of a Symmetric Tridiagonal Matrix

Since symmetric matrices can be reduced to symmetric tridiagonal matrices,
the determination of eigenvalues of a symmetric tridiagonal matrix is of
particular interest. Let

1 Y 0
Al = a.12 a22 a23 . (77 1)

0 ayp ags

To obtain the eigenvalues of 4;, we form the determinant equation

a1 —A Ay 0
[AlE| & Ay —A a3 |=0.
0 a3 agzg— A

Suppose that the above equation is written in the form

$3(1) =0. (7.72)
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Expanding the determinant in terms of the third row, we obtain

- A & a—A 0
A)= -2 —
¢3(A) = (az3 - 4) 2, gy 823 %,
=(agg —A) ¢ (A) —apz(ayg — ) a3
= (agz — 1) 92(A) —a 501 (A)
=0. (7.73)
We, thus, obtain the recursion formula
$o(2) =1
7.74
o(A)=a;,-1 (7.74)
= (21— 1) 9o () (7.75)
;-4 a1
1) =
$,(1) a0, 8y /l‘
=(ay-4) (ap—-A) - a122
=01(4) (a2 — )~ a5 9o (A) (7.76)
03(2) =9, (2) (g3 — A) —aZ; ¢y (A). (7.77)
In general, if
a1—4 @ 0 0
-1 0
b (1) = a(l)z 82 =4 A2 . (@2<k<n), (7.78)
0 ak,Lk akk—/l

then the recursion formula is
Ok(M) = (@4 ~A) $ 1D -k dr2(A),  (2<k<n). (7.79)

The equation ¢4(A) = 0 is the characteristic equation and can be solved by
one of the methods described in Chapter 2. We might therefore consider the
problem as solved, but we would like to remark that the sequence
{¢ (1), 0<k <n} has special properties which make it a Sturm sequence and
from these properties one can isolate the eigenvalues of A;. Once the eigenvalues
have been isolated, one of the methods of Chapter 2 can be used to calculate
the roots rapidly. The theory of Sturm sequences will not be discussed here,
but the interested reader may refer to Henrici [1974] for details. When the
eigenvalues of the tridiagonal matrix are known its eigenvectors can be
calculated by the general method of solving a homogeneous system.
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We next describe Householder’s method for reducing a real symmetric
matrix to a tridiagonal form.

7.7.2 Householder's Method

To describe this method, we consider a third order real symmetric matrix 4
given by
81 8 a3
A=lap ap ap (7.80)
83 83  ds3
The method consists in finding a real symmetric orthogonal matrix P such
that P4AP is a symmetric tridiagonal matrix, i.e.
aq; ap 0
PAP = a{Z aéz aég (781)
0 a3 ag
where the primes denote that the elements have changed. Householder suggests
that P could be of the form

P=1-2V1", (7.82)
where
V=10, vo, 3]' and V'V =1 (7.83)
The matrix equation in (7.83) means that
V2 V2 =1 (7.84)
It follows that
1 0 0
P=[0 1-2v -2v,v, (7.85)

0 -2v,v3 1—2v§

It can be verified that P is a symmetric orthogonal matrix as required. By
direct multiplications, we find PAP and equating it to Eq. (7.81) and after
some manipulations, we obtain

V2 =% 11% (7.86)
Va2 a3
and
VA R (7.87)
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In Eq. (7.86), if the sign chosen is the same as that of a;,, then v, would
have a larger value and v; can be computed from Eq. (7.87). See Wilkinson
[1960].

Example 7.17 Reduce the matrix

1 4
A=|3 2 -1
4 -1 1

to the tridiagonal form.

Here

S=4a’+ak =5.

From Eq. (7.86), we obtain

v3 =£(1+§} since aj, is positive.
2 5
and so
v, =2
NE
Equation (7.87) now gives
41
2(21\(5)(5) /5
Thus,
-
v:[o 2 i]
5 5
and
P 0
R=I1-2w'=|0 -3/5 -4/5|.
|0 -4/5 3/5
Hence we have
(1 0 ot 3 4]1 o0 0
A =RAR=|0 -3/5 -4/5||3 2 -1{{0 -=3/5 -4/5
|0 —4/5 354 -1 1110 -4/5 3/5

1 -5 0
=|-5 2/5 1/5|, onsimplification.
0 15 13/5
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7.7.3 QR Method

This is the most efficient and widely used general method for the computation
of all the eigenvalues of a general nonsymmetric matrix. Originally, due to
J.G.F. Francis, the method is quite complicated and, therefore, only a brief
presentation is given below.

Let A; = A be the given matrix. Suppose that 4, is factorized into the form

Al = QlRl (788)
where Q; is an orthogonal matrix and R; is an upper triangular matrix.

Therefore,
Or'4, = R (7.89)

The essential feature of this method is to find orthogonal matrices
PP, ...P, | such that

Pn,]Pn,2 P2P1A1 = R] (790)

The matrices P are of the form 7 — 2VF" such that P,4, will contain zeros
below the diagonal in its first column, P, P;A4; will contain zeros in its second
column below the diagonal, and so on. If we carry out this procedure with
each column of A;, then the final result will be R;, which is an upper
triangular matrix. The sequence {4;} converges either to a triangular matrix
or to a near triangular matrix. In either case, the eigenvalues can be computed
easily.

7.8 SINGULAR VALUE DECOMPOSITION

We have so far considered square matrices only and in Section 7.5.6 we
obtained the LU decomposition of a square matrix. For rectangular matrices,
a similar decomposition is possible and this is called the singular value
decomposition (SVD). This decomposition is of great importance in matrix
theory since it is useful in finding the inverse of a singular matrix, called
the generalized inverse.

Let A be an (m X n) matrix with m > n. Then we know that the matrices
A"4 and 44" are both non-negative and symmetric. Their eigenvalues are
also identical. Let the eigenvalues of 4*4 be A,, A, ... 4, with corresponding
orthonormalized eigenvectors X|, X, ..., X,. Let these eigenvectors be the
columns of the matrix V.

Therefore,
AT4x, = 2,X, (7.91)
Similarly, let ¥, the orthonormalized eigenvectors of 44", so that we have

AA'Y, = A7, (7.92)
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Then X, and Y, are related through the equation
1
Y, =——:AX, (7.93)

i

A can be decomposed into the form

A = UDI', (7.94)
where U is the matrix whose columns are the eigenvectors Y,

D = diag (VA Az, ... Ay ), (7.95)
and
vu=1v=wmt=1, (7.96)

The decomposition defined by Eq. (7.94) is called the singular value
decomposition (SVD) of the matrix A.

Example 7.18 Obtain the singular-value decomposition of

1 2
A=|1 1]
1 3

We have

3 6
AT = 111 and ATA=
2 1 3 6 14

The eigenvalues of 474 are given by A =16.64 and A, =0.36. For the corres-
ponding eigenvectors, we have

P |

which gives the system:
3% +6X%, =16.64%;
GX]_ +14X2 = 1664X2

0.4033
Xl = .
0.9166

The solution is given by

Again, we have
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which gives the system
3% +6X%, =0.36%

6% +14x, =0.36X,.

. | 09166
27| -0.4033
we also have /4, =4.080 and /4, = 0.60.

The eigenvectors of 44" can then be obtained from Eq. (7.93). These
are given by

The solution is

0.5480 0.1833
0.3235| and 0.8555
0.7727 —0.4889

The singular-value decomposition of A is then given by

1 2 0.5480 0.1833
A=|1 1|=|0.3235 0.8555
3

[4.080 0 ][0.4033 0.9166:|
1 0.7727  -0.4889

0 0.60]10.9166  —0.4033

EXERCISES

7.1. Express the following systems of equations in the matrix form:
(@) 3x + 2y +4z =17
x+y+z=7
x+3y+5z=2

(b) 2x —z — 2u = -8
y+2z—u=-1
X—-y—-—u=-06
—x+ 3y —-2u=7

7.2 Write an algorithm to compute the product 4 = BC, where B and C are
matrices of sizes (p X ¢) and (¢ X r), respectively.

2 5 =2 3 5
If B=|-1 O 0| and C=|1 0, find 4 = BC.
2 3 4 2 0

7.3 Show that the product of two upper triangular matrices is also an
upper triangular matrix.
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1 2 3 -1 0 2
If A=([0 1 2|and B=[{ 0 1 -1, find 4B.
0 0 4 0 0 3
7.4 Explain the back substitution process for the solution of the system
1 & vt Anpf|X by
0 ap - &% |_[b
0 0 0 ayllx b,
and give an algorithm to implement it. Solve the following system
2% —3Xp + X3 =-1
—3X2 - X3 = 9
5x3 =15
7.5 Find the inverse of the matrix
2 3 1
A=|0 15 25
0 O 18
7.6 Find the inverse of the matrix
2 0 O
L=[2 1 0
3 2 2
7.7 Factorize the matrix
4 3 -1
A=(1 1 1
3 5 3
into the product LU where L is unit lower triangular and U upper
triangular.
7.8 Crout’s Decomposition If a matrix 4 is decomposed into the product

of a lower triangular matrix and a unit upper triangular matrix, it is
called Crout'’s decomposition.
Decompose the matrix.

by Crout’s method.
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7.9

7.10

7.11

7.12

7.13

7.14

7.15

Define norm of a matrix.

If
1 3 5
A=|1 4 3
1 3 2

find [| 41y, [[4 ]l and || 4 [|...
Use Gauss elimination with partial pivoting to solve the system
2x; + xp —x3 = -1
X —2x, + 3x3=9
3x; —x, + 5x3 =14
Check your answer by substitution into the original equations.

Explain Gauss elimination method with partial pivoting to solve a system
of linear algebraic equations and apply it to solve the system

1.2x; + 2.1x, — 1.1x; = 1.8776
~1.1x, + 2.0xy + 3.1x3 = —0.1159
2.1x, — 2.2x, + 3.7x; = —4.2882.

Use Gauss—Jordan method to solve the system
4x; + 3x — x5 =
3x; + 5x, + 3x3 =4
X tx+txy=1

Use Gauss elimination to find the inverse of the matrix

1 -1 1
A=1 -2 4
12 2

Solve the system of equations
10x+y+z=12
2x + 10y +z =13
x+y+3z=5
by both Gauss elimination and Gauss-Jordan methods.

Decompose the matrix
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into the form LU where L is unit lower triangular and U an
upper triangular matrix. Hence solve the system AX = 5 where
b =14 8 10]".
7.16 For the matrix in Problem 7.15, find L7!, U™ and 4.
7.17 Design an algorithm to reduce a given system of equations to upper
triangular form. Test your algorithm on the system:
4x + 3y + 2z =16
2x + 3y + 4z =20
x+2y+z=28.
7.18 Decompose the matrix
4 3 2
A=|2 3 4
1 2 1
into the form LU, where L is a lower triangular matrix and U is unit
upper triangular.
7.19 Solve the following system by Gauss elimination:
2x; +3x, —x3 + 2x4 =7
Xptxy+tx3+ x4 =2
X; + xp +3x3 — 2x4 = -6
X; +2x +x3—x4 =2
7.20 An approximate solution of the system
10x; + x5 + x3 = 12
x; + 10x, + x3 =12
x1+ x, + 10x3 = 12
is given as
X9 =0.4,x® =0.6 and x? =0.8.
Use the iterative method of Section 7.5.11 to improve this solution.
7.21 Solve the system
10x +2y +z=9
2x + 20y — 2z = —44
—2x + 3y + 10z = 22
by Jacobi’s method.
7.22 Solve the system given in Problem 7.21 by Gauss—Seidel method.
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7.23

7.24

7.25

7.26

7.27

State the condition of convergence of Gauss-Seidel Iterative method.
Apply this method, upto six iterations, to solve the system defined

by
28x + 4y —z = 32
2x + 17y + 4z = 35
x + 3y + 10z = 24
Cholesky's method A matrix A is said to be a symmetric matrix if
a; = a;. Symmetric systems occur frequently in engineering and
science. For symmetric systems, the LU decomposition is more
conveniently obtained, since U = L'. This method, called Cholesky’s
method, requires less storage space and less computer time. Solve the
system given by
5 0 1| x 8
0 -2 O0f|x|=|4
1 0 5% 16

by Cholesky’s method.

Explain what is meant by ill-conditioning of a matrix. Give two examples
of ill-conditioned matrices.
Is the matrix

p 101

2 3

acft 11
2 3 4
111

3 4 5]

ill-conditioned?

Define norm of a matrix. List the different types of norms of a matrix.
What is condition number of a matrix.? Explain how the condition
number is useful in determining whether a matrix is ill-conditioned.

Centro-symmetric systems Equations of the type
apxy +apx; toapxs +agxy = b (1)
ayxy t apxs t anxs + ayxy = by (ii)
axgxy t apXs toanxy + ayxy = bs (i)
ajgxy t apxs T oapxs +oapxy = by (iv)

are called centro-symmetric systems. Such systems can be solved
easily by the following method. Adding (i) and (iv), we obtain an



298 CHAPTER 7: Numerical Linear Algebra
equation for (x; + x4) and (x, + x3). Similarly, adding (ii) and (iii), we
obtain another equation for (x; + x4) and (x, + x3). These two equations
give the values of (x; + x4) and (x, + x3). Again by subtractions, we
get two equations in (x; —x4) and (x, — x3). Computation of x;, x4 and
X, X3 is now fairly easy.
Solve the system
X1 +X2+3X3—2)C4:—6
Z.X'I +3X2—X3+2X4:7
2x1 — Xy +3X3 +2X4:3
—le + 3XQ + X3 + X4 = -1
7.28 Determine the eigenvalues and the corresponding eigenvectors for
the following matrices:
1 0 O 5 0 1
2 2
(@) (o 1 1 |0 -2 0
V21 0 1 1 1 0 5
7.29 Use the iterative method to find the smallest eigenvalue of the matrix
1 6 1
A=|1 2 0
0 0 3
7.30 Determine the largest eigenvalue and the corresponding eigenvector of
the matrix
1 3 -1
B=| 3 2 4
-1 4 10
7.31 Using Householder’s method, obtain the tridiagonal form of the matrix
[1 3 4]
A=|3 1 2
4 2 1]
7.32 Given the matrix

find a symmetric orthogonal matrix P such that the matrix P4 will
contain zeros below the diagonal in its first column.
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7.4

7.5

7.6

7.7

7.8

7.9

Answers to Exercises

3 2 4[x] [7
@12 1 1llyl=|7
1 3 s5|lz] [2]
2 0 2?21 ?22|[x] [?8
0 1 21|y 71
b =
(b) 1 ?21 21|z 76
21 3 0 ?2flu 7
7 10
3 -5
17 10
x1=l,x2=2,x3=3
1 45 7
2 18
Alolo 42 -2
18
1
i 18 |
Lo o
2
Li=[-1 1 o0
1 41
4 2
1 oo 4 3 4
L= 1 0|, u=lo 2 5
4 4 4
3 1 1 0 0 -10
| 4 |
1 0 011 1 1
4 -1 oflo 1 5
3 2 -10|l0 o0 1

141 = 10,

|41, = 8.6602, 4l = 9.
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7.10 X, = 1, Xy = —], X3 = 2.
741 x, = —2.1557, x, = 1.2746, x3 = —1.6246.
7.12 X, = ]0, Xy = 05, X3 = —0.5.

12 04 02
713 At=|-02 -01 03
04 03 01

714 x =1, y=1, z=1.
715 x; = 1.1193, x, = 0.8685, x;3 = 0.1407.

1 0 0 0.2 -0.1053 -0.0507
716 Lt=| -1.4 1 o, uUl=|0 02632 00978
24211 -2.1579 1 0 0 0.0581

717 x =1, y =2, z=3.

4 0 0 p 2L
4 2
3
718 L=|2 5 0 U=|0 1 2
12 2 0 0 1
L 4 | ! J

719 x4, =2, x3=-1, x =0, x3 = 1.

720 x; =x, = x3 = 1.

7.21 5th iteration values are 0.9989, —1.9993, 2.9984.
7.22 4th iteration values are 0.9991, —1.9998, 2.9998.
7.23 6th iteration values are 0.9936, 1.5070, 1.8485.
724 x5 =3, x, =2, x1 = 1.

7.25 ill-conditioned

727 x; =1, x =0, x3=-1, x4 =2.

7.28 (a)A =0, : ]; A=3, \E]

(b)A=0, | 1/V2 |; 2=1 |0]; A=2, |1/42
|-1/\/2 0 1/2
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C)A=-2,
729 1 = -1,
7.30 A = 10.6,
1
7.31 A=|-5
0
0 1
7.32 |0 2
0 -1

0 1/2 1/2
1], =4, 0 T A=6, 0

0 ~1/2 112

0.02
0.46
1.0

-5 0
2.92 0.56
0.56 —0.92

4
0.8
-0.4



Chapter

Numerical Solution of
Ordinary Differential Equations

8.1 INTRODUCTION

Many problems in science and engineering can be reduced to the problem
of solving differential equations satisfying certain given conditions. The analytical
methods of solution, with which the reader is assumed to be familiar, can
be applied to solve only a selected class of differential equations. Those
equations which govern physical systems do not possess, in general closed-
form solutions, and hence recourse must be made to numerical methods for
solving such differential equations.

To describe various numerical methods for the solution of ordinary
differential equations, we consider the general first order differential equation

dy
— = f(x,
ix (X, y) (8.1a)
with the initial condition,
Y (%) = Yo (8.1b)

and illustrate the theory with respect to this equation. The methods so developed
can, in general, be applied to the solution of systems of first-order equations,
and will yield the solution in one of the two forms:
(i) A series for y in terms of powers of x, from which the value of y
can be obtained by direct substitution.
(ii) A set of tabulated values of x and y.

The methods of Taylor and Picard belong to class (i), whereas those of
Euler, Runge—Kutta, Adams—Bashforth, etc., belong to class (ii). These latter

302
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methods are called step-by-step methods or marching methods because the
values of y are computed by short steps ahead for equal intervals % of the
independent variable. In the methods of Euler and Runge—Kutta, the interval
length 4 should be kept small and hence these methods can be applied for
tabulating y over a limited range only. If, however, the function values are
desired over a wider range, the methods due to Adams—Bashforth, Adams—
Moulton, Milne, etc., may be used. These methods use finite-differences and
require ‘starting values’ which are usually obtained by Taylor’s series or
Runge—Kutta methods.

It is well-known that a differential equation of the nth order will have
n arbitrary constants in its general solution. In order to compute the numerical
solution of such an equation, we therefore need »n conditions. Problems in
which all the initial conditions are specified at the initial point only are called
initial value problems. For example, the problem defined by Egs. (8.1) is an
initial value problem. On the other hand, in problems involving second-and
higher-order differential equations, we may prescribe the conditions at two
or more points. Such problems are called boundary value problems.

We shall first describe methods for solving initial value problems of the
type (8.1), and at the end of the chapter we will outline methods for solving
boundary value problems for second-order differential equations.

8.2 SOLUTION BY TAYLOR’S SERIES

We consider the differential equation

y'=1(xy) (8.1a)
with the initial condition

y (%) = Yo- (8.1b)
Ify (x) is the exact solution of Eq. (8.1), then the Taylor’s series for y (x)
around x = x is given by

VRY:
Y(X)=YO+(X—X0)Y6+%Y6,+"' (8.2)

If the values of Yg, ¥g,... are known, then Eq. (8.2) gives a power series
for y. Using the formula for total derivatives, we can write

y'=1"=f,+y1, = fy + ffy,

where the suffixes denote partial derivatives with respect to the variable
concerned. Similarly, we obtain

Y= 1= gt By T £ (Fy o+ £)+ By (f + f, F)
= fo +2ff + £26, + £, 6, + ff]

and other higher derivatives of y. The method can easily be extended to
simultaneous and higher-order differential equations.
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Example 8.1 From the Taylor series for y (x), find y (0.1) correct to four
decimal places if y (x) satisfies

Yy =x— y2 and y(0)=1.
The Taylor series for y (x) is given by

B I N
y(x) =1+xyp T Yot Yoo Yo tog Yot
The derivatives yj, yg,... etc. are obtained thus:
y(x)=x-y? Yo =-1
y(x)=1-2yy’ Yo =3
Y () =-2yy" -2y Yo=-8
y"Y (x)=-2yy"” - 6yy” Yo =34
y () =-2yy" -8yYy” - 6y" yo =—186

Using these values, the Taylor series becomes

y(x)=1- x+§x2 —ﬂx3 +£x4 —ﬂx5 +e-
2 3 12 20

To obtain the value of y (0.1) correct to four decimal places, it is found that

the terms up to x* should be considered, and we have y(0.1)=0.9138.
Suppose that we wish to find the range of values of x for which the
above series, truncated after the term containing x*, can be used to compute

the values of y correct to four decimal places. We need only to write
352000005 or x<0.126.

Example 8.2 Given the differential equation
y’'=xy'=y=0
with the conditions y(0) = 1 and)’(0) = 0, use Taylor’s series method to
determine the value of y (0.1).
We have y(x) = 1 and y’(x) = 0 when x = 0. The given differential
equation is

Yy (x) =xy'(x) +y(x) (i)
Hence y”’(0) = y(0) = 1. Successive differentiation of (i) gives
Y7 () = xy"(X) + Y () + ' (X) = xy"(x) + 2y'(x), (ii)
Y™ () =Xy () + Y () + 2y (%) = xy"(X) + 3y (), (iii)
yY (0 =xy" (x) +y"(x) + 3y () = xy" (x) + 4y (x), (iv)

YO0 = xyY () + Y (x) +4y" (%) = xy¥ (x) + 5" (%), (v)
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and similarly for higher derivatives. Putting x=0 in (ii) to (v), we obtain
Y (©=2y(0)=0, yV(0)=3y"(0)=3 y'(©)=0, y"(0)=5
By Taylor’s series, we have

2
VU)y@+w®+ Y@H yW®+ W@)

@y '(0)+ y '(0)+--

Hence

(0.1)> wm (0.1)°
y(0.1) =1+ > (3)+ =0 B)+---

=1+0.005+0.0000125, neglecting the last term

=1.0050125, correct to seven decimal places.

8.3 PICARD’S METHOD OF SUCCESSIVE APPROXIMATIONS

Integrating the differential equation given in Eq. (8.1), we obtain

X
y=yo+ [ F(xy)ox (8.3)

X0
Equation (8.3), in which the unknown function y appears under the integral
sign, is called an integral equation. Such an equation can be solved by the

method of successive approximations in which the first approximation to y
is obtained by putting y, for y on right side of Eq. (8.3), and we write

X
1
y® =yo+ [ f(x yo) dx
X0
The integral on the right can now be solved and the resulting y'! is substituted
for y in the integrand of Eq. (8.3) to obtain the second approximation y:

X
Y& =yo+ [ 00 y®)ax
X0
Proceeding in this way, we obtain y(g), y(4),..., y(n_l) and y(n), where
X
y™ =y, + J f(x, y"Y)adx with y© =y, (8.4)
X0
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Hence this method yields a sequence of approximations y(l), y(z), y(n) and
it can be proved (see, for example, the book by Levy and Baggot) that if
the function f(x, ) is bounded in some region about the point (X, yg) and
if f(x,y) satisfies the Lipschitz condition, viz.,

[FOY)-F (X Y)ISK|Yy-V] K being a constant (8.5)
then the sequence y(l), y(z),... converges to the solution of Eq. (8.1).

Example 8.3 Solve the equation y' =X+ y2, subject to the condition y =1
when x =0.

We start with y(o) =1 and obtain
X 1
y(l) =1+J (x+1)dx=1+x+5x2.
0

Then the second approximation is
X

2
@ _ 1o
y _1+J [x+(1+x+2x )}dx

0

Clax+oxe 23 e s
2 3 4 20

It is obvious that the integrations might become more and more difficult as
we proceed to higher approximations.

Example 8.4 Given the differential equation

@ _ %

dx y%+1
with the initial condition ¥y =0 when x =0, use Picard’s method to obtain y

for x=0.25, 0.5 and 1.0 correct to three decimal places.
We have

X XZ
yzj > dx.
o Y +1

Setting y(o) =0, we obtain
( 1
y(l) ZJ' XZdX=§X3
0

and
X

13 1 9

2
)/(2)=_[X—6dx=tan‘1 1x3 ==X ——X +---
o (179) x° +1 3 3 81
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so that ' and 1 agree to the first term, viz., (1/3)x’. To find the range
of values of x so that the series with the term (1/3)x> alone will give the
result correct to three decimal places, we put

L 4® <0.0005
81

which yields
x<0.7
Hence

y(0.25) = %(0.25)3 =0.005

y(05) =%(o.5)3 ~0.042

11
1.0)=>---=0.321
ya0=3-5

8.4 EULER’S METHOD

We have so far discussed the methods which yield the solution of a differential
equation in the form of a power series. We will now describe the methods
which give the solution in the form of a set of tabulated values.
Suppose that we wish to solve the Eqs. (8.1) for values of y at
x =x.=xy+rh(r =1, 2, ...). Integrating Eq. (8.1), we obtain
X
Y1=Yo+ J f(x y)dx. (8.6)

X0

Assuming that f(x, y)=f (Xg, Yp) in Xg <X <X, this gives Euler’s formula

y1 = Yo +hf (X0, Yo)- (8.7a)
Similarly for the range x; <x<Xx,, we have
X2
Va=yi+ | f(xy)dx
X
Substituting f (x;, y;) for f(x,y) in x <x<x, we obtain
y2 = Y1 +hf (xg, y1). (8.7b)
Proceeding in this way, we obtain the general formula
Yoo =Yn +Hhf (%, ¥,), n=0,12,... (8.8)

The process is very slow and to obtain reasonable accuracy with Euler’s
method, we need to take a smaller value for 4. Because of this restriction
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on h, the method is unsuitable for practical use and a modification of it,
known as the modified Euler method, which gives more accurate results, will
be described in Section 8.4.2.

Example 8.5 To illustrate Euler’s method, we consider the differential
equation Y’ =-y with the condition y(0) =1.
Successive application of Eq. (8.8) with h=0.01 gives

y(0.01) =1+0.1(~1) =0.99

y(0.02) = 0.99 +0.01 (~0.99) = 0.9801
y(0.03) = 0.9801+ 0.01 (~0.9801) = 0.9703
y (0.04) = 0.9703+0.01 (~0.9703) = 0.9606.

The exact solution is y=e™* and from this the value at x =0.04 is 0.9608.

8.4.1 Error Estimates for the Euler Method

Let the true solution of the differential equation at x = x,, be y(x,) and also
let the approximate solution be y,. Now, expanding y(x,,;) by Taylor’s
series, we get

’ h2 ”
Y(Xn41) = Y(X,) + hy (Xn)‘i‘?y (Xp) + -+

’ h2 ”
=y(x,)+hy’(x,) +7y (r,), wherex, <1,<Xp1. (8.9)

We usually encounter two types of errors in the solution of differential
equations. These are (i) local errors, and (ii) rounding errors. The local
error is the result of replacing the given differential equation by means of
the equation

Yne1 = Yo + Ny
This error is given by

1.0,
Ln+1=—§h2y (n) (8.10)

The total error is then defined by

€n :yn_y(xn) (811)
Since y, is exact, it follows that e, = 0.
Neglecting the rounding error, we write the total solution error as

€n1 = Yne1 — Y(Xn12)
=Y+ hyr,1 - [Y(Xn) + hy,(xn) - I-n+1]
=€, + h[f (Xann) - y,(xn)]+ I-n+1-
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= en+1=en+h[f(xn’yn)_ f(Xnvy(Xn))]+Ln+l'
By mean value theorem, we write

F O Yn) = f (%9, Y(%0)) = [ ¥n = y(xn)]g—;(xn,éfn), y(%n) <&q < .
Hence, we have
€ns1 = [1+hfy (%0, 60) |+ L (8.12)
Since ¢, = 0, we obtain successively:
ee=L; e= [1+ hfy (%, 51)] L+ Ly;
es =[1+ hf, (xz,éjz)] [1+ hfy(xl,éjl)](L1 +Ly) + Lg; etc.

See the book by Isaacson and Keller [1966] for more details.

Example 8.6 We consider, again, the differential equation Yy’ =-y with the
condition y(0) =1, which we have solved by Euler’s method in Example 8.5.

Choosing h=0.01, we have
1+hfy (Xy, &) =1+0.01(-1) = 0.99.
and

l ”
Lnsa = =1y (py) =-0.00005y(py).

In this problem, y(p,) < y(x,), since Yy is negative. Hence we successively
obtain

|L;| <0.00005=5x107°,
IL,| <(0.00005) (0.99) <5x107°,
|Lg| <(0.00005) (0.9801) <5x10™°,

and so on. For computing the total solution error, we need an estimate of
the rounding error. If we neglect the rounding error, i.e., if we set

Rp =0,
then using the above bounds, we obtain from Eq. (8.12) the estimates
eo = 0,
e | <5%x107°

le,|<0.99 +5x10™° <107
le3|<0.99, +5x10™° <107 +5x10™°
leg|<0.99e; +5x107° <107* +107* = 2x10™* = 0.0002
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It can be verified that the estimate for e, agrees with the actual error in the
value of »(0.04) obtained in Example 8.5.

8.4.2 Modified Euler’'s Method

Instead of approximating f(X,y) by f(xg,Yy) in Eq. (8.6), we now
approximate the integral given in Eq. (8.6) by means of trapezoidal rule to
obtain

h
Y1=Yo +E[f(XO!y0)+f(X11 1)l (8.13)
We thus obtain the iteration formula
h
" =yo+ o100, Y0+ F00, yi")L n=0,12...  (8.14)

where yl(n) is the nth approximation to y;. The iteration formula (8.14) can
be started by choosing yl(o) from Euler’s formula:

yl(o) = Yo +hf (X, Yo)-

Example 8.7 Determine the value of y when x=0.1 given that
y(0)=1 and y'= X2 + y

We take h=0.05. With xy=0 and y,=1.0, we have f(xg,Y)=1.0. Hence
Euler’s formula gives

y{® =1+0.05(1) =1.05

Further, X, =0.05 and f(x, yl(o))=1.0525. The average of f(Xg, Yg) and

(X, yl(o)) is 1.0262. The value of yl(l) can therefore be computed by using
Eq. (8.14) and we obtain

y® =1.0513.

Repeating the procedure, we obtain yl(z) =1.0513. Hence we take y; =1.0513,
which is correct to four decimal places.

Next, with x =0.05, y; =1.0513 and h=0.05, we continue the procedure
to obtain y,, i.e., the value of y when x=0.1. The results are

y©=11040, y{P=1.1055 yP =1.1055

Hence we conclude that the value of y when x=0.11is 1.1055.

8.5 RUNGE-KUTTA METHODS

As already mentioned, Euler’s method is less efficient in practical problems
since it requires 4 to be small for obtaining reasonable accuracy. The
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Runge—Kutta methods are designed to give greater accuracy and they possess
the advantage of requiring only the function values at some selected points
on the subinterval.

If we substitute y; =y + hf (Xg, Yp) on the right side of Eq. (8.13), we
obtain

h
Yi=Yo+- [fo+ (X +h, yo +hfo)],
where fq = f(Xg, ¥p). If we now set

k]_ = hfo and k2 = hf (XO + h, yo + kl)
then the above equation becomes

1
Y1=Yo +E(k1+k2)’ (8.15)

which is the second-order Runge—Kutta formula. The error in this formula
can be shown to be of order #* by expanding both sides by Taylor’s series.
Thus, the left side gives
h? , h
Yo+ o +—-Yo'+ Yo+

and on the right side

of of 2
k, = hf +h,yy+hfy)=h| fy + h—+hfy —+ 0O (h°) [.
2 (%o Yo + hfp) 0 N5 T3y ( )]
Since
df (e y) o of
dx ox ay
we obtain

k, = h[fy +hfg +0(h?)] =hf, +h?f§ +0O(h%),
so that the right side of Eq. (8.15) gives
yo+%[hf0+hf0+h2f0’+0(h3)]:y0+hf0+%h2f0’+0(h3)

’ h2 ”
=Yp +hyp +7Yo +0(h®).

It therefore follows that the Taylor series expansions of both sides of Eq. (8.15)
agree up to terms of order /#°, which means that the error in this formula
is of order 4.
More generally, if we set
Y1 = Yo + Wik + Wk, (8.16a)

ki, = hf
e } (8.16b)
ko =hf (Xo +gh, Yo + Boky)

where
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then the Taylor series expansions of both sides of the last equation in (8.16a)
gives the identity
h? [Bf of

whfg+—| 2+ fg— [+ O (%) =y, + +W,) hf
Yo ozaxoay)()YO(Wl »)hfy

o o 3
Woh? | org — + By fy— |+0(h).
+W; (aoax+ﬂo an]+ (h%)

Equating the coefficients of f(x, y) and its derivatives on both sides, we
obtain the relations

Wyt W, =1 Waog =§, W, By =%- (8.17)
Clearly, ag = f3; and if o is assigned any value arbitrarily, then the remaining
parameters can be determined uniquely. If we set, for example, oy = ff; =1,
then we immediately obtain Wy =W, =1/2, which gives formula (8.15).

It follows, therefore, that there are several second-order Runge—Kutta formulae
and that formulae (8.16) and (8.17) constitute just one of several such
formulae.

Higher-order Runge—Kutta formulae exist, of which we mention only the
fourth-order formula defined by

Y1 = Yo +Wiky + Wk, +Wsks +Wyky (8.18a)
where

ky =hf (X, Yo)

k, =hf (Xg + aph, Yo + Bok
2 (X0 +ogh, Yo + Boki) (8.18b)

k3 =hf (Xg + orh, yg + Biky +vik»)

kg =hf (g +02h, Yo + Boky +Voky +61k3), |

where the parameters have to be determined by expanding both sides of the
first equation of (8.18a) by Taylor’s series and securing agreement of terms
up to and including those containing 4*. The choice of the parameters is,
again, arbitrary and we have therefore several fourth-order Runge—Kutta
formulae. If, for example, we set

1 1
(o)) :ﬁOZE’ 0{1:5, o, =1
1
Blzg(\/?—l), ﬁZZO
(8.19)
v =1_ 1 1 v = 1 1 5 :1+ 1 y
1 \/E 2 > 1 \/E

Wl :W4 =

[

1, 1 1(, 1
, W, ==1-—| Wy =21+ = |
? 3( 2) ’ 3( ﬁ)_
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we obtain the method of Gill, whereas the choice

1 1 1

ao_al_? ﬁo—Vl—E

Pr=B;=v, =0, 0, =8, =1 (8.20)
1 2

leads to the fourth-order Runge—Kutta formula, the most commonly used
one in practice:

1
y]_:yo +E(k1+2k2+2k3+k4) (821a)
where

ky = hf (X, Yo)

k2 :hf (XO +%h, yo +%k1)
(8.21b)

1 1
kq = hf +=h, yo +=k
3 (Xo 5 Yo > 2)

k4 th(X0+h, y0+k3)

in which the error is of order #°. Complete derivation of the formula is
exceedingly complicated, and the interested reader is referred to the book by
Levy and Baggot. We illustrate here the use of the fourth-order formula by
means of examples.

Example 8.8 Given dy/dx=y—x where y(0)=2, find y(0.1) and y(0.2)
correct to four decimal places.

(1) Runge—Kutta second-order formula: With h=0.1, we find k; =0.2
and k, =0.21. Hence

yi=y(0.1)= 2+%(o.41) — 2.2050.

To determine y, =y (0.2), we note that x5 =0.1 and y,; =2.2050. Hence,
k; =0.1(2.105) =0.2105 and k, =0.1(2.4155-0.2) = 0.22155.
It follows that

Y, = 2.2050 +%(o.2105 +0.22155) = 2.4210.

Proceeding in a similar way, we obtain
y3 =y(0.3)=2.6492 and y,=y(0.4)=2.8909
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We next choose /2 = 0.2 and compute y (0.2) and y(0.4) directly. With 2 =0.2.
xo = 0 and y, = 2, we obtain k; = 0.4 and k£, = 0.44 and hence y(0.2) =
2.4200. Similarly, we obtain y(0.4) = 2.8880.

From the analytical solution y = x + 1 + ¢%, the exact values of 1(0.2)
and »(0.4) are respectively 2.4214 and 2.8918. To study the order of conver-
gence of this method, we tabulate the values as follows:

X Computed y Exact y Difference Ratio
0.2 h=0.1:2.4210 2.4214 0.0004
h =0.2:2.4200 0.0014 o
0.4 h=0.1:2.8909 2.8918 0.0009
h=0.2:2.8880 0.0038 2

It follows that the method has an %*-order of convergence.
(i1)) Runge—Kutta fourth-order formula: To determine »(0.1), we have
X0 =0, y0 =2 and 2 = 0.1. We then obtain

k =0.2,

k, =0.205

kg = 0.20525
k, =0.21053.

Hence
y(0.1)=2 +%(k1 + 2Kk, + 2kg + k,) = 2.2052.
Proceeding similarly, we obtain (0.2) = 2.4214.

Example 8.9 Givendy/dx = 1 + y*, where y =0 when x = 0, find y(0.2),
»(0.4) and y(0.6).

We take 4 = 0.2. Withxy, = y, = 0, we obtain from (8.21a) and (8.21b),
k; =0.2,
k, =0.2 (1.01) = 0.202,
ky =0.2 (1+0.010201) = 0.20204,
k, =0.2 (1+0.040820) = 0.20816,

and
y(0.2)=0 +% (kg + 2Ky + 2k3 +k,) =0.2027,

which is correct to four decimal places.
To compute 1(0.4), we takex, = 0.2, y, = 0.2027 and 4 = 0.2. With
these values, Eqs. (8.21a) and (8.21b) give
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k; =0.2 [L1+(0.2027)?] = 0.2082,
k, =0.2 [1+(0.3068)%] = 0.2188,
ks =0.2[1+(0.3121)?] = 0.2195,

kg =0.2[1+ (0.4222)2] =0.2356,
and
y(0.4) =0.2027 + 0.2201=0.4228,
correct to four decimal places.

Finally, taking x, = 0.4, y, = 0.4228 and # = 0.2, and proceeding as
above, we obtain »(0.6) = 0.6841.

Example 8.10 We consider the initial value problem y’=3x+y/2 with the
condition y(0) = 1.
The following table gives the values of 1(0.2) by different methods, the

exact value being 1.16722193. It is seen that the fourth-order Runge—Kutta
method gives the accurate value for 2 = 0.05.

Method h Computed value
Euler 0.2 1.100 000 00
0.1 1.132 500 00
0.05 1.149 567 58
Modified Euler 0.2 1.100 000 00
0.1 1.150 000 00
0.05 1.162 862 42
Fourth-order Runge—Kutta 0.2 1.167 220 83
0.1 1.167 221 86
0.05 1.167 221 93

8.6 PREDICTOR-CORRECTOR METHODS

In the methods described so far, to solve a differential equation over a single
interval, say fromx = x, tox = x,.;, we required information only at the
beginning of the interval, i.e. at x = x,. Predictor—corrector methods are the
ones which require function values atx,, x, 1, X, 2, ... for the computation
of the function value atx,.; A predictor formula is used to predict the
value of y at x,,; and then a corrector formula is used to improve the value
of Ynt1.

In Section 8.6.1 we derive Predictor—corrector formulae which use
backward differences and in Section 8.6.2 we describe Milne’s method
which uses forward differences.
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8.6.1 Adams—Moulton Method

Newton’s backward difference interpolation formula can be written as

f(x, y) = fo +nVf, +wv2 fo+NOEDM+2) g3 L (8.22)

where

and fo =f (Xo, yo)

If this formula is substituted in

X
y1=yo+j f(x, y)dx, (8.23)
Xo
we get
X1 1
y1=yo+J [f0+an0+n(nz+ )V2f0+-~-]dx
Xo
‘ 1
:y0+hJ. [f0+an0+n(n+ )V2f0+---]dn
0
=Yy +h 1+1V+£V2+§V3+@V4+-.- fo-
2 12 8 720

It can be seen that the right side of the above relation depends only on y,
V.1, V.o, ..., all of which are known. Hence this formula can be used to
compute y;. We therefore write it as

1 5 3 251
Py +h[ 142V + V242V L 2oy4 |
Y1 =Yo ( AT 3 720 0 (8.24)
This is called Adams—Bashforth formula and is used as a predictor formula
(the superscript p indicating that it is a predicted value).
A corrector formula can be derived in a similar manner by using Newton’s
backward difference formula at f;:

n(n+l)V2f1+ nn+1) (n+2)

f(x,y)=f, +nVf, + V3 4 (8.25)
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Substituting Eq. (8.25) in Eq. (8.23), we obtain

X

y1=y0+'[ |:f1+an1+

X0

“(“2”) v2{, +] dx

n(n+1)

0
=y0+hj[f1+an1+ V2f1+---:|dn
1

1o 1., 1.3 19 4
—yo+hl1-2v-—v2_—y3_ Tyt g
Yo ( 2 12 24 720 )1 (8.26)

The right side of Eq. (8.26) depends onyy, yy, V1, ... where for y; we
use ylp , the predicted value obtained from (8.24). The new value of y; thus
obtained from Eq. (8.26) is called the corrected value, and hence we rewrite
the formula as
c 1 1 .o 1.3 19 4 p
=y +h|1-= V-V ——V°-—V"—... [f
yi=Yo ( 2 12 24 T 720 r 827

This is called Adams—Moulton corrector formula the superscript ¢ indicates
that the value obtained is the corrected value and the superscript p on the
right indicates that the predicted value of y; should be used for computing
the value of f(x;, ).

In practice, however, it will be convenient to use formulae (8.24) and
(8.27) by ignoring the higher-order differences and expressing the lower-
order differences in terms of function values. Thus, by neglecting the fourth
and higher-order differences, formulae (8.24) and (8.27) can be written as

h
yP =Yo +o 8510 =891 +371,-0f y) (8.28)
and
h
Y =Yo +§(9f1p+19f0—5f_1+ f,) (8.29)

in which the errors are approximately

251 5. (4 19 5.4 .
il 'O _-2 (4
70 10 and 720h fo™ respectively.

The general forms of formulae (8.28) and (8.29) are given by
h
A +ﬂ[55f“ -59f, 1 +37f,_,—9f,_3] (8.28a)
and
h
Vi = Yn+ 57 970 +10Tn =5y + fo o] (8.29a)

Such formulae, expressed in ordinate form, are often called explicit predictor—
corrector formulae.
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The valuesy;, ¥, and y_3, which are required on the right side of
Eq. (8.28) are obtained by means of the Taylor’s series, or Euler’s method,
or Runge—Kutta method. Due to this reason, these methods are called starter
methods. For practical problems, Runge—Kutta fourth-order formula
together with formulae (8.28) and (8.29) have been found to be the most
successful combination. The following example will illustrate the application
of this method.

Example 8.11 We consider once again the differential equation given in
Example 8.9 with the same condition, and we wish to compute y(0.8).

For this example, the starter values are y (0.6), y (0.4) and y (0.2),
which are already computed in Example 8.9 by the fourth-order
Runge—Kutta method. Using now Eq. (8.28) with y, = 0.6841, y_; = 0.4228,
v, = 0.2027 and y_ 3 = 0, we obtain

yP(0.8) = 0.6841+%{55 [1+(0.6841)2]- 59 [1+ (0.4228)?]

+37[1+(0.2027)%1- 9}
=1.0233, on simplification.

Using this predicted value on the right side of Eq. (8.29), we obtain

y©(0.8) = 0.6841+%{9 [1+(0.0233)%]+19 [1+ (0.6841)?]
—5[1+(0.4228)?]+[1+ (0.2027)]}
=1.0296, which is correct to four decimal places

The importance of the method lies in the fact that when once ylIO is computed
from formula (8.28), formula (8.29) can be used iteratively to obtain the
value of y; to the accuracy required.

8.6.2 Milne’s Method

This method uses Newton’s forward difference formula in the form

f(x, y)= fy+nAfy + n(n2—l) A% fo + n(n-19n-2) ABfy+-.  (8.30)
Substituting Eq. (8.30) in the relation
X4

y4=yo+J f(x,y) dx (8.31)

X0
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we obtain

X4
y4=y0+J [f0+nAf0+

X0

n(n2—1)A2 fo +] dx

n(n-1)
2

4
=y0+hJ-[f0+nAf0+ A2f0+---]dn
0

=Yy +h(4f0 +8Af, +2—??A2 fo +%A3f0 +)

4h
=Yo +?(2f1— fy +2f3) (8.32)

after neglecting fourth- and higher-order differences and expressing differences
Afy, A? fo and A® fo in terms of the function values.

This formula can be used to ‘predict’ the value of y, when those of y,
V1, ¥ and y3 are known. To obtain a ‘corrector’ formula, we substitute
Newton’s formula from (8.30) in the relation

X2

Yo=Yo+ J‘ f(x, y) dx (8.33)
X0
and get
: 1
y2:y0+hj [f0+nAf0+n(n2_ )A2f0+---]dn
0

=y0+h(2f0+2Afo +%A2fo +)

The value of y, obtained from Eq. (8.32) can therefore be checked by
using Eq. (8.34).
The general form of Eqgs. (8.32) and (8.34) are:

m
Vi = Yn-s + 5 2fhz = fog +215) (8.32a)

and

h
Yot = Yno1 3 (ot 4+ fo) (8.342)
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The application of this method is illustrated by the following example.

Example 8.12 We consider again the differential equation discussed in
Examples 8.9 and 8.10, viz., to solve y’ = 1 + ) with y(0) = 0 and we wish
to compute y(0.8) and y(1.0).

With 4 = 0.2, the values of y(0.2), ¥(0.4) and y(0.6) are computed in
Example 8.9 and these values are given in the table below:

X y y =1+y?
0 0 1.0

0.2 0.2027 1.0411
0.4 0.4228 1.1787
0.6 0.6841 1.4681

To obtain »(0.8), we use Eq. (8.32) and obtain

y(0.8)=0+ 0—38 [2(1.0411)-1.1787 + 2(1.4681)] =1.0239
This gives
y’(0.8) = 2.0480.

To correct this value of y(0.8), we use formula (8.34) and obtain
y(0.8) =0.4228 + 0—32 [1.1787 + 4(1.4681) + 2.0480] =1.0294.

Proceeding similarly, we obtain Yy (1.0) =1.5549. The accuracy in the values
of (0.8) and y(1.0) can, of course, be improved by repeatedly using formula
(8.34).

Example 8.13 The differential equation y’'= X2 4+ y2 — 2 satisfies the following
data:

X y
-0.1 1.0900
0 1.0000
0.1 0.8900
0.2 0.7605

Use Milne’s method to obtain the value of y (0.3).
We first form the following table:

X y y'=x?+y2-2
-0.1 1.0900 —0.80190

0 1.0 -1.0

0.1 0.8900 -1.19790

0.2 0.7605 —-1.38164
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Using Eq. (8.32), we obtain
4(0.1)
y(0.3)=1.09 +T [2(-1) - (-1.19790) + 2(—1.38164)] = 0.614616.

In order to apply Eq. (8.34), we need to compute y’(0.3). We have
y'(0.3) = (0.3)? + (0.614616)2 — 2 = —1.532247.
Now, Eq. (8.34) gives the corrected value of y(0.3):

y(0.3)= 0.89+%[—1.197900+4(—1.38164) +(~1.532247)] = 0.614776.

8.7 CUBIC SPLINE METHOD

The governing equations of a cubic spline have been discussed in detail in
Section 5.2, where the cubic spline function has been obtained in terms of
its second derivatives, M,. In certain applications, e.g. the solution of initial-
value problems, it would be convenient to use the governing equations in
terms of its first derivatives, i.e., m,. Using Hermite’s interpolation formula
(see Section 3.9.3), it would not be difficult to derive the following formula for
the cubic spline s(x) in x_; < x < x; in terms of its first derivatives s'(x;) =m;:

(4 =% (x=%4) - %i1)2(% = X)
h2 1 h2
? 2
+ Vi (x —x)°[2 ::;— Xig) +h] y (X—%i4) [ﬁs(xi — %) +h]

s(x)=m; 4

. (8.35)

where h=x; — x;_;. Differentiating Eq. (8.35) with respect to x and simplifying,
we obtain

S'(0) = %(xi ~X) (%1 +% —3X) —%(x ~Xi_1) (X1 +2% —3%)

6(Y; - i
+ (yi 3y| 1)(X—Xi_1)(xi_x)' (8.36)
Again,
ey 2Mig o 30— M oy -
() = > (Xi_g + 2% —3X) 2 (2% +% —3X)
6(Yi — i
L0 =N (o), (8.37)

h3
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which gives

s// X:
() ===+

6
_h_Z(Yi = Yia)

2mi4, 4m; 6
=T'+T'—h—2(si = Si1). (8.38)

If we now consider the initial-value problem

d
d—i= f(xy) (8.39a)
and
y(X0) = Yo (8.39b)

then from Eq. (8.39a), we obtain

2
7y o ot oy

dx2 ox dy dx’

or
Y 06) = T 06, vi) + fy (6, i) F(6, ¥)
= f (%, i)+ fy (i, s1) 06, S7)- (8.40)
Equating Eqs. (8.38) and (8.40), we obtain

2mi_; 4m; 6

TI1+TI_h_2(Si —sizg) = f (i s)+ fy 06, ) F 06 s)  (8.41)

from which s; can be computed. Substitution in Eq. (8.35) gives the required
solution.

The following example demonstrates the usefulness of the spline method.

Example 8.14 We consider again the initial-value problem defined by
, 1 .
y =3+, y(0) =1, (i)
whose exact solution is given by

y=13e"2-6x-12 (ii)

We take, for simplicity, n=2, i.e. 2=0.5 and compute the value of y(0.5).
Here f(X,y)=3x+Yy/2 and therefore we have f. = 3and f, = 1/2. Also,

f(xi,si):Sxi+%si.
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Hence, Eq. (8.41) gives

1(3 1
Amy +8my — 24(s; —Sp) =3+ | =+ =
My + oMy (s1—50) +2(2+251J

and
1 1
4my +8my —24(sy — 57) =3+E(3+552 )

Since mg =1/2, my =3/2+5,/2 and m, =3+5s,/2, the above equations give
on simplification
s, =1.691358 and s, =3.430879.

The errors in these solutions are given by 0.000972 and 0.002497, respectively.
It can be shown that, under certain conditions, the spline method gives
O(h*) convergence and compares well with the multi-step Milne’s method.
For details, the reader is referred to Patricio [1978].

8.8 SIMULTANEOUS AND HIGHER-ORDER EQUATIONS

We consider the two equations

dx dy
—_—= f t, X, d = t! ) 8‘42
dt ( y) an dt Pt X y) ( )

with the initial conditions x = x, and y = y,, when = t,. Assuming that At = A,
Ax=k, and Ay =1, the fourth-order Runge—Kutta method gives

ki =hf (to, Xo, Yo);
L =ha(ty, Xo, Yo);

1 1 1
ko =hf|ty+=h, Xg +=Kq, Yo +=1; [
2 0*3 X0 21Y0 21)
1 1 1
L =hg| tyg +=h, Xg +=K¢, Yo +=
2> =hg| ty oM Yotk Yo+

|1)
k3 = hf to +%h, Xo +%k2, Yo +%|2 );
(8.43)

1 1 1
la=hg| tyg +=h, Xg +=ky, yg +=1, |
3=ho| 1o oM Yo+ 2Ka Yo 22)
k4=hf(t0+h,X0+k3,y0+|3);
|4=h¢(t0+h,XO+k3,yo+|3);

X =Xg +%(k1+2k2 + 2ks +Kky)

yl = yo +%(I1+2|2 +2|3 +|4).
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In a similar manner, one can extend the Taylor series method or Picard’s
method to the system (8.42). The extension of the Runge—Kutta method to
a system of »n equations is quite straightforward.

We now consider the second-order differential equation

y'=F(XV,Y) (8.44a)

with the initial conditions

y(X)=Yo and y'(x)=Yp. (8.45a)

By setting z=Y’, the problem given in Eqgs. (8.44a) and (8.45a) can be
reduced to the problem of solving the system

’

y=z and 7Z'=F(XY,2) (8.44b)

with the conditions

y(Xg)=Yo and z(Xg)=Yp (8.45b)

which can be solved by the method described above. Similarly, any higher-
order differential equation, in which we can solve for the highest derivative,
can be reduced to a system of first-order differential equations.

8.9 SOME GENERAL REMARKS

In the preceding sections, we have given a brief discussion of some well-
known methods for the numerical solution of an ordinary differential equation
satisfying certain given initial conditions. If the solution is required over a
wider range, it is important to get the starting values as accurately as
possible by one of the methods described.

It is outside the scope of this book to present a comprehensive review
of the different methods described in this text for the numerical solution of
differential equations, but the following points are relevant to the methods
discussed.

The Taylor’s series method suffers from the serious disadvantage that
all the higher derivatives of f(x, y) [see Eqs. (8.1)] must exist and that /
should be small such that successive terms of the series diminish quite
rapidly. Likewise, in the modified Euler method, the value of / should be so
small that one or two applications of the iteration formula (8.14) will give
the final result for that value of 4. The Picard method has probably little
practical value because of the difficulty in performing the successive integrations.

Although laborious, the Runge—Kutta method is the most widely used
one since it gives reliable starting values and is particularly suitable when the
computation of higher derivatives is complicated. When the starting values
have been found, the computations for the rest of the interval can be continued
by means of the predictor—corrector methods.
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The cubic spline method is a one-step method and at the same time a
global one. The step-size can be changed during computations and, under
certain conditions, gives O(A*) convergence. The method can also be extended
to systems of ordinary differential equations.

8.10 BOUNDARY-VALUE PROBLEMS

Some simple examples of two-point linear boundary-value problems are:

(a) Y () + )Y (x) +g(x)y (x) =r(x) (8.46)
with the boundary conditions
y(Xp)=a and y(x,)=b (8.47)
(b) YV (x) = p(¥) y () +a(x) (8.48)
with
y(X)=Yy'(X)=A and y(x,)=Y(x,)=B. (8.49)

Problems of the type (b), which involve the fourth-order differential equation,
are much involved and will not be discussed here. There exist many methods of
solving second-order boundary-value problems of type (a). Of these, the finite
difference method is a popular one and will be described in Section 8.10.1.
Finally, in Sections 8.10.2 and 8.10.3 we discuss methods based on the
application of cubic splines and weighted residuals.

8.10.1 Finite-difference Method

The finite-difference method for the solution of a two-point boundary value
problem consists in replacing the derivatives occurring in the differential
equation (and in the boundary conditions as well) by means of their finite-
difference approximations and then solving the resulting linear system of
equations by a standard procedure.

To obtain the appropriate finite-difference approximations to the derivatives,
we proceed as follows.

Expanding y(x+h) in Taylor’s series, we have
h? h3
y (x+h) =y (x)+hy’'(x) iy y’(x) iy y7(X) 4 (8.50)
from which we obtain
, x+h)—-y(Xx) h ,
y (X) :w__y (X)_
h 2
Thus we have

() =YY o) 8.51)
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which is the forward difference approximation for y’(x). Similarly, expansion
of y(x—h) in Taylor’s series gives

4

2 3
VXM =y () -hy X+ -y (0 - Ty W+ (852)

from which we obtain

y'(x)=

—y(x)_z(x_h)+0(h) (8.53)

which is the backward difference approximation for y’(x).
A central difference approximation for y’(X) can be obtained by subtracting
Eq. (8.52) from Eq. (8.50). We thus have

, Xx+h)—y(x-h

y(x):)’( )—Y( )+O(h2).
2h

It is clear that Eq. (8.54) is a better approximation to y’(X) than either

Eq. (8.51) or Eq. (8.53). Again, adding Eqs. (8.50) and (8.52), we get an

approximation for y”(x)

(8.54)

—-h)-2 h
YO =20y () g )
h
In a similar manner, it is possible to derive finite-difference approximations
to higher derivatives.

To solve the boundary-value problem defined by Eqs. (8.46) and (8.47),
we divide the range [x(, x,] into n equal subintervals of width 4 so that

y'(x) = (8.55)

Xj =Xy +ih, 1=1 2, ...,n
The corresponding values of y at these points are denoted by
y(x)=y;=y(x+ih), i=0,12,...,n

From Egs. (8.54) and (8.55), values of y’(x) and y”(x) at the point X = x;
can now be written as

r_ Yist — Vit 2

f=2 I 1 0(h

yi oh (h%)
and

yi”: Yi1— Zh)él +VYin + O(h2)

Satisfying the differential equation at the point X =x;, we get
yi+ fiyi +giyi =n
Substituting the expressions for y; and vy;; this gives

Yia = 2%+ V¥ ¢ Yier Vi
]
h2 2h

where y; =y (%), g; = 9(x), etc.

+0iVi =, i=1 2, ...,n=-1
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Multiplying through by 4#* and simplifying, we obtain

h h
(1—5 fi JYi—l +(=2+ gih?)y; +(1+E fi JYi+1 =h?, (8.56)
i=12..n-1
with
vo=a and y,=b (8.57)

Equation (8.56) with the conditions (8.57) comprise a tridiagonal system
which can be solved by the method outlined in Section 7.5.9 of Chapter 7.
The solution of this tridiagonal system constitutes an approximate solution
of the boundary value problem defined by Eqs. (8.46) and (8.47).

To estimate the error in the numerical solution, we define the local
truncation error, T, by

(Yia—2Yit Vi Yier—Yia
T—(h—z— Yi )+ fi (T— yi )

Expanding y;_; and y; 4 by Taylor’s series and simplifying, the above gives

h2 i 7
‘L’:E(y:v+2flyl )+O(h4) (858)

Thus, the finite difference approximation defined by Eq. (8.56) has second-
order accuracy for functions with continuous fourth derivatives on [xq, x,,].
Further, it follows that 7— 0 as h— 0, implying that greater accuracy in
the result can be achieved by using a smaller value of 4. In such a case, of
course, more computational effort would be required since the number of
equations become larger.

An easier way to improve accuracy is to employ Richardson’s deferred
approach to the limit, assuming that the O(/?) error is proportional to 4%
This means that the error has the form

y(%)—y; =h%e(x)+0(h*) (8.59)

For extrapolation to the limit, we solve Eq. (8.56) twice, with the
interval lengths 4 and //2 respectively. Let the corresponding solutions of
Eq. (8.56) be denoted by y;(h) and y(h/2). For a point x; common to both,
we therefore have

y (%) - yi (hy =h%e(x;) + O (h*) (8.60a)
and
h) h? 4
y(%)—Vi (E}Te(xiho(h ) (8.60b)

from which we obtain

y(X) 3

(8.61)
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We have explained the method with simple boundary conditions (8.47) where
the function values on the boundary are prescribed. In many applied problems,
however, derivative boundary conditions may be prescribed, and this requires
a modification of the procedures described above. The following examples
illustrate the application of the finite-difference method.

Example 8.15 A boundary-value problem is defined by
y’+y+1=0,  0<x<1
where
y(0)=0 and y@)=0.

With h=0.5, use the finite-difference method to determine the value of (0.5).
This example was considered by Bickley [1968]. Its exact solution is
given by
1-cosl

sinx—1,
sinl

y (X) =cos x +

from which, we obtain
y(0.5) =0.139493927.

Here nh=1. The differential equation is approximated as
Yica —2Yi +VYiu

o2 +y;+1=0
and this gives after simplification
yiii —(2-h?)y; + vy, =—h?, i=1,2 ...,n-1

which together with the boundary conditions y; =0 and y, =0, comprises
a system of (n+1) equations for the (n+1) unknowns yg, yi,..., Yy
Choosing h=1/2 (i.e. n=2), the above system becomes

Yo~ 2—1 ity =-1
0 2 L=y
With y, =y, =0, this gives

Y1 = y(0.5) =%= 0.142857142...

Comparison with the exact solution given above shows that the error in the
computed solution is 0.00336.

On the other hand, if we choose 2 =1/4 (i.e. n =4), we obtain the three
equations:

YooYy Yy =
0 16 1 2

16

31 1
Y1—Ey2 Y3 16
31 1

Yo- VY3t Ya=—7%

16 16’
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where y, =y, =0. Solving the system we obtain

63
=y(0.5) = —— =0.140311804,
y, =y(0.5) 449

the error in which is 0.00082. Since the ratio of the two errors is about 4,
it follows that the order of convergence is 4.

These results show that the accuracy obtained by the finite-difference
method depends upon the width of the subinterval chosen and also on the
order of the approximations. As / is reduced, the accuracy increases but the
number of equations to be solved also increases.

Example 8.16 Solve the boundary-value problem

2
d_zy — y =0
dx
with
y(0)=0 and Yy(2)=3.62686.
The exact solution of this problem is y=sinh x. The finite-difference
approximation is given by

1
h_z(yi—l =2Y; +Yis) = Vi (i)

We subdivide the interval [0, 2] into four equal parts so that #=0.5. Let the
values of y at the five points be yg, y;, Y2, ¥3 and y,. We are given that

Yo=0 and vy, =23.62686.

Writing the difference equations at the three interval points (which are the
unknowns), we obtain

4(Yo—2%1+Y2)=W
4(y1 =2y, +Y3)=VY,
4(yy —2Y3+Y4) = VY3

(if)

respectively. Substituting for y, and y, and rearranging, we get the system
—9y; +4y, =0
4y; =9y, +4y3 =0

4y, —9y, =-14.50744.

The solution of (iii) is given in the table below.

(iif)

Computed value Exact value

X of y y=sinh x Error
0.5 0.52635 0.52110 0.00525
1.0 1.18428 1.17520 0.00908

15 2.13829 2.12928 0.00901
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It is possible to obtain a better approximation for the value of y(1.0) by
extrapolation to the limit. For this we divide the interval [0, 2] into two
subintervals with 4 =1.0. The difference equation at the single unknown
point y; is given by
Yo—2Y1+Y2=V1
Using the values of y, and y,, we obtain
y; =1.20895.

Hence Eq. (8.61) gives
4(1.18428) —1.20895
y(.0)= ( ;

which is a better approximation since the error is now reduced to 0.00086.

=1.17606,

8.10.2 Cubic Spline Method

We consider again the boundary-value problem defined by Eqs. (8.46) and
(8.47). Let s(x) be the cubic spline approximating the function y(x) and let
s”(x;)=M;. Then, at x=x; the differential equation given in Eq. (8.46)
gives

M; + fis"(6) + giyi =1, (8.62)
But
, h 1
s (Xi—)=§(2Mi + Mi—l)"’ﬁ(yi = Yi-1) (8.63)
and
, h 1
S(Xi+)=—§(2Mi +Mi+1)+F(Yi+1—Yi) (8.64)

Substituting Eqs. (8.63) and (8.64) successively in Eq. (8.62), we obtain the
equations

h 1
M; + f; [E 2Mm; + Mi_1)+F(Yi - Yi—l):|+ giYi =f (8.65)

and

h 1
M; + fi [_E(ZMi + Mi+1)+F(Yi+1_ Yi)]+giYi =. (8.66)

Since Yy, and y, are known, Egs. (8.65) and (8.66) constitute a system of
2n equations in 2n unknowns, viz., My, Mq,..., My, Vi, ¥o,..., Y. It s,
however, possible to eliminate the A4; and obtain a tridiagonal system for y;
(see, Albasiny and Hoskins [1969]). The following examples illustrate the use
of the spline method.

Example 8.17 We first consider the problem discussed in Example 8.15, viz.,
y’+y+1=0, y(@0)=y@®)=0 (i)



SecTion 8.10: Boundary-Value Problems 331

If we divide the interval [0, 1] into two equal subintervals, then from Eq. (i)
and the recurrence relations for M;, we obtain

3 .
0.5) =—=0.13636, (i)
y(0.5) 7
and
25
Mg=-1 M;=——, M,=-1
0 1 29 2
Hence we obtain
47 47
s’(0)=—, s@=-—, ¢5(0.5)=0.
0) 28 @ 28 (0.5)

From the analytical solution of the problem (i), we observe that
1(0.5)=0.13949 and hence the cubic spline solution of the boundary-value
problem has an error of 2.24% (see Bickley [1968]).

Example 8.18 Given the boundary-value problem
xzy”+ Xy —y=0; y@=1 vy(2)=05
apply the cubic spline method to determine the value of y(1.5).

The given differential equation is

’7” 1 ’ 1 .
y ="y +t=Y ()
X X

Setting x=x; and y”(x)=M;, Eq. (i) becomes

M Z_iyi,"'izyi' (i)
Xi Xi
Using the expressions given in Eqgs. (8.63) and (8.64), we obtain
1( h h Viat — Vi 1 .
Mi=——|-—=M, ——=M_ +2 | = v, §i=0,1 2,...,n-1. (iii
i Xi(3 i 6 i+l h inzyl (iii)
and
1(h h Yi —Yia 1
M;=——| =M; +=M;_; + —= |+ —y;, i = i
i Xi(S i 6 i—-1 h )(i2 Yi i=1 2,....n (IV)

If we divide [1, 2] into two subintervals, we have #=1/2 and n=2. Then
Eqgs. (iii) and (iv) give
1OM0 - Ml + 24y1 =36

16M; —M, —32y, =12
MO + 20M1 +16y1 = 24
Ml + 26M2 - 24y1 =—9
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Eliminating M,, M; and M, from these system of equation we obtain
y, = 0.65599.

Since the exact value of y; = y(1.5)=2/3, the error in the computed value
of y; is 0.01, which is about 1.5% smaller.

Example 8.19 Consider a boundary-value problem in which the boundary
conditions involve derivatives

2
Zx—g =y (1)
with
y'(0)=0 and y@)=1 (ii)
The analytical solution of this problem is given by
cosh x
V= cosh1 (iii)

In order to compare the finite-difference and spline methods, we solve this
problem by both the methods. For the finite-difference solution, we write

Yia —2Yi +VYisg _

h? -

We divide the interval [0, 1] into two equal parts such that # = 1/2. Setting
i=0 and i=1, Eq. (iv) gives

Yi (iv)

1
y_l—z)’o+y1=z)’o (v)

and

1 .
Yo—2Y1+ Y2 =N (vi)
From formula (8.54), we have

y(’) Ny or y-y,= 2hy6 (vii)
2h
Using the boundary conditions yy =0 and y, =1, Eqs. (v), (vi) and (vii) yield

36
=22 _0.9376.
=29

The exact value of ¥(0.5) is 0.7310 so that the finite-difference solution has
an error of 0.2066.
For the spline solution, we have

6
Yica 4Yi + Vi = oz (Yiet — 2Y; + Vi) (viii)
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With 4= 1/2, we obtain
Yo +4Y1+Y2 =24 (Yo —2Y1 +Y>)
Since y, =1, the above equation becomes

Yo +4y1 =24 (yo —2y1) +23
or, equivalently

52y, =23y, + 23 (ix)
For the derivative boundary condition, we use Eq. (8.64) and obtain
1 1
0=0=—>"My—-—M;+2(y; -
Yo gMo—o M (Y1— Yo)
Since My =y, and M, =y, the above equation gives
2Yo + Y1 =24(y1 - Yo) (x)
Equations (ix) and (x) yield
598
=y(0.5) =——=0.7266.
Y=y05) =0

Thus the error in the cubic spline solution is 0.0044. This example demonstrates
the superiority of the cubic spline method over the finite difference method
when the boundary value problem contains derivative boundary conditions.

8.10.3 Galerkin’s Method

This method, also called the weighted residual method, uses trial functions
(or approximating functions) which satisfy the boundary conditions of the
problem. The trial function is substituted in the given differential equation
and the result is called the residual. The integral of the product of this
residual and a weighted function, taken over the domain, is then set to zero
which yields a system of equations for the unknown parameters in the trial
functions.
Let the boundary value problem be defined by

y”+ p(x)y’+q(x)y=f(x) a<x<b (8.67)
with the boundary conditions

PoY(a) +qoY'(a) = ro}
py(0) +quy'(b)=n

Let the approximate solution be given by

(8.68)

tx) = Y o5 (), (8.69)

i=1
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where @,(x) are called base functions. Substituting for #(x) in Eq. (8.67), we
obtain a residual. Denoting this residual by R(?),
we obtain

R(t) =t"+ p()t"+q(x)t = f(x) (8.70)

Usually the base functions ¢,(x) are chosen as weight functions. We, therefore,
have

b
| =_[¢i (x) R(t)dx =0, (8.71)

which yields a system of equations for the parameters ;. When ¢, are
known, #(x) can be calculated from Eq. (8.69).

Example 8.20 Solve the boundary value problem defined by

y +y+x=0, O<x<1
with the conditions
»(0) = »(1) = 0.
Let
(x) = oq¢y(x)
Since both the boundary conditions must be satisfied by #(x), we choose
¢1(x) = x(1 — x).

Substituting for #(x) in the given differential equation, we obtain
R(H)=1"+1t+ x.
Hence we have

1
I=J(t”+t+x)a1x(l—x)dx=0
0

1
= J(t”+t+x) X(1—x)dx=0 ()
0
Now,

1 1
j tx(L- x) dx = [tx@ - x) - J-t’(l— 2x) dx,
0 0

on integrating by parts.
1
= —Jt’(l— 2x)dx, since the first term vanishes.
0

1
. [{t(l— 201 - jt(-z) dx]
0

1
=—2J-tdx, since t =0 at x = 0 and x = 1.
0
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Hence (i) simplifies to

1
1 1
2 —
—2£t dx + Jotx(l— X)dx + Jo X“(1-x)dx=0

1 3 4T
1 X3 x
2| ogx(L=x)dx + | ogx?@A-x)?dx+|—-"—| =0
= Joax—xdx+ [ onx*@-x) ls 4}
0 0
= oy =— = 0.2778, an simplification.

18
Then a first approximation to the solution is

y(0.5) = %(0.5)(0.5) =0.06944.

The exact solution to the given boundary value problem is

which means that our solution has an error of 0.0003.
The above approximation can be improved by assuming that

1(x) = apx(1 — x) + o x*(1 — x).
Proceeding as above, we obtain
oq = 0.1924 and o, = 0.1707.

It is clear that by adding more terms to #(x), we can obtain the result to the
desired accuracy.

EXERCISES
8.1. Given
d—y=1+xy, y(0) =1,
dx

obtain the Taylor series for y(x) and compute »(0.1), correct to four
decimal places.

8.2 Show that the differential equation

dzy
w2 y(0)=1 and y’(0)=0,
X

has the series solution
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83 If

d—y= ! with y (4) = 4,
dx x2+y

compute the values of y (4.1) and y (4.2) by Taylor’s series method.

8.4 Use Picard’s method to obtain a series solution of the problem given
in Problem 8.1 above.
8.5 Use Picard’s method to obtain y (0.1) and y (0.2) of the problem defined
by
dy

—=x+yx4, y(0)=3.
dx

8.6 Using Euler’s method, solve the following problems:

dy 3 3 dy 2
L y(0)=1 b) —=1+y5,y(0)=0
(@) dx_Sny() (b) dx

8.7 Compute the values of y (1.1) and y (1.2) using Taylor’s series method
for the solution of the problem

Yy +y2yt =3, y@)=1 and y’(1) =1.

8.8 Find, by Taylor’s series method, the value of y (0.1) given that
y”—-xy’—=y=0, y(0)=1 and y’(0)=0.

8.9 Using Picard’s method, find y (0.1), given that

W_Y=X ond yo)=1

dx y+x
8.10 Using Taylor’s series, find y (0.1), y (0.2) and y (0.3) given that
:_y: xy +y2,  y(0)=1.
X
8.11 Given the differential equation
dy 2
—— =X+
dx Y

with ¥y (0) = 1, compute y (0.02) using Euler’s modified method.

8.12 Solve, by Euler’s modified method, the problem

d—y=x+ y, y(0)=0.
dx

Choose 7 = 0.2 and compute y (0.2) and y (0.4).
8.13 Given the problem
dy

o~ Ty and y(x) = Yo,
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8.14

8.15

8.16

8.17

8.18

8.19

an approximate solution at x = x, + /4 is given by the third order Runge—
Kutta formula

Yxg + h) =yy + %(kl + dky + k3) T Ry,

where . .
kl = hf (XO’ yO)a k2 = hf (XO + Eh’ Yo + Ekl)
and k3 = hf(xo + h, 0 + 2k2 _ kl)

Show that R, is of order A*.
Write an algorithm to implement Runge—Kutta fourth order formula for

solving an initial value problem.
Find » (0,1), ¥ (0.2) and y (0.3) given that

2X
Y y(0)=0

y =1+

1+ X2

Use Runge—Kutta fourth order formula to find y (0.2) and y (0.4) given
that
2 2
, - X
y"+X
Solve the initial value problem defined by
dy 3x+
o= =1
X X+2y

and find y (1.2) and y (1.4) by the Runge—Kutta fourth order formula.
State Adam’s predictor-corrector formulae for the solution of the equation

V=7 ), y () = o
Given the problem

Yty =000 =1,
find y (0.1), ¥ (0.2), and y (0.3) by Runge—Kutta fourth order formula
and hence obtain »(0.4) by Adam’s formulae.

Given the initial value problem defined by
d
=y, y(0)=1
dx

find the values of y for x = 0.2, 0.4, 0.6, 0.8 and 1.0 using the Euler, the
modified Euler and the fourth order Runge—Kutta methods. Compare
the computed values with the exact values.

State Milne’s predictor-corrector formulae for the solution of the problem
V' =fx ), ¥ (xo) = yo
Given the initial value problem defined by
Y=y, p(0) = 1

find, by Taylor’s series, the values of y(0.1), y (0.2) and y (0.3). Use
these values to compute y (0.4) by Milne’s formulae.
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8.20

8.21

8.22

8.23

8.24

8.25

8.26

Using Milne’s formulae, find y (0.8) given that
g_yz x—y2, y(0)=0, y(0.2)=0.02,
X

1(0.4) = 0.0795 and y (0.6) = 0.1762.

Explain what is meant by a fourth order formula. Discuss this with
reference to the solution of the problem

dy y
—=3x+=, y(0)=1
Xt y(0)

by Runge—Kutta fourth order formula.

Use Taylor’s series method to solve the system of differential equations
d
& y-t dy =X+t
dt dt

with x = 1, y = 1 when ¢ = 0, taking Ax = Ar = 0.1.

Using fourth order Runge—Kutta method, compute the value of y (0.2)
given that
2
d—;’ +y=0
dx
with y (0) = 1 and »’(0) = 0.
Given that

V' =xy +4y=0, y(0)=3,)(0)=0,
compute the value of y (0.2) using Runge—Kutta fourth order formla.
Solve the boundary value problem defined by

V' —y=0, y(0)=0, y()=1,
by finite difference and cubic spline methods. Compare the solutions obtained
at y(0.5) with the exact value. In each case, take # = 0.5 and
h=0.25.
Shooting method This is a popular method for the solution of two-point
boundary value problems. If the problem is defined by

V' =f(x), yx)=0andy(x) =4,
then it is first transformed into the initial value problem

V) =z, Zx)=Ax),

with y (xo) = 0 and z(x,) = mg, where m, is a guess for the value of " (x).
Let the solution corresponding to x = x; be Y. If ¥; is the value obtained
by another guess m; for )’(xq), then Y, and Y; are related linearly.
Thus, linear interpolation can be carried out between the values (my, )
and (my, y;).

Obviously, the process can be repeated till we obtain a value for y(x;) which
is close to A.
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8.27

8.28

8.29

8.30

8.1

8.2

8.3

Apply the shooting method to solve the boundary value problem

¥ =y(x), »(0) =0 and y(1) = 1.
Fyfe [1969] discussed the solution of the boundary value problem defined
by
4 , 2
y+ X2y+ >¥=0, y(0)=1and y(2)=0.2.
1+ X 1+X

Solve this problem by cubic spline method first with # = 1 and then with
h = 1/2 to determine the value of y (1). Compare your results with the exact
values of y (1) obtained from the analytical solution y = 1/(1 + x?).
Method of Linear Interpolation Let the boundary value problem be
defined by
V' )+ gx)y = plx),
y(xo) =y and y(x,) =y

Set up the finite difference approximation of the differential equation and
solve the algebraic equations using the initial value y, and assuming a
value, say Y, for y (x;). Again, we assume another value for y(x), say Y;
and then compute the values of y,, y3, ..., ¥, and y,. We, thus, have two
sets of values of y (x;) and y (x,,). Now we use linear interpolation formula
to compute the value of y (x;) for which y (x,)) = y,. The process is repeated

until we obtain the value of y(x,) close to the given boundary condition (see
Problem 8.26).

Solve the boundary value problem defined by
V' +xy =2y=0,p0)=1and y(1) =2
using the method of Linear interpolation.
Using Galerkin’s method, compute the value of y (0.5) given that
Y +y=x% 0<x<1, y(0)=0 and y(1)=0.
Solve Poisson’s equation

2 2
a—u+a—u=2, 0<x,y<1
ox?  oy?

with # = 0 on the boundary C of the square region 0 < x < 1,0 < y< 1.

Answers to Exercises

1.1053
3

1—X—+1X4x6 _1><4><7X9 Lo
31 6! 9!

4.005, 4.0098
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2 X3 X4

84 1+x+ —+—+—+--
T 27378

8.5 3.005, 3.0202
8.6 (a) 1.0006, (b) y, = 1.0000, y, = 0.201, y; = 0.3020
8.7 1.1002, 1.2015

8.8 1.005012

8.9 1.0906

8.10 1.11686, 1.27730, 1.5023

8.11 1.0202

8.12 0.0222, 0.0938

8.14 0.1006, 0.2052, 0.3176

8.15 0.19598, 1.3751

8.16 1.2636, 1.532

8.17 » (0.1) = 0.90484, y(0.2) = 0.81873, (0.3) = 0.7408
1 (0.4) = 0.6806 (Exact value = 0.6703).

8.18 x = 0.2 0.024664 (Euler)
0.003014 (Modified Euler)
0.000003 (Runge—Kutta)
1.0 0.776885 (Euler)
0.12157 (Modified Euler)
0.000273 (Runge—Kutta)
8.19 y(0.1) = 1.1169, (0.2) = 1.2773, »(0.3) = 1.5023,
1(0.4) = 1.8376.

=
Il

8.20 »7(0.8) = 0.3049, 1°(0.8) = 0.30460

8.21 1 = 0.2, error = 0.00000110
h = 0.1, error = 0.0000007

8.22 x; = 1.1003, 1(0.1) = y, = 1.1100

8.23 0.980067 (Exact value = 0.980066)



EXERCISES 341

8.24 »(0.2) = 2.762239 (Exact value = 2.7616)
2(0.2) = -2.360566 (Exact value = —2.368)

8.25 Exact value of y(0.5) = 0.443409
(a) 0.443674, (b) 0.443140

8.26 1'(0) = 2.8

827 (@) h=1, y =04

y, = 0.485714

(by A =1, 1 = 0.542373
1
h= 50 N = 0.5228

8.28 y; = 1.0828, y, = 1.2918, y; = 1.6282, y, = 1.99997

8.29 1(0.5) = —0.041665 (Exact value = —0.04592)

8.30 u(x, y) = —gxy(x -hy -1



Chapter

Numerical Solution of
Partial Differential Equations

9.1 INTRODUCTION

Partial differential equations occur in many branches of applied mathematics,
for example, hydrodynamics, elasticity, quantum mechanics and electromagnetic
theory. The analytical treatment of these equations is a rather involved process
since it requires application of advanced mathematical techniques. On the
other hand, it is generally easier to produce sufficiently approximate solutions
by simple and efficient numerical methods. There exist several numerical
methods for the solution of partial differential equations; for example, finite
difference methods, spline methods, finite element methods, integral equation
methods, etc. Of these, only the finite difference methods have become
popular and are more gainfully employed than others. In this chapter, we
discuss these methods, very briefly, and apply them to solve simple problems.
We also consider the application of cubic splines to parabolic and hyperbolic
equations.

The general second order linear partial differential equation is of the
form

2 2 2
Aa—u+ Ba—u+Ca—u+ Da—u+ Ea—u+ Fu=G,
ox? oxay  oay? ox oy

which can be written as
Auy, + Buy, + Cuy,, + Du, + Eu, + Fu = G (9.1)

where 4, B, C, D, E, F and G are all functions of x and y. Equations of the
form (9.1) can be classified with respect to the sign of the discriminant

342
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A = B* — 44C, (9.2)

where A is computed at any point in the (x, y) plane. Equation (9.1) is said
to be elliptic, parabolic or hyperbolic according as A <0, A =0 or A > 0.
For example,

Uy T, = 0 (Laplace equation) is elliptic (9.3)
Uy — Uy, = 0 (Wave equation) is hyperbolic (9.4)
u; = uy, (heat conduction equation) is parabolic (9.5)

In the study of partial differential equations, usually three types of problems
arise:

(i) Dirichlet’s Problem Given a continuous function f on the boundary
C of a region R, it is required to find a function u(x, y), satisfying the
Laplace equation in R, i.e., to find u(x, y) such that

Uy +Uy, =0 in R,
S 9.6)
and u=fonC.
(ii) Cauchy’s Problem.
Ug — Uy =0 for t>0
u(x, 0y= f(x
(x.0)= () ©.7)
ou(x,0)
and =g(X
o a(x)
where f(x) and g(x) are arbitrary.
(iii)
U =u,, for t>0
and  u(x,0)=f(x) ©-8)

In partial differential equations, the form of the equation is always associated
with a particular type of boundary conditions. In this case, the problem is
said to be well-defined (or well-posed). The problems defined in Eqgs. (9.6)
to (9.8) are well-posed. If, however, we associate Laplace equation with
Cauchy boundary conditions, the problem is said to be ill-posed. Thus, the
problem defined by

Uy + Uy =0
u(x,0)= f(x)
and  uy(x,0)=g(x)

(9.9)

is an ill-posed problem.
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9.2 LAPLACE’'S EQUATION
The equation defined by
2 2
a—g+a—g=o (9.10)
ox- oy
is called Laplace’s equation. 1t occurs in all problems involving potential
functions and is of elliptic type. To derive this equation, we consider a
heated plate which is insulated everywhere except at its edges where the
temperature is constant. Assuming that the xy-plane coincides with one

rectangular face PQRS (see Fig. 9.1), we find that the quantity of heat
entering the face PS in time Ar

oX |,
Y
S (X, y + Ay) T R (X + AX, Y + Ay)
N >
P (x.y) T Q (X + AX, y)
@)

X
Figure 9.1 xy-plane coincides with a rectangular face PQRS.

where « is the thickness of the plate, u(x, ¢) is the temperature at a distance
x at time ¢ and £ is the conductivity of the material of the plate. Similarly,
the amount of heat leaving the face QR in time Af is

ko A [8_u:| At
y aX X + AX

From the above two expressions, we obtain the gain of heat during time Atz

~kex A [a_“] _[a_“] At
B g OX fyyax  LOXy

In the same way, we obtain the gain of heat from the faces PQ and SR in

time Af as
koo Ax [a_u] _|:8_u:| At
OXlyiay LOY ]y
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Hence the total gain of heat in the plate

BB B
ox X+ AX oX X + dy y+Ay dy

AX Ay

= kot AXAy | At

This heat raises the temperature in the plate which is equal to
pos Ax Ay Au,

where s is the specific heat and p is the density of the material.

pas AX Ay Au = kot A Ay + Y1 At ©.11)
AX Ay

Dividing both sides of Eq. (9.11) by At and proceeding to the limit, we
obtain

k(0,2

= +
ot ps{ax® ay?
2 2
—a?. a—l;+a—l; , 9.12)
ax: oy

k
where a2 = s Equation (9.12) gives the temperature distribution in the

plate in the transient state. When the temperature u(x, ¢) is constant, i.e., at

the steadystate condition, g—l: =0 and Eq. (9.12) reduces to Laplace’s equation

(9.10).
Using the method of separation of variables, it can be shown that
Eq. (9.10) possesses the solutions

u(x,y)= (clekx + cze’kx)(cg, cosky + ¢4 sin ky) (9.13)

u(x, y) = (c5 coskx + cg sin kx)(c7e"y + c8e’ky) (9.14)

The proper form of solution has to be chosen depending upon the physical
conditions of the problem.
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9.3 FINITE-DIFFERENCE APPROXIMATIONS TO DERIVATIVES

Let the (x, y) plane be divided into a network of rectangles of sides Ax=h
and Ay =k by drawing the sets of lines
x =ih, i=0,1 2,...

y=jk, =01 2,...
The points of intersection of these families of lines are called mesh points,
lattice points or grid points. Then, we have

Uipg i —Uj s
™ =%+0(h) (9.15)
Ui j —Uig j
=%+O(h) (9'16)
Uity j = Uiy, j 2
=——=——°+40¢(h 9-17
o (h%) (917)
and
Uiy i —2U; j + Uiy i
Uy == 2 Lo (9.18)
where

u; j =u(ih, jk)=u(xy)

Similarly, we have the approximations

Ui iq — U
u, =—J2 11 J+1k SEEGY(S) (9.19)
Ui j — Ui, j1
=—2 710k .
" (k) (9-20)
Ui Ui 2
_T+O(k ) (9-21)
and
Ui’ j_1—2ui’ i +Ui’ j+ 2
Uyy = +0(k?) (9.22)

k2

We can now obtain the finite-difference analogues of partial differential
equations by replacing the derivatives in any equation by their corresponding
difference approximations given above. Thus, the Laplace equation in two
dimensions, namely



SecTioN 9.3: Finite-Difference Approximations to Derivatives 347

Uy + Uy, =0
has its finite-difference analogue

1 1
h—Z(Ui+1, j—2Ui, j Uiy, j)+k_2(ui, j 20 U ) =0 (9.23)

If h=Kk, this gives

1
Ui j =z(Ui+1, j Uiz, Ui, jea Ui 1) (9.24)

which shows that the value of u at any point is the mean of its values at
the four neighbouring points. This is called the standard five-point formula
[see Fig. 9.2(a)], and is written

Uiy, j T Uiy, j + Ui, jao + U ja—4U; j=0 (9.25)
By expanding the terms on the right side of Eq. (9.24) by Taylor’s series,

it can be shown that

2 14 6
Uy, j +Uic, j+Ui jea+U; joa—4U; j=h"(Uyy +Uyy)—gh Uyyyy +O(N7)

1 (9.26)

= —Eh“uXxyy +0(h®)

Instead of formula given in Eq. (9.24), we may also use the formula

1
Ui, j :Z(ui—l, j—1 FUisg, j-1 +Uiga, j+1 T Ui, je1) (9.27)

which uses the function values at the diagonal points [see Fig. 9.2(b)], and
is therefore called the diagonal five-point formula. This is perfectly valid
since it is well-known that the Laplace equation remains invariant when the
coordinate axes are rotated through 45°. Expanding the terms on the right
side of Eq. (9.27) by Taylor’s series, it can be shown that

2 4 6
Uig, j—1 +Uisa, jo1 + Uisg, j+1 T Uiy, jo1 —4Uj =§h Uy +O(°)  (9.28)

i j+1 UiZg j+1 Uisg, j+1

Ui, Ui j Uirg, U

u i
b=t Uigj-1 Uity jo1

(a) (b)
Figure 9.2 Approximations to Laplace’s equation.
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Neglecting terms of the order 4, it follows from Eqs. (9.26) and (9.28) that
the error in the diagonal formula is four times that in the standard formula.
Hence, in all computations we should prefer to use the standard five-point
formula, whenever possible.

Eliminating the term containing 4* from both Eqs. (9.26) and (9.28), we
obtain the nine-point formula

Uizg, j-1 T Uisg, jo FUigg, jar Tl jua
+4 (U, j +Uiy U g +U; ) = 20U =0 (9.29)

It is clear that the error in this formula is of order #°. In a similar manner,
the finite-difference analogues of Egs. (9.4) and (9.5) can be obtained.

In this chapter, we consider those partial differential equations which
can be replaced by the finite-difference analogues. These analogues, or
difference equations, are then used as approximations to the concerned
partial differential equations. Our general procedure is, therefore, to replace
the partial differential equation by a finite-difference analogue and then
obtain the solution at the mesh points. In the next section, we will discuss
Laplace’s equation which is generally solved by reduction to a system of
algebraic equations. In Section 9.4, we will discuss methods for the numerical
solution of the parabolic Eq. (9.5). Hyperbolic equations are considered in
Section 9.8.

9.4 SOLUTION OF LAPLACE’S EQUATION

We wish to solve Laplace’s equation

Uy + Uy =0 (9.30)
in a bounded region R with boundary C. As in Dirichlet’s problem, let the
value of u be specified everywhere on C. For simplicity, let R be a square
region so that it can be divided into a network of small squares of side 4.
Let the values of u(x, y) on the boundary C be given by ¢, and let the interior
mesh points and the boundary points be as in Fig. 9.3.

C13 C1o C11 C10 Cy

Uy Ug Ug

C14 Cg
Uy Us Ug

C15 c;
c Uz ) Uz

16 Ce

Cs

Figure 9.3 Interior mesh points and boundary points.
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Then, as shown in the previous section, Eq. (9.30) can be replaced by
either the standard five-point formula, viz. Eq. (9.25); or the diagonal five-
point formula given in Eq. (9.27). The approximate function values at the
interior mesh points can now be computed according to the scheme: we first
use the diagonal five-point formula Eq. (9.27) and compute us, 7, 1y, u; and
us in this order. Thus, we obtain

1 . 1
u5=Z(ol+c5+c9+013), U7=Z(°15+U5+°11+°13)i
. 1
Ug:z(u5+C7 +Cg +Cll), U1=Z(01+03+U5+015)?

1
U =Z(c3 +C5 4+ C;7 + Ug).

We then compute, in the order, the remaining quantities, viz., ug, uy, us and
u, by the standard five-point formula (9.25). Thus, we have

1 1
Ug =z(U5 +Ug +Cpq +U7); Uy =z(U1+U5 +U7 +Cj5);

1 1
Ug ZZ(U3+C7 +Ug +Ug); U ZZ(C3+U3+U5 +Uy).

When once all the u;, (i=1, 2, 3, ...,9) are computed, their accuracy can be
improved by any of the iterative methods described below.

9.4.1 Jacobi’s Method

Let ui(’nj) denotes the nth iterative value of u; ;. An iterative procedure to
solve Eq. (9.25) is

b [u M 4y ™

i-1j |+1J+u|(nj)1+u(n) ] (9.31)

i, j+1
for the interior mesh points. This is called the point Jacobi method.

9.4.2 Gauss-Seidel Method

The method uses the latest iterative values available and scans the mesh
points systematically from left to right along successive rows. The iterative
formula is:
(n+1) (n+1) (n) (n+1) (n)
[u —lj+ul+1j+ul j—1+ul j+1] (9-32)
It can be shown that the Gauss—Seidel scheme converges twice as fast as
the Jacobi scheme. This method is also referred to as Liebmann’s method.
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9.4.3 Successive Over Relaxation (SOR) Method

Equation (9.32) can be written as

1 1 1 1
u if”j+ Y i('”j) T [u (IT{ )J +u I(fz i+ ul(r]tl) +u i(’”j)ﬂ —4u i(’”}]

g1
=u; 7 +=R; :
Ll g 1]
which shows that (1/4)R, ; is the change in the value of u; ; for one Gauss—
Seidel iteration. In the SOR method, a larger change than this is given

to u$"., and the iteration formula is written as

I j

uy =uf) +%‘°Ri.j

1
—go[uf+u@+ulR e ]+ a-o)ul)

=ou{"f +1-o)uf) (9.33)

The rate of convergence of Eq. (9.33) depends on the choice of @, which
is called the accelerating factor and lies between 1 and 2.
The percentage error in the value u; is given by

(n+1) (n)
_|Ui W g
| = ey | <100% (9.34)
1
It was shown by B.A. Carré that for w = 1.875, the rate of convergence
of Eq. (9.33) is twice as fast as that when w = 1, and for @ = 1.9, the rate
of convergence is 40 times greater than that when @ = 1. In general, however,
it is difficult to estimate the best value of w. The following examples illustrate
the methods of solution.

Example 9.1 Solve Laplace’s equation for the square region shown in
Fig. 9.4, the boundary values being as indicated.

Y
c 1 2 B
U3 Uy
1
R S 4
2 P Q 5
Y b
X
0 4 5 A

Figure 9.4
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It is seen from the figure that the boundary values are symmetric about
the diagonal AC. Hence, u; = u4 and we need find only u, u, and u3. The
standard five-point formula applied at the point P gives

U, +Uz +2+4-4u, =0.
Hence we have
1
Ul ZZ(UZ +U3 +6)

The iteration formula is therefore
) _ 171 (n)
ujp _4[u2 +Uj +6].

Similarly, the iteration formulae at the points Q and R are given by

and

(n+1) zl ul(n+1) +l.
2

For the first iteration, let u,=5 (since it is nearer to the value u=5), and
Uz~ =1. Hence

ud =%(5+1+6)=3,

o_1 5_
u == (3)+==4,
2 2() 2

1 1
U:gl) 25(3)‘{‘5:2

For the second iteration, we have

u1(2)=%(4+2+6)=3,

@ _1 5_

u”=—@)+—-=4,

5 2() >
and

1.1
u§2>:§(3)+§:z.

Since the values are unchanged, we conclude that u; =3, u, =4, u3 =2 and
U4 = 3

Example 9.2 Solve the equation Uy +Uyy =0 in the domain of Fig. 9.5,
below by (a) Jacobi’s method, (b) Gauss—Seidel’s method, and (c) SOR method.
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1 1
0 u ™ 0
0 ™ m 0
0 0
Figure 9.5

(a) To start Jacobi's iteration process, we obtain the approximate values
of uy, up, uz and u, as follows:

u1(1)=%(0+0+0+1)=0.25;
u§1)=%(0+0+0+1)=0.25;
u®=Lasr14040)=05;

3 _Z( +1+0+0)=0.5;

uld =%(1+1+0+0)=0.5.

The iterations have been continued using Eq. (9.31), and seven successive
iterates are given below:

th u, Us Uy
0.1875 0.1875 0.4375 0.4375
0.15625 0.15625 0.40625 0.40625
0.14062 0.14062 0.39062 0.39062
0.13281 0.13281 0.38281 0.38281
0.12891 0.12891 0.37891 0.37891
0.12695 0.12695 0.37695 0.37695
0.12598 0.12598 0.37598 0.37598

(b) Gauss—Seidel method: Five successive iterates are given below:

uy u, us Uy
0.25 0.3125 0.5625 0.46875
0.21875 0.17187 0.42187 0.39844
0.14844 0.13672 0.38672 0.38086
0.13086 0.12793 0.37793 0.37646

0.12646 0.12573 0.37573 0.37537
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(c) SOR method: With @ = 1.1, three successive iterates obtained by using
Eq. (9.33) are given below.

uy u, us Uy
0.275 0.35062 0.35062 0.35062
0.16534 0.10683 0.38183 0.37432
0.11785 0.12181 0.37216 0.37341

Example 9.3 Solve Laplace’s equation for Fig. 9.6 given below:

50 100 100 100 50

0 u, Ug Ug 0

0 u, Us Ug 0

0 Ug U Us 0

0 0 0 0 0
Figure 9.6

We first compute the quantities us, w7, ug u; and u3 by using the diagonal
five-point formula given in Eq. (9.27). Thus, we obtain

u®=2500, uP=4275 ulM =43.75;

ud =6.25; uM =6.25.

We now compute ug, uy, us and u, successively by using the standard five-
point formula given in Eq. (9.25)

u =5312;  u P =18.75

u =1875  uP =938

We have thus obtained the first approximations of all the nine mesh points
and we can now use one of the iterative formulae given in Section 9.4. We
give below the first-four iterates obtained by using the Gauss—Seidel formula:

uy us us Uy Us Ug u; ug Ug
7.03 9.57 7.08 18.94 25.10 18.98 43.02 52.97 42.99
7.13 9.83 7.20 18.81 25.15 18.84 42.94 52.77 42.90
7.16 9.88 7.18 18.81 25.08 18.79 42.89 52.72 42.88

7.17 9.86 7.16 18.78 25.04 18.77 42.88 52.70 42.87
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Example 9.4 Solve the Poisson equation
Uy +Uyy =—10 (x* + y* +10).

in the domain of Fig. 9.7.

Y
u=0
3
C D
2 u, u,
u=0 u=0
U, )
1 A B
X
0 1 2 3
Figure 9.7

Let the values of u at the four grid points, A, B, C, D be u;, u,, us, uy,
respectively. Let the grid points be defined by x=ih, y = jh, where h=1,
i, j=0,1 2, 3. At the point A, i=1, j=1. The standard five-point formula
applied at the point A gives

Uy +Uz +0+0—4u; =-10 (1+1+10)

i.e.,
1
U = 2 (uy +uz +120) ()

Again, the standard five-point formula applied at the point B gives
U +uy +0+0—-4u, =-10(4+1+10)

i.e.,
1
u, = 2 (u; +uy +150) (ii)

Similarly, the standard five-point formula applied at the points C and D gives,
respectively

g :%(u1+u4 +150) (i)
and

Uy :% (u, + Uz +180) (iv)
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From (ii) and (iii), it is seen that u, =u; and so we need to find only u, u,
and u4 from (i), (ii) and (iv). The iteration formulae are therefore given by

u M :%u M 130

u ™ = % [u My +150]

u ™ - 1y ) 4 45,

For the first iteration, we assume that U £0) =u 510) =0. Hence we obtain

u® =30,
uld =%(30+0+150)=45

ul = % (45) + 45 = 67.5.

For the second iteration, we have

ul? =%u M +30=%(45)+30=52.5
uld = % [uf? +uff +150]= % [52.5+67.5+150] = 67.5

@_11, @ _
ul = 2[u2 |+45=1875.
For the third iteration, we obtain

ul® = %u 9 +30= %(67.5) +30=63.75
e =%[u O u +150] =%[63.75+78.75+150] —73.125.

uld = % uld 4 45= %(73.125) +45=81.5625.
The fourth iteration gives

u® =%u © +30 =%(73.125) +30 = 66.5625
ul® =%[u 9 +uf 150 :%[66.5625+81.5625+150] — 7453125

ul? =1, () 1 45 =L (74.53125) + 45 = 82.2656.
2 2
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For the fifth iteration, we obtain

ul® = %u 9 +30= %(74.53125) +30 = 67.2656
u = % [uf® +uf?+150]= % [67.2656 +82.2656 + 150] = 74.8828

uld = % ul 4+ 45= %(74.8828) +45=82.4414,

The sixth iteration gives

ul® = %u © 130= %(74.8828) +30=67.4414.
u® = % [u © 4y 150] - % [67.4414 + 82.4414 +150] = 74.9707.

ul® = % ul® 4 45- %(74.9707) +45=82.4854.

From the last two iterates, we conclude that

Ul = 67, U2 = U3 = 75, and U4 =83.

9.4.4 ADI Method

This is an efficient method for the numerical solution of elliptic partial
differential equations and was proposed by Peaceman and Rachford. It is
quite general but, for easy understanding, we demonstrate its applicability
with reference to the Laplace equation in two dimensions. For more details,
the reader is referred to Isaacson and Keller [1966].

We consider Laplace’s equation in two dimensions, viz.,

2 2
a_g+a_g -0 (9.35)
ox° oy
and the standard five-point formula
Ui, i + Uiy, i +U; j,1+ui’ J-+1—4ui’j =0 (9.25)

The use of formula given in Eq. (9.25) involves the solution of a system of
algebraic equations, whose coefficient matrix, for n =6, is of the form

4 10 1 0 0

1 4 1 0 1 0
a0 1 4 0 0 1 036

1 0 0 -4 1 0

0 1 1 4 1

0o o0 0 1 -4
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The general form of such a system is given by

T I 0
I T I
B=|: : : : : 2, (9.37)
0 | T I
L I T_
where 7 is a tridiagonal matrix of the form
4 1 i,
1 —4 1 0
T=| : : : : : : (9.38)
0 1 -4 1
- 1 _4_.

System A is called a block tridiagonal system and such systems are solved
by Gaussian elimination or, in the case of large systems, by Gauss—Seidel
iterations. But tridiagonal systems of the type of Eq. (9.38) are much easier
to solve than block tridiagonal systems. Hence the question arises as to
whether we can obtain directly tridiagonal systems in the numerical solution
of Laplace’s equation. Peaceman and Rachford showed that this is possible
and their method of procedure, called the alternating direction implicit method
(or the ADI method) is described below.
We rearrange Eq. (9.25) in either of two ways:

Uiy, j —4U; j +Uisg j = Ui jo — Ui ja1 (9.39)
or
Ui joo =AU j +Uj a1 = Uiz, j —Uigq, (9.40)

The ADI is an iteration method and Egs. (9.39) and (9.40) are used as
iteration formulae

u |(—rflz —4u i(.r}rl) +u |(H1} =-u i(,rj)—l —u i(,rj)+1 (9.41)
and
u D —au D 4 u 1D = —u 00 —u 1Y (9.42)

Equation (9.41) is used to compute function values at all internal mesh
points along rows and Eq. (9.42) those along columns. For j=1, 2, 3, ...,
n-1, Eq. (9.41) yields a tridiagonal system of equations and can easily be
solved. Similarly, for i=1, 2, 3,...,n—=1, Eq. (9.42) also yields a tridiagonal
system of equations.

In the ADI method, formulae (9.41) and (9.42) are used alternately. For
example, for the first row j=1, and Eq. (9.41) gives
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0wl =) 61230 ©049)

Together with the boundary conditions, Eq. (9.43) represents a tridiagonal
. . (r+1) .
system of equations and are easily solved for u;,"™. We next put j =2 and
obtain the values of u i(r2+1) on the second row. The process is repeated for
all the rows, viz. up to j=n-1. We next alternate the direction, i.e. we use
Eq. (9.42) to compute u i(’rjng). It is easy to see that at every stage we will
be solving a tridiagonal system of equations. Example 9.5 demonstrates the

method of solution.

Example 9.5 Solve Laplace’s equation, Uy, +Uy, =0, in the domain of
Fig. 9.8 (see Example 9.2).

Uo3 Ups Uz 3 Uz
1 1
0 u
Uo,2 U, Uz 0] 32
0
u u
01 31
Upa Uz 1 0
0 0
Uz o
Uo,o Ugo Uz o
Figure 9.8

To apply formulae given in Eqgs. (9.41) and (9.42), we relabel the internal
mesh points, as in Fig. 9.8.

To start the iterations, we set r=0. For the first row, j=1. Then,
Eq. (9.41) gives

1 1 1 0 0 .
Ui —duufy g =-u g -ufy (i)
With i =1 and i=2, this gives two equations
1 1 1 0 0
oB-af B sl
and
1 1 1 0 0
-l v =uf) -l
Substituting the boundary values and assuming that ul(’og =1 and u §0)2 =1,
the above equations yield

1) 1

ul) =uf =-=03333.

Wl
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For computing the function values on the second row, we set j=2 in (9.41)
to obtain

1 1 1 0 0 i
il —auru, =—u -u iy W

With i=1 and i=2, Eq. (ii) gives

1 1 1 0 0
-l o= -uf)

and
1 1 1 0 0
-ty rufh = G-
Substituting the boundary values and solving the above, we obtain
ul=uf, = % =0.3333.

Having completed the computations on the two rows, we now alternate the
direction and compute the function values on the columns, starting with the
first one. For this, we use Eq. (9.42) with r=0. Setting i =1, Eq. (9.42)
becomes

2 2 2 1 1
upfly—auff +uff =-ug) -ug) (i)

Putting j=1 and j=2 in the above, we obtain the equations
2 2 2 1 1
oG- e =l -uf)
and
2 2 2 1 1
ui —auf+ufd=-u-uf.
Substituting the boundary values and solving the above equations, we obtain

8 17
u{?d=—=01778 and u{’22)=4—5=0.3778

To compute the values on the second column, we now set i =2 in Eq. (9.42)
2 2 2 1 1 .
U =g +uld sy =-ufl —ug) (iv)

Putting j=1 and j=2 in the above, we obtain the equations
2 2 2 1 1
oG- mB BB
and
2 2 2 1 1
oG rufi=-uf)-uf)
Substituting the boundary values in the above two equations and solving
them, we obtain

u$?)=01778 and ul? =0.3778
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The iterations are continued to improve the function values obtained first on
the rows, then on the columns, and so on. The reader is advised to continue
these computations for the next iteration.

9.5 HEAT EQUATION IN ONE DIMENSION

The heat equation in one dimension is a typical parabolic partial differential
equation and is a time variable problem. Equation (9.12), derived in
Section 9.2, models two-dimensional heat conduction in a plate. Instead of
a plate, if we consider a long thin insulated rod and equate the amount of
heat absorbed to the difference between the amount of heat entering a small
element and that leaving the element in time A¢, we obtain the partial differential
equation

ou , 92U
ot = 9.44
o 2 (9.44)
where
2k
a=— (9.45)
Sp

In Eq. (9.45), k is the coefficient of conductivity of the material, p is its
density and s is its specific heat. Analytical solutions of Eq. (9.44), obtained
by the method of separation of variables are given by

—p2clt .
u(x,ty=e"P **(c, cos px +c, sin px)

22 9.46
u(x, t)=eP " (c,e™ +ce™™) (-46)
From Eq. (9.46), the appropriate form of solution should be chosen depending
upon the boundary conditions given. It is clear that to solve Eq. (9.44), we
need one initial condition and two boundary conditions. In the sequel, we
shall discuss the finite difference and cubic spline approximations to this
equation.

9.5.1 Finite-difference Approximations

We divide the (x, ) plane into smaller rectangles by means of the sets of
lines
x=1ih, i=0,1,2, ..

t=k, k=012, ..
where 7 = Ax and [ = At. Denoting u(ih, kl) = uik , we have

u_uftt—uf

p | (9.47)
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and
u 1y K,k
5 h_z(ui—l -2 + Ui+1) (9.48)
Equation (9.44) is replaced by the finite difference analogue
k+1 k k k k
U Ui 2 Uit —2uf + Uy
I h2 ’
which simplifies to
U = A0+ Ul + - 22 uf (9.49)
where
2
ol

In Eq. (9.49), uik+1 is expressed explicitly in terms of uik_l,uik+1 and uik.

Hence it is called the explicit formula for the solution of one-dimensional
heat equation. It can be shown that Eq. (9.49) is valid only for 0 < 4 < l,

which is called the stability condition for the explicit formula.

1
If we set A = 3 in Eq. (9.49), we obtain the simple formula

k+1 _ 1( k

which is called Bender—Schmidt recurrence formula. It is clear that

Eqgs. (9.49) and (9.51) have limited application because of the restriction on

the values of A. A formula which does not have any restriction on A is that
2

due to Crank and Nicolson. In Eq. (9.44), if we replace 8_[21 by the average
ox

of its finite difference approximations on the kth and (k +1)th time levels,
we obtain

u_ 1 [y 2uk 4 u¥ kil o kHL kil
52 o2 Uig — Ui +Ujyg + Ui —2Ui ~ + Uiy
Hence, Eq. (9.44) is approximated by
k+1 k 2
Ui~ — Ui ok kK k+1 K+l , | k+l
TS (ui—l — 207 + Uiy +Uip — 207+ Ujyg )

which simplifies to

AL+ 24 22)ufH U = A0k + - 220Uk F AUk, (9.52)

1+

On the left side of Eq. (9.52) we have three unknowns and on the right side,
all are known quantities. This is called Crank—Nicolson formula for the one-
dimensional heat equation and it is an implicit formula.
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It is convergent for all finite values of A. If there are N internal mesh
points on each time row, then Eq. (9.52) gives N simultaneous equations for
the N unknowns. In a similar way, values of u on all time rows can be
calculated.

Example 9.6 Use the Bender—Schmidt formula to solve the heat conduction
problem

a1y
at 2 9x2
with the conditions u(x, 0) = 4x — x> and u(0, 1) = u(4, £) = 0.
Setting 7 = 1, we see that / = 1 when 4 = %

Now, the initial values are
(0, 0) = 0, u(1, 0)= 3,
w2, 0) = 4, u(3, 0)=3

and u(4, 0)= 0.
Further, (0, ¢©) = u(4, t) = 0.
For / = 1, Bender—Schmidt formula gives

'y

1
—(0+4)=2,
,0+4)

03

1
~(3+3)=3,
5 (8+3)

@:%M+m=z

Similarly, for / = 2, we obtain

@:%@+$=La

1

u3 §(2+2)=2,

1
uf ==(3+0)=15.
2
Continuing in this way, we obtain
ud =1, ud=15  u=1
ut =0.75, uj =1, us =0.75,

up =05~ u3=075 u3=05, and so on.
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Example 9.7 Solve the heat conduction problem

w_o

ot ox?
subject to the conditions u(x, 0) = sin wx, 0 < x < 1, and u(0, ?) =
u(1, £) = 0. Use Bender—Schmidt’s and Crank—Nicolson formulae to compute

the value of u(0.6, 0.04) and compare the results with the exact value.
The exact solution of this problem is given by

ux, 1) = ¢ ™' sin 7x,

so that the exact value of u(0.6, 0.04) is 0.6408.
(a) Bender—Schmidt formula

5 1
Let h = 0.2. Then !l = Ah~ = 5(0.04) = 0.02.
The initial values of u are

ud =0, u =0.5878,  uJ =0.9510,

ud =0.9510, ul=05878  ul=0.
Then Bender—Schmidt formula gives

it =1 (0.9510) = 0.4755, u3 = l(0.5878 +0.9510) = 0.7694,
2 2

U3 =0.7694, ui =0.4755.
Also,

uZ = %(0.7694) =0.3847, U3 =0.62245,

u2 = 0.62245, u2 =0.3847.

Therefore, (0.6, 0.04) = U;,? = 0.6224, the error in which is 0.0184.
(b) Crank—Nicolson formula

Let # = 0.2 and / = 0.04, so that A = 1.

For A = 1, Crank—Nicolson formula becomes

Ui+ Au - u =l ()
Putting £ = 0 in (i), we obtain
1 1 1 0 0
—Ujg + AU — Uiy = Uig + Uiy g
Corresponding to i = 1, 2, 3, and 4, we obtain the four equations
4u} —u} =0.9510
—ul + 4u3 —u} =1.5388
—u} +4u} —u} =1.5388

—uj +4u =0.9510
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By symmetry, we have
u=ui and uj=u}
Solving the above system, we obtain
us = ui = 0.6460
Hence, (0.6, 0.04) = 0.6460, the error in which is 0.0052.

Example 9.8 Solve the heat equation
u_o
NG
subject to the conditions

u(x, 0) =0, w0, =0 and u(l, ?) =1t

Using Crank—Nicolson scheme, find the value of u(% %) taking

1 1 1 1
successively (i) & = 5" [ = 3 (i) h = 2 [ = 3 Compare the results

obtained with the exact value of u(%, %) = 0.01878.

) hzl, |=£ Then /1:3.
2 8 2

Crank—Nicolson scheme gives
k+1 k+1 k+1 k k k
—UiZ1 +6U; T —UiL1 =Ui_q + 2U; + Uiyq.
Setting £ = 0 and i = 1 in the above equation, we obtain

—uj +6uf —ub =ud +2u +u? =0.

1 1
1 : 1 1
U =—, since up=0 and u; =—.

1748 0 278

=0.02083 (error = 0.00205).
(ii) hzi, =1 Then A=2.
4 8
Therefore, Crank—Nicolson scheme gives
—ufE + 30 - Ul = U - uf

With k£ = 0, we obtain

—uty +3ut —uty =u?y —ul 0l =0, i=123.
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Corresponding to i = 1, 2 and 3, we obtain the three equations
-3uf —u3 =0
U —3u3 +U3 =0
1
up —3u3 = o
Solving the above system, we obtain
us =u 11 001786 (error = 0.00092).
2 8) 56
9.6 ITERATIVE METHODS FOR THE SOLUTION OF EQUATIONS

The iterative methods discussed in Section 9.4 can be applied to solve the
finite-difference equations obtained in the preceding section. In the Crank—
Nicolson method, the partial differential equation

n_d
ot ox?

is replaced by the finite-difference equation
1
@A+ 1 = +Er(ui—1, o1 T Ui j HUigg jer T Uisg j — 20 5)  (9.53)

where r = k/h?.

In Eq. (9.53), the unknowns are U; j, Uiy j« and U ju1, and all others

are known since they were already computed at the jth step. Hence, dropping
the j’s and setting

1
Ci =Uj | +Er(ui—1, j—2Ui j+Ui )

(9.54)
Eq. (9.53) can be written as
Uj —;(u- +U; )+C—i
i 2(L+1) i1 i) T (9.55)
From Eq. (9.55), we obtain the iteration formula
) __ ' mqy, G
= Ui +uial+ o (9.56)

: 2(1+r)

which expresses the (n+1)th iterate in terms of the nth iterates only, and is
known as Jacobi’s iteration formula.
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It can be seen from Eq. (9.56) that at the time of computing U ; D the

latest value of u;_;, namely u (n+1), is already available. Hence, the convergence
of Jacobi’s iteration formula can be improved by replacing ul( { in formula
given in Eq. (9.56) by its latest value available, namely by u; (n+1) Accordingly,
we obtain the formula

(n+1) _ (n+1) (n) G
u; +Uu +—

i 2(1+ )[ il v (9.57)
which is called the Gauss—Seidel iteration formula. 1t can be shown that
Eq. (9.57) converges for all finite values of » and that it converges twice as
fast as Jacobi’s scheme.

Equation (9.57) can be rewritten as

g () [u] (n+1) (n)]+ —um
' 1+r !

: {2(1+ r)
from which it is clear that the expression within the curly brackets is the
difference between the nth and (n + 1)th iterates. If we take the difference
to be w times this expression, we then obtain

(n+1) _  (n) r (n+1) (ﬂ) (n)
u; =Uu; ' +w4——|u; +———U; 9.58
: : {2 (1+71) [Uis™ +uial 1+ ro ! } ©-38)

|+1

which is called the successive over-relaxation (or SOR) method. @ is called
the relaxation factor and it lies, generally, between 1 and 2.

Example 9.9 Solve

n_on

ot ox?
subject to the initial condition u=sinzx at t=0 for 0<x<1 and u=0 at
Xx=0 and x=1 for t>0, by the Gauss—Seidel method.

We choose h=0.2 and k =0.02 so that r =k/h? =1/2. Equation (9.57)
therefore becomes

u i(“+1) slui 04D 4y I(fl)] +36 (i)

Let the values of « at the interior mesh points on the row corresponding to
t=0.02 be ug, Uy, Uz, Uy, as shown in Fig. 9.9.

Applying formula given in Eq. (i) at the four interior mesh points, we
obtain successively

u =%[0+ u g‘)]+§[0.5878+%(0— 2x0.5878+0.9511)]

= %u M 103544 (i)
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t4
u=0 u=0
1 xU >KU xU XU T
k 002 1 2 3 4
0 02 04 06 08 10 *
L' 0.0 05878 0.9511 0.5878 0.9511 0.0
Figure 9.9
u ™ = fls L™yl 2 [o 9511+~ (o 5878 —2x0.9511+0. 9511)]
- % [u ™ 1 uV]+05736 (i)
u §”+1) R (D) pu W14 2 [o 9511+~ (o 9511—2x0.9511+0. 5878)]
[u (D) 4 uM1+0.5736 (iv)
u ™ = [u D) L 0]+ < [o 5878+ = (o 9511-2x0.5878+0. 0)]
Ly 03504 V)

Equations (ii), (iii), (iv) and (v) can now be used to obtain better approximations
for uy, u,, uy and uy, respectively. The table below gives the successive

iterates of u, u,, uz and u, corresponding to t =0.02.

X 0.0 0.2 0.4 0.6 0.8 1.0
u(x) 0.0 0.5878 0.9511 0.9511 0.5878 0.0
n=0 0.0 0.5878 0.9511 0.9511 0.5878 0.0
n=1 0.0 0.5129 0.8176 0.8078 0.4890 0.0
n=2 0.0 0.4907 0.7900 0.7868 0.4855 0.0
n=3 0.0 0.4861 0.7858 0.7855 0.4853 0.0
n=4 0.0 0.4854 0.7854 0.7854 0.4853 0.0
n=5 0.0 0.4853 0.7854 0.7854 0.4853 0.0
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The symmetry of the solution about x =0.5 is quite clear iI} the above table.
The analytical solution of the problem is given by u=e " ' sin zx and the
exact values of # for x=0.2 and x=0.4 are respectively 0.4825 and 0.7807.
The percentage error in both the solutions is about 0.6%, and the error can
be reduced by taking a finer mesh. The reader should check some of the figures
given in the table.

9.7 APPLICATION OF CUBIC SPLINE

We consider again the initial boundary value problem defined by
2
a_u:a_u (9.59)
ot ox?

with the conditions
u(x,0)=g(x), 0<x<a
u(0,t) = f,(t) (9.60)
and u(a,t)=fy(t)

where g(x), f1(¢) and f(¢) are given functions. As earlier, we denote Ax = h,
At = [ and u(ih, k) = uik. If Si(x) denotes the cubic spline approximating
the function values uik, then Eq. (9.59) is approximated by

k+l Kk
%:(1—9)M{‘+9Mi"+1 9.61)

where
k 7/
Mi" = S¢%)-
Using the recurrence relations for the spline second derivatives at the kth
and (k +1)th time levels, both Mik and MikJrl in Eq. (9.61) can be eliminated.

When this is done, we obtain the following finite difference approximation
to the one-dimensional heat equation

(1-6r6) (Ut + ukil) + (4 +12r6) Ul

=[1+6r(—0)] (U, +uf, ) +[4-12r@-6O)]u¥, (9.62)

|
where r = — and i =1, 2, ..., n—1.
h

Equation (9.62) is due to Papamichael and Whiteman. It is a general implicit
representation of Eq. (9.59) and reduces to the explicit and Crank—Nicolson
formulae for particular choices of 6. It can be verified that Eq. (9.62)

reduces to the explicit formula for 9 =i, whereas, the choice 6 =l+i

6r 2 6r
leads to the Crank—Nicolson formula.

The following are the computational steps for solving the problem defined
by Egs. (9.59) and (9.60) using Eq. (9.62).
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(i) Determine Mi0 from the relation
0 0o p0 _ 6
Miy +4My + Mi+1=h_2(gi—1 = 20; + Giy1), (9.63)

i=12,..n-1
with

MJ = £0) and M? = £5(0).
(ii) Solve the system in Eq. (9.62) for k£ = 0 with u(l) = f,(1) and u} = f,(1).
This gives the values of u%, u%, ...,u%_l.
(iii) Compute Mll(z' =1, 2, ..., n — 1) using the recurrence relation with
M3 = f”(@)and M} = £5(1).

At this stage, we have computed the spline solution at ¢ = /. Obviously,
this procedure can be repeated to compute the solution at r = 2/, 3/, ....

9.8 WAVE EQUATION

The wave equation is defined by the boundary value problem

82u 2 82u
PO ©.64
with the boundary conditions
u(x, 0) = f(x),
Us (X, 0) = ¢(x
¢ (X, 0) = o(x) (9.65)

u(o0,t) =y (t)
UL 1) = Yo (1)
for 0 < ¢ < T. This equation is of hyperbolic type and models the transverse

vibrations of a stretched string. As earlier, we use the following difference
approximations for the derivatives

1
and
U = i(u-k‘1 —2uk + u-k+1) +0(1?)
tt = 2\ i i (9.67)

where x = ih, t = kI, and u(x, ) = u(ih, k) = uX.
Further, u/(x, f) is approximated by

k+1 k-1
I SOV (9.68)

Up (%, t) = o
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Substituting from Egs. (9.66) and (9.67) in Eq. (9.64), we obtain

1

2
k-1 k , ke1) _C 1/ Kk k ok
|_2(ui —2Ui + U; )=h—2(ui_1 —2Ui +Ui+1).

Setting o = %I in the above and rearranging the terms, we have
uft = —uk T o Uk +uk ) + 20— o) uf (9.69)

Equation (9.69) shows that the function values at the kth and (k — 1)th time
levels are required to determine those at the (k+ 1)th time level. Such
difference schemes are called three level difference schemes compared to the
two level schemes derived in the parabolic case.* Formula (9.69) holds good
if o < 1, which is the condition for stability.

There exist implicit finite difference schemes for the equation given by
Eq. (9.64). Two such schemes are

k-1 k+1 2

k
U~ —2U; + U c - - -
| |2I - 2h? (uik—ll — 20 Ul o - 20+ Uikfil) (9.70)
and
k-1 Kk, kil 2
U —2u; + U c k-1 k-1 , , k-1 k k .k
| |2I = 4h2 [(“i—l ~ 2+ Uiy )+ Z(Ui-l -2+ u”l)
+ (uik_il —2uf* Ukt ):| (9.71)

cl
Equations (9.70) and (9.71) hold good for all values of e The use of

formula given in Eq. (9.69) is demonstrated in the following examples.

Example 9.10 Solve the equation u,, = u,, subject to the following conditions

w0, 1) = 0, w(l, ) =0, t>20
and

aa—‘:(x, 0)=0, u(x,0)=sin®(zx), 0<x<L.

This problem has an exact solution given by
u(x, t) = % sin Zx cosmt — % sin 3z x cos 3rxt.

Let # =025 and [=0.2. Then o = 0.8 < 1. The given conditions are
u§ =0, uf =0, u® =sind(zih), =123 4.
Also,
ou(x, 0 -
¥=0:>uil—uil=0
ot

=ut=ul.

*A three level scheme for solving parabolic equations in one dimension may be
found in Sastry [1976].
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With o = 0.8, the explicit formula becomes
uf?t = —uft +0.64 (uik,1 + uik+1) +2(0.36)uf.

Setting k£ = 0, the above gives:
uf=—ut 0.64(ui°_1 + uioﬂ) +0.72u?.

=ul = 0.32(ui°,l + ui°+1) +0.36u, sinceu™ =ul.

Therefore,
uf =0.32(ug +ug ) +0.36uf
=0.32 (0 +1) + 0.36(0.3537)
= 0.4473 (error = 0.0365)
Similarly
u =0.5867 (error = 0.0571)
and

U3 = 0.4473 (error = 0.0365)
The computations can be continued for £ = 1, 2, ...

Example 9.11 Solve the boundary value problem defined by u, = 4u,,
subject to the conditions.

w0, 1) = 0 = u(4, 1), ux, 0) =0, ux, 0) = 4x — x°.

Let

h=1and o =1 so that / = 0.5.
We have

u§ =uk =0 for allk.

Since

ux, 0) = 0, we obtain uflzuil.
Further,

u(x, 0) = 4x — x?
= ui0:4i_i2, since h = 1.

Then,

ud =0, u?=3 ud=4, uf=3 and uf=0.

For o = 1, the explicit scheme becomes

k+1 k-1 k k H
Uj =-U; + U1 t Ui (1)
Now, for £ = 0, Eq. (i) gives
1 -1 0 0
Ui =—-U; "+ U3 + Ui

1 . _
=>ul = E(uio,l + ui°+1), since u;t = u?
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Hence

u%=%(u8+ug)=2, u%=%(3+3)=3, uéz (4+0)=2.

N |-

Similarly, we obtain
uZ=0, us=0, u?=0.

and the succeeding time rows can be built up.

9.8.1 Software for Partial Differential Equations

Several packages are available for solving partial differential equations; but,
these are often limited to the solution of simple problems involving two- and
three-dimensional cases. IMSL possesses routines for solving Poisson’s equation
in two and three dimensions and also systems of partial differential equations
in one dimension. It is well known that MATLAB has excellent display
capabilities and these can be used, with advantage, for visualisation of two-

dimensional spatial problems.

EXERCISES

The function u(x, y) satisfies Laplace’s equation at all points within the
squares given below and has the boundary values as indicated. Compute
a solution correct to two decimal places by the finite difference method

(Problems 9.1-9.6).

4 8 60 60
91 O 12 9.2 60 60
0 = = 11 40 50
u u
0 : 2 10 20 40
0 3 6 9 0 10 20 30
1 4
93 0 10 20 30 940 9
0 4
20 40
0 1
40 50
0 0

60 60 60 60 0 0
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10

9.6

30

20

10

9.7 Solve

20 20 20 10
10
10
10
10 20 20 20 10
40 3 20 10 0
10
20
30
0 10 20 30 40

Fu o

a2 a2 "

for the temperature of the heated plate for the square region shown in
the figure below. Use successive over relaxation with @ = 1.5 and
determine the temperatures at the internal mesh points upto the third
iteration. Give an estimate of the per cent error in the value of u,,.

Y
80°C
2
3 Uz Uzs Us3
70°C 2 U, Uzp Usp 40°C
1 Upy Uy Uz
0 1 2 3 4
0°C

9.8 Solve Laplace’s equation with 2 = 1/3 over the boundary of a square

of unit length with u(x, y) = 9x*” on the boundary.
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9.9 Write down the finite difference analogue of the equation u,, + u,, =0 and
solve it for the square region given below.

1 1 4 9 16
u u u
0 ! 8 o 14
u u u
0 4 5 6 12
u
0 R L B T P

0 0.5 2 45 8

With & = k£ = 1.0, use the Gauss—Seidel method to compute, correct
two decimal places, values of u at the internal mesh points.

9.10 Solve Poisson’s equation

Vau = 8x%”°
for the square grid shown below (4 = 1).
u=0
Ug u,
u=0 u=0
U, u;
u=0

9.11 Use the Bender—Schmidt formula to solve the problem
Uy = Sty
u(0, 1) = 0, u(5, 1) = 60,
20x, 0<x<3
and u(x, 0) = {60, 3<x<5
With 2 =1 and / = 0.5, compute the values of u(x, 0.5), u(x, 1.0) and
u(x, 1.5) for 1 < x < 4.

9.12 Solve the equation
ou_ 9%
ot ax2
with the conditions
ux, 0) =sinx, 0 <x<rw
and u(0, 1) = w(m, £) = 0, t > 0.

Compare the values obtained by Bender—Schmidt, Crank—Nicolson and

2
Cubic Spline formulae for u E,ﬂ— .
2 16
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9.13

9.14

9.15

9.16

9.17

Use the explicit formula to solve the equation
n_o
ot 9x?

with the conditions u(0, £) = u(5, ) = 0 and u(x, 0) = x*(25 — x?). With
h =1 and / = 0.5, tabulate the values of uik fori=0,1,2,3,4,5
and £k = 0, 1, 2.
Solve the heat equation

n_o

ot ax2
subject to the conditions u(x, 0) = 0 < u(0, ©) = 0 and u(1, ) = ¢

4 16

1 1
With 4 = — and [ = —, compute the value of u(%, %) using Crank—
Nicolson formula.

Solve the heat conduction equation
u_o
ot Ix°

ou -
with the conditions u(x, 0) = sin x, 0 < x < 7, g(o,t)ze U and
Ju .
a—x(ﬂ ,t)=—e""". Using Crank—Nicolson and cubic spline formulae. Taking

2 2
T T T .
h=— and /= ——=, compute U] —,——=— | Compare with the exact
2 420" P (2 4\/20] P
value.

Derive a cubic spline finite difference formula for the solution of the
equation

ou ﬂ au

—=a +b—+cu (a, b, ¢ being constants
ol ox ( 8 )

with the conditions u(x, 0) = g(x), 0 < x < a and E;—ltj(o, t) = fi(t) and

ou

—(a,t)=f,(1).

o (a,t)=fo(t)

Du Fort—Frankel formula: The formula

1-2r 2r
kel _ k-1 Kook
D T Iear Mg (u,_l+u,+1)

is known as Du Fort—Frankel formula for the solution

2

. . . u .
of the one-dimensional heat equation gza—z It is a three level
X

where r=—
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9.18

9.19

9.20

formula since we require function values on (k— 1)th and kth time
levels in order to compute those on the (k£ + 1)th time level. Solve the
equation given above with the conditions u(x, 0) = sinx, 0 < x < 7.
and u(0, 1) = u(m, 1) = 0

using both the explicit and Du Fort—Frankel formulae with 4 = T and

n? n m?
| == . Estimate the value of u| —,~— | and compare with the exact
32 2 16
value.
Order of Accuracy of Finite Difference Formulae: The explicit formula
ukHt = r(uik_1 + Uik+1) +(1-2r)uf
. . — _ou_od%
is an approximation to the one-dimensional heat equation 528_2
X

Expanding both sides of this formula by Taylor’s series, we obtain

2 2 2
k+1 k k k |17 Ih® | ocu
U~ =rluig +Uiy )-A=-2nNy =| ——— | —| +
i ( i-1 |+1) ( ) i (2 12 J[atz :|ik

In such a case, we say that the local order of accuracy of the explicit
formula is O(/ + /7). This is also called the local truncation error of
the formula. Show that the local truncation error of the Crank—Nicolson
formula is O(F + 7?).

Show that the local truncation error of formula given in Eq. (9.69) is
given by

212 4 214 6
klg (“2 _1)373+ kseho (a4 B )3721
Solve the equation

a2 ox?
with the conditions «(0,¢) = u(l, t) = 0, u(x,0) = sin mx, and
Z—l:(x, 0) = 0. Taking # = 0.25 and / = 0.2, compute #(0.5, 0.4) in two

time steps and compare your result with the exact solution given by
u(x, t) = sin mx cos 7t
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Answers to Exercises
9.1 u =333, w, =667, u3 =367, u =733
92 w =267, w, =333, u3 =433, u = 46.7.
93 u® =4333, uf? =4666, ud= 2666, u =3333.
9.4 u® =0498 u® =09998 u®= 09998, ul® =24999.
9.5 12th iteration values
w =15, w=1625 u3 =15
uy = 13.75, us = 15, ug = 13.75
U = 15, ug = 1625, Uy = 15.
9.6 uy = ]5, U = 20, Uz = 25, Uy = 20,
us = 20, wug =20, wu; =25, ug =20, wuy = 15.
9.7 uf =26.25, uf) = 9.84375, uf) = 10.691406
uf =36.09375,  u§) = 17226562,  uf) = 25.469238
uf =69.785156,  u§) = 62.629394,  uf) = 78.036987.
Second iteration values: Error in ug) =65%
Third iteration: Error in u£32) =13%.
9.8 See Problem 9.4.
9.9 u = 157, =370, w3 =657,
uy = 2.06,us = 4.69,  ug = 8.06,
Uy = 2.09,ug = 4.92 uy = 9.00.
9.10 ug = —13, Uy = Up = —22, Uyy = —43.
9.11
15 175 35 45 55 60
t t t t 60
1.0 20 35 50 55
tT 05 20 40 50 60 60
2|0 4P 6|0 6|0 60
0 1 2 3 4 5
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9.12 (a) Error = 0.03964,
(b) Error = 0.00728,
(¢) Error = 0.00728.

9.3 R\ [0 1 2 3 4
0 0 240 840 1440 1440
0
0

1 420 780 780 570
2 390 600 675 390

o O ol o

9.14 u? =0.005899, u?=0.019132, uZ=0.052771.
Exact values are

u E,E =0.00541, wu 1,1 =0.01878, u El =0.05240.
48 28 48

9.15 Exact solution is

—t

u(x, 1) = e’ sin x.

U = 0.659726 (error = 0.0837)

Spline solution

uj = 0.6415 (error = 0.0655)

9.17 Exact solution is

Explicit formula:
k = 0: Error in u}l =0.0011,
k = 1: Error in u3 =0.0020,
k = 2: Error in ui’ =0.0028.

Du Fort—Frankel formula

Error in uZ =0.0016

9.20 u3 ~u(0.5,0.4) = 0.320469,
Exact u(0.5, 0.4) = 0.309017.



Chapter

Numerical Solution of
Integral Equations

10.1 INTRODUCTION

Any equation in which the unknown function appears under the integral sign
is known as an integral equation. Such equations arise in the formulation of
physical problems. A few examples are given below.

(a) Abel’s Integral Equation

f(x)=JK(x,t)¢(t)dt (10.1)
0

This equation arises in the problem of finding the path of a particle
which is constrained to move under gravity in a vertical plane. In Eq. (10.1),
¢ (¢) is the unknown function, whereas, f(x) and K(x, ) are given functions.

(b) Love’s Equation

1
Y09+ [ K(x,5)y(s) ds =1 (10.2)
-1
This equation occurs in the problem of determining the capacity of a
circular plate condenser. In this case, the unknown function y(x) appears
both outside and inside the integral sign.
(c) Vandrey’s Equation

L
v(s)=¢(s)—%JK(s, oV(o)do, 0<s<L (10.3)
0

379
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This equation occurs in fluid dynamics while calculating the pressure distribution
on the surface of a body of revolution moving in a fluid.

Integral equations are classified into two main types. Volterra integral
equations and Fredholm integral equations. Again, there are integral equations
of the first and second kinds. If the unknown function appears outside the
integral sign also, then it is called an integral equation of the second kind.
Equations (10.2) and (10.3) are Fredholm integral equations of the second
kind. On the other hand, Eq. (10.1), where the unknown function appears
only under the integral sign, is called Volterra integral equation of the first
kind.

If ¢ (s) =0 in Eq. (10.3), then the equation is said to be homogeneous,
otherwise it is non-homogeneous. For non-homogeneous equations, A is a
numerical parameter whereas for homogeneous equations, it is an eigenvalue
problem in which the objective is to determine those values of A, called the
eigenvalues, for which the integral equation possesses nontrival solutions
called eigenfunctions.

In Eq. (10.1), k(x, ¢) is called the kernel of the integral equation. If the
kernel is bounded and continuous, then the integral equation is said to be
nonsingular. If the range of integration is infinite, or if the kernel violates the
above conditions, then the integral equation is said to be singular.

A solution of the integral equation is a function which, when substituted
into the equation, reduces it to an identity.

Example 10.1 Show that the function () = 1 — ¢ is a solution of the
integral equation
t
tzje(t‘”)y(u) du
0
We have

t t
Je(t “Wy(u)du = Je(t‘“) (1-u)du
0

o

etje‘“(l— u)du = et [—e—“ 1-u)+ [ (—1)du];
0
n

t, on simplification.

Since integral equations occur in physical problems, it is usually difficult to
solve them analytically and hence it would be necessary to adopt a numerical
method of solution. Before presenting these methods, it would be instructive
to demonstrate the relationship between integral equations and initial value
problems. This is shown in the following examples.
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Example 10.2 Transform the initial-value problem

y’+y=0, with y(0)=0 and y’(0) =1 6)
into an equivalent integral equation.
Let
d 2y
—=u(x) i
dx? W

Integrating both sides of Eq. (ii) with respect to x, we obtain

X X
_ J u(x)dx+ y’(0) = J- u(x)dx +1,
dx
0 0
on using the given condition. Integrating the above with respect to x, we get
X
y(x) = j (x—t) u(t) dt + x (i)
0
Substituting Eqs. (ii) and (iii) in Eq. (i), we obtain

u(x)+J (x—t)u(t) dt+x=0
0

or u(x)=—x+j (t—x) u(t) dt,
0

which is a Volterra integral equation.
In deriving Eq. (iii), we have used the formula

XX X B 1 X - )
H.-.jf(x)dxdg...dx_(n_l)!_[(x—t) f(t) dt (iv)
aa a n times a

Example 10.3 Transform the integral equation

X

y(X) = x + J'[5 —6(x—t)] y(t)dt
0

into an equivalent initial value problem.
We have

y(x)=x+ |[5-6(x-1)]y(t) dt (i)

o t—,x

Clearly, y(0) = 0.
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We use the following formula for differentiation under an integral sign

b(x) b(x)
ij fctydt =2 (x b)- 92 £ (x,2)+ jif(x,t)dt. (i
dx dx dx ox

a(x) a(x)

Using Eq. (ii) and differentiating both sides of Eq. (i), we obtain
X
y'(x)=1+5y(x) + J—Gy(t)dt
0

—14+5y(x) - ej y(t)dt (iii)
0

Therefore,
V'(0) = 1, since p(0) = 0.
Differentiating Eq. (iii), we obtain

V’(x) = 5)'(x) — 6y(x), on using Eq. (ii)
Hence we have

V'(x) = 5 (x) + 6y(x) = 0

which is the required differential equation satisfying the conditions »(0) =0
and y(0) = 1.

10.2 NUMERICAL METHODS FOR FREDHOLM EQUATIONS

There exist several methods for the numerical solution of Fredholm integral
equations of the second kind, e.g. method of degenerate kernels, method of
successive approximations, collocation and product-integration methods, etc.
We present a few of these methods, in a formal way, with simple examples.
For error estimates and other details, the reader is referred to Atkinson
[1967].

10.2.1 Method of Degenerate Kernels

We consider the integral equation
b
f(x)—J K (x, t) f (t) dt = gx (10.4)
a

A kernel K(x, t) is said to be degenerate if it can be expressed in the form
n

KO = u()v; (1) (10.5)

i=1
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Substituting this in Eq. (10.4), We obtain

n b
100-Y [ weov® f@di=609 (10.6)
i=1 a
Setting
b
j v, (t) () dt = A (10.7)
Eq. (10.6) gives
F00=2, AU(X)+o(x) (10.8)
i=1

The constants A; are still to be detemined, but substituting from Eq. (10.8)
in Eq. (10.7), we get

b n
j V; (t)lz Aju; (t)+¢(t)] dt=A

j=1
or
n b b
> Ajj vi (1) u; (1) dt+j vi(t) o(t) dt = A, (10.9)

which represents a system of »n equations in the » unknowns A;, A,...,
A,. When the 4, are determined, Eq. (10.8) then gives f(x).

Although the method is important in the theory of integral equations, it
does not seem to be much useful in the numerical work, since the kernel is
unlikely to have the simple form (10.5) in practical problems. In general,
however, it is possible to take a partial sum of Taylor’s series for the kernel.
This is shown in Example 10.5.

Example 10.4 We consider the equation

w2
f(x)-4 I sinxcost f (t) dt =sinx.
0

Setting
7l2
j cos tf (t) dt = A, (i)
0

the integral equation becomes

f(x)=AAsinx+sinx=(AA+1)sinx.
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Substituting this in (i), we obtain

w2
J cost(AA+1)sintdt=A
0
which gives on simplification
AL 1
2-1

Hence the solution of the integral equation is given by
f(x)= —sm X (A#2).

By direct substitution the reader should verify that this is the solution of the
given integral equation.

Example 10.5 Solve the integral equation
1 : 2
f(x)=5(e—X +3x—1)+j @ —1)x f(t) dt.

We have
_xt2
K(xt)=(" -1x

2,4
=(1—xt2 +%+---—1Jx

=—x%t2 4 1x3t4
2

neglecting the other terms of the Taylor’s series.
Hence the given integral equation becomes

1
F00 =2 +3x-D+ [ (42t (Ot
0

1 o
= (e 43D —x Jt f(t)dt+ Jt“f(t)dt

=%(e‘x +3x—1) -k x? +%k2x3, @)

where

1
= @t (ii)
0
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and
1
k, = j t4 £ (t) dt. (i)
0
Substituting for f(r) from (i) in (ii), we obtain
1
M=£t1%@4+&—n—hﬁ+%bﬁ]m (iv)

Since
1
jt%*m=2—%
0
Equation (iv) gives
6k; k, 5 29

—-— . v
5 12 2e 24 )
Similarly, substituting for f(¢) in (iii) and simplifying, we obtain
ﬁ+§k —_§+% :
7162 2 20 )
Solution of (v) and (vi) is given by
k; =0.2522 and k, =0.1685.
Hence the solution of the given integral equation is
f (x) =%(e‘x +3x—1)—0.2522x> +%(0.1685)x3.
10.2.2 Method of Successive Approximations
Let the integral equation be given by
b
Y00 = 100+ 4 K, D) y() dt (10.10)
a

where f(x) is continuous in (a, b) and the kernel K(x, #) is finite. We first
approximate y (x) in the integral in Eq. (10.10) by y®(x), and then determine
y(x) from the relation

b
yO(x) = f(x)+,1jK(x,t) yO(t)dt (10.11)
a
We, next, determine y®(x) from the relation

b
yA(x) = f(x)+ AjK(x,t)ym(t) dt (10.12)
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Proceeding in this way, we construct a series of approximations y(o)(x),
ye), ), ..., ¥(x) such that

b
yW(x) = f(x) + /lj K(x, 1)y t)dt (10.13)
a

Does the sequence of approximations °(x), ¥V(x), ..., y")(x), converge to
the exact solution of Eq. (10.10)? The answer is yes, provided that certain
conditions are satisfied. We state, without proof, that the sequence y'”)(x),
y(x), YP(x), ... converges to the solution of Eq. (10.10), provided that

. bb 2 1/2
|M<E where P = “.[K(x,t)] dx dt (10.14)

aa
Example 10.6 Solve the integral equation

1
y(xX)=x+ th y(t) dt
-1
by the method of successive approximations.
Here A =1 and K(x, t) = xt
Therefore,

11 4
P2 = J‘ J‘xzt2 dxdt=—
9
-1-1
Hence P = E and conditions (10.14) are satisfied.

With y9(x) = 1, we obtain successively

1 1
y(l)(x)=x+J.xt~dt=x, sinceJ.tdtzo
] el

1 2 2
@ (x) = x xt-tdt =x x(—):x(l —)
Yy (X) +£ + 3 +3

1

@ (x)= t~t(l g)dt
y(x) x+Jx +3

-1

2
=x+x1+gg=x1+g+g .
3/3 3 3
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1

y(4)(x)= X + J.[xt~t(1+§+g)]dt

-1

(6]
o= (2)+(2] + (2] +]

=3X.

Hence we obtain

It can be verified that y = 3x is the exact solution of the given integral
equation.

10.2.3 Quadrature Methods

We consider the integral equation in the form

b
f(x)—J. K(x, 1) f(t) dt = g(x). (10.15)

Since a definite integral can be closely approximated by a quadrature formula,
we approximate the integral term in Eq. (10.15) by a formula of the form

b n
[Fooax=Y A FO), (10.16)
a m=1

where 4,, and x,, are the weights and abscissae, respectively. Consequently,
Eq. (10.15) can be written as

FO0 =D, AnK(X ty) f (tn) = 0(x), (10.17)

m=1

where t,t,,...,t, are points in which the interval (a, b) is subdivided.
Further, Eq. (10.17) must hold for all values of x in the interval (a, b); in
particular, it must hold for x=t;, x=t,,..., X=t,. Hence we obtain

FE) - Y, AnK(Gtn) f(tn) =0(), i=12..,n  (10.18)
m=1

which is a system of » linear equations in the » unknowns f (), f(t,),
..., f(t,). When the f(t;) are determined, Eq. (10.17) gives an approximation
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for f(x). Obviously, different types of quadrature formulae can be employed,
and the following examples demonstrate the use of trapezoidal and Simpson’s
rules.

Example 10.7 Solve
‘ 3 5
f(x)—J-(x+t)f(t)dt=—x—— (i)
) 2" 6

By direct substitution, it can be verified that the analytical solution is given
by f(x)=x-1. For the numerical solution, we divide the range [0, 1] into
two equal subintervals so that #=1/2. Applying the trapezoidal rule to
approximate the integral term in (i), we obtain

1 1 3 5
f(X)—=|x fy +2| x+= |f X+ f, [==x——, h f.=f(x).
(x) 4[ o+(+2)1+(+)2:| 2575 where f; = f(x;)

Setting x =t;, where t; =0, t;=1/2 and t, =1, this gives the system of equations
12fy -3f; -3f, =-10
—3fy+12f, -9f, =-2
-3fy -9, +6f, =8

The solution is

On the other hand, if we use Simpson’s rule to approximate the integral
term in (i), we obtain

f(x)—%[x fo +4(x+%)f1+(x+1)f2:|=gx—% (i)

Setting x =1, we get
6fy—2f -f,=-5
—fo+4f -3f,=-1
—fg—6f +4f,=4.
The solution of which is

fo=-1 f=—=, f,=0.



Section 10.2: Numerical Methods for Fredholm Equations 389

Using these values in (ii), we get

f(x):%[—x+4(x+%1—%)]+gx_%

=x -1, which is the exact solution.

It should be noted that Simpson’s rule gives exact result in this case since
the integrand is a second-degree polynomial in .

Example 10.8 The integral equation

1

y(x)+'[ K(x,s) y(s) ds=1, ()
-1
where
1 1 .
K(x,s)=— —— (i)
o=z 1+(x=s)?

occurs in an electrostatics problem considered by Love [1949], and is called
Love’s equation. The analytical method of solution, suggested by Love, is
somewhat laborious and various numerical methods were proposed. The
simplest is to approximate the inegral term in (i) by the trapezoidal rule. For
this we divide the interval (-1, 1) into » smaller intervals of width 4, the ith
point of subdivision being denoted by s,, such that

s =—1+ih, i=0,12...,n
and nh = 2. Denoting y(x;) by y; Eq. (i) gives

n-1 Sj+i

i+ Y, | Kes) ys)ds=1
j:0 Sj

Approximating the integral term by the trapezoidal rule, the above equation
becomes

n-1
Yi+ Y 2[ CO005)¥(53)+ K5 5,y )|
j=0

which can be rewritten as:

h h <
yi+§K(Xi,so)YO+EK(Xi’5n)Yn+h K(x.sj)y; =1 (i)

j=1

for i=0,1, 2,...,n. Equation (iii) represents a system of (n+ 1) linear
equations in (z + 1) unknowns, viz., yg, Vy,..., Y, and was solved on a
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digital computer. The solution is symmetric and the computed values of
y(x) at x=0 and x=1are given in the table below. For comparison, the
exact values are also tabulated. To study the order of convergence of the
method, computations were made with different values of n. The h*-order
of convergence of the trapezoidal rule is quite revealing.

X Exact y(x) n Computed y(X) Error Ratio
0.0 0.65741 4 0.66026 0.00285
8 0.65812 0.00071 4
16 0.65759 0.00018 4
32 0.65746 0.00005 3.6
1.0 0.75572 4 0.75452 0.00120
8 0.75542 0.00030 4
16 0.75564 0.00008 3.75
32 0.75570 0.00002 4

10.2.4 Use of Chebyshev Series
We consider the Fredholm integral equation in the form

1

y)+ [ K 9)y@)ds=f(x),  (-1sxsD. (1019
-1
we write
N
Y=Y aT (%) (10.20)
r=0
and
N
FO)=Y T (%) (10.21)
r=0

Where T,(x) is the Chebyshev polynomial of degree r. Substituting Egs. (10.20)
and (10.21) in Eq. (10.19), and interchanging the order of integration and
summation in the integral term, we obtain

N N 1 N
2 arTr(X)+2 a,-_[ K(x,8)T;(s) ds=z fT,(x).  (10.22)
r=0 =0 r=0
Let us now assume that

1

N
_[ K(x, 9)Tj(s)ds =D b; T, (x). (10.23)
] r=0
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Then, we can equate corresponding coefficients of 7,(x) on both sides of
Eq. (10.22). This gives a system of (N + 1) equations in (N + 1) unknowns a,.:

N
ar+2 ajbjrzfr' rzol 15 25---1N- (1024)
j=0

When the a, are known, Eq. (10.20) provides the solution as a Chebyshev
series. This method is due to Elliott [1963], but a variant of this method, due
to El-Gendi [1969], gives better accuracy and is described below.
We consider the numerical quadrature of the definite integral
1
1= ] f9ax, (10.25)
-1

where f(x) is defined and well-behaved in [-1, 1]. We can write

F(x)= i a,T, (), (10.26)
r=0
where
2 Y, i rjm 10.27
a, _sz;é f(cosw)cosw. (10.27)

Substituting Eqs. (10.26) and (10.27) in Eq. (10.25) and simplifying using
the well-known relation (see Jain [1971]):

1
J sz(X)dX=—2 = (10.28)
-1 1_4J
we can write
1 N
[ f00ax=Y by, (10.29)
-1 s=0
where for even N,
N/2 .
4 71 2jms
=— C0S————, s=1 2,....,N=1 (10.30a)
and
1
Pno=PNN = (10.30b)
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The integral term in Eq. (10.19) can also be approximated in the sameway
to obtain the system of equations

[+ Allyl=[f], (10.31)
where
a; = pnj Kj (10.32)
K[ -cosZ —cosIZ | i j=
Kij—K( cosN, cos N ) i,bj=0,1...,N. (10.33)
iz
Yi = y(—cosﬁ} (10.34)

Pnj being given by Eq. (10.30). The system (10.31) can now be solved to
obtain directly the values of y (see Sastry [1975]).

Example 10.9 The integral equation

1

y(X) + I K(x,s) y(s)ds =1 ()
g}

where
K(X, s) :l % (ii)
T d°+(x—5)

and d is a positive real number, occurs in the problem of determining the
capacity of a circular plate condenser and was considered by Love [1949].
He showed, by analytical methods, that there exists a unique, continuous,
real and even solution, and that it can be expressed as a convergent series
of the form

o 1
yx) =1+ (—1)”J K, (x, s) ds, (iif)
n=1 -1

where the iterated kernels K,(X,s) are given by

d

K (X, §)=——
1(x:9) A[d? + (x—5)2]

(iv)

1
K, (x, s) = J Koy (%, DKy (t, 5) dt.
a
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This method of solution is somewhat laborious, and numerical solutions to
this problem were found by several authors, e.g. Fox and Goodwin [1953],
Young [1954], Elliott [1963], Wolfe [1969], EI-Gendi [1969] and Phillips [1972].
All these authors, excepting Phillips, investigated the problem only for the
case d=1.0. Results for d=1.0, using the trapezoidal rules were already
given in Example 10.8. This method is unsuitable for smaller values of d.
Thus, for example with 32 subdivisions and d=0.001, the value obtained
for x=0 is 0.04782 compared to the true value 0.50015.

The table below summarizes the results obtained by the Chebyshev
series method with N=8 and d=1.0, and it is clear that this method gives
better accuracy than the trapezoidal method. However, this method too gives
inaccurate results for smaller values of d.

Chebyshev Series Solution of Love’s Equation with d=1.0

Xj =-cos (jz/N) y(xj)
0.0 0.65740981
0.38268 0.67248912
0.70711 0.70866017
0.92388 0.74265684
1.0 0.75571801

10.2.5 Cubic Spline Method
We know that in the interval Xj_q3 £X<Xj, s(X) is given by

O =07 x=xiy)’

S =Mja—g 1™ 6h
h2 (xj =X) h? (X=X;4)

where Mj =s"(x;), yj = y(xj), and xj =xg + jh, j=0,1,...,N. If we now
approximate the integral term in Eq. (10.19) by using Eq. (10.35), we
obtain

N S

R e 3
y(xi)+21 J K(x,s)[Mj_l(SJ6hS) .|.|\/|j(s ;11_1)
1= Sj-1

h? (sj—s) h? (s—sj_1)
+(yj_1—?Mj_lJT+ yJ—FMJ T ds

=f(x), i=0,12...,N (10.36)
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Putting s =sj_; + ph, the above equation simplifies to

N1 31,2 3,2
1-p)°h h
yOi)+h, I K(xi,sj_1+ph)[Mj_1%+MjpT
=l o
h? h?
Y~ Mia 1-p)+ Yi—gMi|p dp
=f(x), i=012..N (10.37)
In Eq. (10.37), the integrals
1
j K(xi,sj_1+ ph)pm dp, m=0,1, 2 and 3, (10.38)
0

have to be evaluated. This can be done either analytically (wherever possible)
or alternatively, by numerical techniques. When these integrals are evaluated,
Eq. (10.37) together with the relations

h 2h h yj_1—2yj+yj+1—
gMj_1+?Mj+gMj+1= -
j=12 .., N-1 (10.39)
and Mg=My =0

will form a set of (2N + 2) linear algebraic equations in (2N + 2) unknowns,
Viz., Yo, Y1,--» YN+ Mg, My, ..., M. As an example, we consider again Love’s
equation given in the previous example.

Example 10.10 In contrast with the previous methods, the spline method
can be applied when the values of d are small. For this particular example,
the integrals in Eq. (10.38) were calculated analytically. Thus for m =0, we
have

1

1
1 d
Xo=1| K(X,s: s+ ph)dp=— d
0 JO- (I jl p) p ”JO- d2+(xi_sj_1_ph)2 p

Putting x; =-1+ih and sj_; =-1+(j—1)h, and evaluating the definite integral,
we obtain

1 h/d
Yot [1+(h2/d2)(i—j)(i—j+1)]
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Similarly we obtain the results

1

Xy = [ KO, sj5+ph)pdp

0

d

d% +h2(@i - j)2

1

= log
2rh? [

d2+h2(@i- j+1)°

X2 = [ K451+ ph)p? dp

0

wh?

1

d

d2

X3 =J K (%, s+ ph)p* dp

0

—2(i—j+1)[

:|+(i—j+1)X0

— (i - ] +1)2]x0 +2X; (i—j+1)

_[h

d o . .o d?
Py~ [5+4G(-j)1+|3(—-j+1) e X1

d S
h—2+(|—1+1)2:|xo

The system of equations was solved by the Gauss—Seidel iteration method
and a standard subroutine was used for this. The results are summarized in
the following table for different values of d, and agree closely well with
those obtained by Phillips [1972]. It was found that the method is unsuitable
for finding the solution for larger values of d as the convergence is rather
slow. Thus for d=1.0 the value obtained with 500 iterations for x = 1.0 is
0.80692 compared to the true value 0.75572. For more computational results,
see the paper by Sastry [1975].

Cubic Spline Solutions of Love’s Equation

y(x)

X d=0.1 d=0.01 d=0.001
0.0 0.51261 0.50146 0.50015
0.2 0.51470 0.50158 0.50016
0.4 0.51858 0.50187 0.50019
0.6 0.52876 0.50261 0.50026
0.8 0.60688 0.51713 0.50271
1.0 0.78627 0.69641 0.67179
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These results show that the spline method for the numerical solution of
Fredholm integral equations is potentially useful. Its application to more
complicated problems will have to be examined together with an estimation
of error in the method.

10.3 SINGULAR KERNELS

If K(s,t) is discontinuous or continuous but badly behaved, the integral
equation is called a singular integral equaion and the quadrature methods,
discussed earlier, should not be applied. We may, however, approximate the
smooth part of the integrand by a simple function and then integrate the total
new integrand exactly. Such formulae are called generalized quadrature formulae,
also called product integration formulae.

We consider the integral equation

b
f(x)+j K(x,t) f(t)dt=(x), a<x<b. (10.40)

a

Let b—a=nh and t] =a+jh, j=0,1,...,n so that ty=a and t, =b. Then
Eq. (10.40) can be written as

n1 Ui
F)+ Y j K(x, 1) f(t) dt = (x). (10.41)
j=0 tj
We now approximate the integral term in Eq. (10.41) by the generalized
trapezoidal rule discussed in Chapter 6, i.e. we replace f(t) in the integral

by the linear interpolating function f,(t) given by
1
0 ==1(tj1 =0 £()+E-t) F(t)] (10.42)

Substituting Eq. (10.42) in Eq. (10.41), we obtain

n1 Ui+
f(x)+%% | KOOI -0 1)+ -t ] dt=p(x),
1= tj

Setting t =t; + ph, this gives

n-1

f(x)+h [@-p) f(t))+ pf (tj1)] K(x, tj + ph) dp = #(x).

ot

j=0
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If we now put x=x;,i=0, 1, 2,...,n, we obtain
n-1
fr"z (55 fj + B f.0) = 45, (i=0,12,...,n) (10.43)
j=0
where

o =hj (1= P) K (%, tj + ph) dp
(10.44)

—hj pK (., t; + ph) dp

and
fi=1(x)=f(a+ih)
Equation (10.43) represents a system of (n+ 1) linear equations in (n+ 1)

unknowns f (ty), f(t,),..., f(t,), and can therefore be solved. We illustrate
the use of generalized quadrature with two numerical examples.

Example 10.11 We consider again Love’s equation discussed in Example 10.8.

The integrals ¢g; and ﬁij in Eq. (10.44) can be computed analytically. If we
denote

X0, j):J. K(,t; + ph) dp

1]
3|~
ot
o

+h2(| - p)? P

1. 4 h
=—tan
hz L+h2(i— j)(i—j—l)}

and

X1, )= | PKOg.t; + ph) dp
0

1
_if pdp
T4 1+h%(@i- j- p)?
0

1 1+h2(i—j-02| . o .
- | ~ j)xod,
2h’r Og[ 1+h2(i - j)? HE=0X00. )
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then
o =hIXOG, )= X1, ] and By =hX1G, j).
With n =4, we obtain from Eq. (10.43) the equations
1.076 f, +0.126 f; +0.081f, +0.050 f; + 0.018 f, =1.0
0.071f, +1.153f; +0.126 f, +0.081f; +0.029f, =1.0
0.047fy+0.126 f; +1.153f, +0.126 f; +0.047f, =1.0
0.029f, +0.081f; +0.126 f, +0.153f; + 0.071f, =1.0
0.018f, +0.050f; +0.081f, +0.126 f; +1.076 f, =1.0

The solution of this system, which is centro-symmetric, was obtained on a
digital computer. The computations were repeated for n =28, 16 and 32 and
the results, together with the exact values, are tabulated below:

X Exact y(x) n Computed y(x) Error

0.0 0.65741 4 0.65609 0.00132
8 0.65708 0.00033

16 0.65733 0.00008

32 0.65739 0.00002

1.0 0.75572 4 0.75484 0.00088
8 0.75550 0.00022

16 0.75566 0.00006

32 0.75570 0.00002

Comparison with the results obtained by the ordinary trapezoidal rule
(see table of results in Example 10.8) shows that this rule gives better
accuracy than the ordinary trapezoidal rule. The order of convergence is A*
as in the latter rule.

The next example demonstrates the use of generalized quadrature in
dealing with kernels having a logarithmic singularity.

Example 10.12 We consider now an example from fluid mechanics involving
potential flow of an incompressible inviscid fluid.

In many fluid dynamics problems, it is necessary to calculate the pressure
distribution on the surface of a body moving in a fluid. For a body of
revolution in axial flow, Vandrey [1961] derived the linear integral equation

L
v(s)=2x’(s)—%J K(s,o)v(o)do, 0<s<L (i)
0
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where

K(S, O') — 1 {X,y - y,(x_é) K(k)
J (=82 +(y +7)? y

e XYY =8 L, Xy -m -y (x=5) (ii)
E(){ v ey

(x=&2+(y+m)? ds

and K(k) and E(k) are complete elliptic integrals of the first and second
kinds respectively with modulus k. In (i), v(s) denotes the velocity distribution
function on the body surface from which the pressure distribution can be
found by Bernoulli’s equation. Details of the problem and its reduction to a
system of equations are given in the papers by Kershaw [1971] and Sastry
[1973, 1976], where further references may be found. Using the expansions

of K(k) and E(k) given in Dwight [1934], the kernel K(s, ¢) in (ii) can be
split into the form:

K2

K(s,0)=P(s,0) log|s—c|+Q(s, 0) (iii)
where
1 Xy-y'(x-82_, ]
P(s, 0) = — ZEk
= \/(X—€)2+(y+n)2{ y oo
X(y-m-y(x-§2 } (V)
-2 —[K(ky) —E(k)]
=& +(y-m?
Q(s, 0)=K(s,0)—P(s,0) log|s—o |
and
2 q 2o =9 (y-m?®
. (x=&)?+(y+n)°
When o =s, it is found that
X,
P(s,s)=— 2y
(v)

Q(s, S)=i x'[—lmg X%+ y’z)+1|og4y2+|og4—1]—y—X y VX
2y 2 2 X'Z + y/2
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The method of generalized quadrature described in Chapter 6 can now be
applied to reduce the integral equaion (i) to a system of linear algebraic
equations.

The table below gives the numerical results for a cylinder. As the solution
is centro-symmetric, the results are given only up to s =90°. The computations
are made with 20 subdivisions and the accuracy is quite good. For the sake
of camparison, the accurate value 1.5 sins is also tabulated. On running the
program twice with =10 and » =20, it was found that the order of
convergence is two.

Accurate value

s (in deg) of v(s) Computed value Error
18 0.4635 0.4619 0.0016
36 0.8817 0.8816 0.0001
54 1.2135 1.2141 0.0006
72 1.4266 1.4275 0.0009
90 1.5000 1.5011 0.0011

For a numerical solution of this problem using Everett’s formula, see Kershaw
[1961].

10.4 METHOD OF INVARIANT IMBEDDING

This is a method of recent origin, being mainly due to the efforts of Kalaba
and Ruspini [1969], and is applicable to Fredholm integral equations of the
second kind

a

y(X) =g(x) +j K(x,s) y(s) ds (10.45a)
0
where
K(x, s):j f(xz) f(sz) W(z) dz (10.45b)
0

In the method of invariant imbedding, Eq. (10.45) is first rewritten as a
Volterra integral equation in the form

t
y(x,t)= g(X)+f K(x,s) y(s, t) ds; 0<x<t; 0<t<a. (10.46)
0

An essential feature of the method is to convert the Volterra integral equation
(10.46) into initial-value problems and then solve the initial-value problems
by any of the standard techniques. The transformation to the initial-value
problems involves a series of complicated mathematical manipulations and



SectionN 10.4: Method of Invariant Imbedding 401

the interested reader is referred to the original paper by Kalaba and Ruspini
[1969]. We, however, demonstrate its applicability to a practical situation.

Example 10.13 We consider the problem proposed by Srivastava and Palaiya
[1969] who have studied the distribution of thermal stresses in a semi-
infinite solid containing a pennyshaped crack situated parallel to the free
boundary. The free boundary of the solid is kept at zero temperature and in
the axisymmetric case the problem is reduced to the solution of a Fredholm
integral equation of the second kind

1

YO+ [ Kt s) yis) ds =, (0
0 T
where
K(X, s):—%_[ e %M cos £x cos Es d&, (i)
0

in which y(x) represents the non-dimensionalized stress distribution function
and the integral equation was derived by assuming that the centre of the
crack is at the origin; that the solid, which is isotropic and homogeneous,
is divided into two domains: (i) the layer defined by —H <z <0, and (ii) the
half-plane 0 <z <o} and that the temperature prescribed on the surface of
the crack is constant. The derivation and physical details of the problem
may be found in the above cited reference where the integral equation was
solved by the classical iterative method for small values of the ratio of the
radius of the crack to that of its distance from the free boundary, and for
values of this ratio nearer unity, the equation was solved numerically by
quadrature method.

For the numerical solution by the method of invariant imbedding, the
radius of the crack is assumed to be of unit length and the integrals are
approximated by using Gaussian quadrature. Then, the initial-value problems
become:

cos (tA ) + z 2

m=1 (1+an)

dR(Ijkt(t) _[ — ———FW(A,) cos(tA,,) Rk (t)]

(iii)
+ap)

x[cos(tA)+z

Rik(0)=0

P ———— FW (A, cos(tA,) le(t)]
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and
de(t) [g() 2
x!costA+2 o V?
§(0)=0, 1<i<N, 0<t<1
where

& (t) =e(A,1)

and finally,
F

F W (Ay,) cos (tAy) en (t)]

——— FmW (An) cos (tAn) le(t)]

> (iv)

y(x,t) = 9(X)+Z MW (Ay) COSXA e (), 0<XSt<L (V)

m

In Egs. (iii) to (v), the notation

Aﬂ_

l+a

is used, a,, and F,, being the abscissae and weights of the N-point Gaussian

quadrature formula defined by

1

-1

j f(x)dx=i F.f(a,)
m=1

The Egs. (iii) and (iv) have been solved using the fourth-order Runge—Kutta
method, and the five-point Gaussian formula. The results are obtained on
a digital computer and are given in the following table for different values

of H:
H X y(x)
1.05 0.0 -1.7718
1.0 -1.7013
1.1 0.0 —1.7450
1.0 -1.6813
1.2 0.0 —-1.6898
1.0 -1.6464
1.3 0.0 -1.6599
1.0 -1.6169
1.6667 0.0 -1.5618
1.0 -1.5397
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Although the method produces results which agree quite well with those
obtained by Srivastava and Palaiya, it suffers with the serious disadvantage
of being a complicated process and requiring an enormous amount of computing
time.

A central idea of the method is to take full advantage of the ability of
the modern highspeed digital computer to solve systems of ordinary differential
equations with given initial conditions, and it therefore finds important
applications in the numerical solution of integral equations occurring in radiative
transfer, optimal filtering and multiple scattering.

EXERCISES

Verify whether the functions given below are solutions of the integral equations
indicated against them (Problems 10.1-10.5):

1
101 f(x) = 1: f(x)+_[x(eXt “1) f(t)dt=e* —x.
0

1
102 7(r) = " f(t)+ﬂJ-sin(tx)f(x)dx=1.
0

10.3 f(x) = xe*: f(x)=¢"sin x+2j cos (x —t) f(t) dt.
0

3
15%-2, I(x +1)o(t)dt.

10.4 ¢(x) = x:9(x) = 18
1

1
105 f(x) = x—1: £0) = [(x+1) f(t)dt+§x—g.
0

Transform the following initial value problems into equivalent integral equations
(Problems 10.6-10.8):

10.6 y” +y =cosx, »0) =0, () =0.
10.7 ¥ —x) +y=x% w)=1, y(1)=0.
10.8 y”" =1 —xy, »(0)='(0) = 0.
Solve the following integral equations with degenerate kernels
(Problems 10.9-10.12):

/4
109 f(x) - A j tans f(s) ds = cot x.

-rtl4

2
10.10 7(x) — A j sinx cos f(f)dr = sin x.

0
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10.11 £(x) — Ajsin(x—u)f(u) du = cos x.
0

24
10.12 £(x) = A Jsin(x+t)f(t) dt + x.
0

10.13 Solve the integral equations in Problems 10.4 and 10.5 by Simpson’s
1/3-rule. In each case, divide the range into two equal subintervals
and approximate to the solution. Compare your results with the exact
solution.

Answers to Exercises
10.1 Satisfies
10.2 Does not satisfy
10.3 Satisfies
10.4 Satisfies

10.5 f(x) = x—1 satisfies the integral equation

106 y(x) = —I(x—t)y(t)dt— cos x + 1
0

1 17
10.7 ¢(x)=1—x—2+x—2!t¢(t)dt

2 X
108 y() =X7— j (x—1t) y(t) dt
0

109  f(x) = A%Jrcot X

2sinx
. f(x)=
10.10 f(x) Py
1011 f(x)=2mlsmx 4cos X

4+7°0%  4+7°A2

A2 #1.

10.12 f(x)=27r/l[ rSINX , _COSX } X,

+
A2n? -1 A%r? -1

1 1
10.13(a)f0=0,f1=§, f2=1,(b)f0=—1,f1=—5,f2=0.



Chapter

The Finite Element Method

11.1 INTRODUCTION

In Chapters 8 and 9 we discussed finite difference methods for the solution
of boundary-value problems defined by ordinary and partial differential equations.
We now describe another class of methods for the solution of such problems,
known as the finite element methods. A full discussion of these methods is
outside the scope of this book—as normally this does not form part of an
introductory course on numerical methods. We give here only a brief presentation
so as to enable the reader to know that such methods exist. The discussion
includes an elementary formulation of the method with simple applications
to ordinary differential equations. For details, the reader is referred to the
excellent book by Reddy [1985].

The basic idea behind the finite element method is to replace a continuous
function by means of piecewise polynomials. Such an approximation, called
the piecewise polynomial approximation, will be discussed in Section 11.1.2.
The reader is already aware of the importance of polynomial approximations
in numerical analysis. These are used in the numerical solution of practical
problems where the exact functions are difficult to obtain or cumbersome
to use. The idea of piecewise polynomial approximation is also not new to
the reader, since the cubic spline already discussed, belongs to this class of
polynomials.

In engineering applications, several approximate methods of solution are
used and the reader is familiar with a few of them, e.g. the method of least
squares, method of collocation, etc. In Section 11.2, we discuss two important
methods of approximation, viz., the Rayleigh—Ritz method and the Galerkin

405
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technique. Rayleigh developed the method to solve certain vibration problems
and Ritz provided a mathematical basis for it and also applied it to more
general problems. Whereas the Rayleigh—Ritz method is based on the existence
of a functional (see Section 11.1.1), the Galerkin technique uses the governing
equations of the problem and minimizes the error of the approximate solution.
The latter does not require a functional. A disadvantage of both these
methods is that higher-order polynomials have to be used to obtain reasonable
accuracy.

The finite element method, described in the present chapter, is one of the
most important numerical applications of the Rayleigh—Ritz and Galerkin
methods. Its mathematical software is quite popular and used extensively in
the solution of many practical problems of engineering and applied science.
In the finite element method, the domain of integration is subdivided into a
number of smaller regions called elements and over each of these elements
the continuous function is approximated by a suitable piecewise polynomial.
To obtain a better approximation one need not use higher-order polynomials
but only use a finer subdivision, i.e. increase the number of elements.

In practice, several types of elements are in use, the type used being
largely dependent upon the geometrical shape of the region under consideration.
In two-dimensional problems, the elements used are triangles, rectangles and
quadrilaterals. For three-dimensional problems, tetrahedra, hexahedra and
parallelopiped elements are used. Since our attempt in this chapter is only to
introduce the finite element method, we restrict its application to the solution
of simple one-dimensional problems (see Section 11.4.1).

Examples of typical finite elements are shown in Fig. 11.1.

Nodal Line

(a) Line element (b) Triangular and Quadrilateral elements

Figure 11.1 Typical finite elements.

11.1.1 Functionals

The concept of a functional is required to understand the Rayleigh—Ritz
method, which will be discussed in the next section. This concept arises in
the study of variational principles, which occur widely in physical and other
problems. Mathematically, a variational principle consists in determining the
extreme value of the integral of a typical function, say f(X,y,Y’). Here the
integrand is a function of the coordinates and their derivatives and the
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integration is performed over a region. Consider, for example, the integral
defined by

b
|(y)=J f(x,y,y) dx, (11.1)

where y(x) satisfies the boundary conditions y(a) = y(b) =0.

The integrand f'is integrated over the one-dimensional domain x. / is said to
be a functional and is defined as a function which transforms a function y
into a real number, the value of the definite integral in Eq. (11.1). From
calculus of variations we know that a necessary condition for /(y) to have
an extremum is that y(x) must satisfy the Euler—Lagrange differential equation

d_dfo ), (11.2)*
dy dx| ady

Similarly, for functionals of the form

b
)= oy vy dx (113)
a

the Euler—Lagrange equation takes the form

2

a—f—i[a—f]+d—[a—fJ:0 (11.4)

dy dx{ay” ) dx?|ady”
The Euler—Lagrange equation (11.2) has several solutions and the one which
satisfies the given boundary conditions is selected. Thus, one determines the
functional so that it takes on an extremum value from a set of permissible
functions. This is the central problem of a variational principle. An important
point here is that an extremum may not exist. In other words, a variational
principle may exist, but an extremum may not exist. Furthermore, not all
differential equations have a variational principle. These difficulties are serious
and therefore impose limitations on the application of the variational principle
to the solution of engineering problems.

Many problems arising in physics and engineering are modelled by boundary-
value problems and initial boundary-value problems. Frequently, these equations
are equivalent to the problem of the minimization of a functional which can
be interpreted in terms of the total energy of the given system. In any
physical situation, therefore, the functional is obtained from a consideration
of the total energy explicitly. Mathematically, however, it would be useful to
be able to determine the functional from the governing differential equation
itself. This is illustrated below with an example.

*For example, see Sastry [2004].
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Example 11.1 Find the functional for the boundary-value problem defined by

d?y .
—=1f(x) (1
dx?
and
y(@)=y(b)=0. (i)
We have
b b
sj fydx:j f &y dx
a a
b
d2y : d®y
= | —=0oydx, since f(X)=—=
{ 2 (=7
b b
:[d_y(sy] —J d—yi(5y) dx, on integrating by parts
dx " |, A dx dx
2 dy d
=_J Y 9 (5y) dx, since Sy(a) = Sy(b) =0
A dx dx
2 dy (d d d
=_j —yé(—y)dx, since —(dy) = 5(—y)
A dx \ dx dx dx
b 2
=—J EB(Q) dx
2 dx
a
b 2
_—sj l(d—y) dx.
2 \Ldx
a
Hence

b 2
eadm

It follows that a unique solution of the problem (i) to (ii) exists at a minimum
value of the integral defined by

2
1 (v) = j: [ fv+%(%) } dx. (iif)
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A quicker way of finding the functional of a boundary value problem is
the following (See Reddy [1985]).

Let v(x) be a function satisfying the essential boundary conditions, viz.
v(a) = v(b) = 0. Multiply the differential equation written in the form

2" +f(x) =0
by v and integrate with respect to x. We then obtain

b b
0=—Ivy”dx+Jvf dx
a a
b b

= [_vy’]z + J vy dx + J vf dx

a a
b
= '[(v’y’+ vf) dx
a

Finally, substitute y = v in the above and multiply the bilinear terms by 1/2.
We then obtain the required functional

b
I(v)= J [%v'2 + vf ] dx,

which is the same as Eq. (iii) obtained earlier.

By definition, therefore, the integral in (iii) represents the required functional
of the problem. In a similar way, functionals of other boundary-value and initial
boundary-value problems can be derived.

It is outside the scope of this book to deal extensively with the determination
of functionals corresponding to boundary-value problems. We list below
some familiar boundary-value problems with their associated functionals and
these would be useful in understanding the problems discussed in this chapter.

2

(i) Z—é’: f(x), y(a)=y(b) =0 (11.5)
X
b
I(v):-[ v(2f —v") dx. (11.6)
a
2
(i) d—g'+ky=x2, 0<x<1; y(0)=0, (d_y) =1 (11.7)
dx dx L4

1 2
I(v):EJ. v —kv? +2vx? dx —v(2). (11.8)
2 0 dx
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(iii) x2y”+2xy’ = f(x), y(@) =y(b) =0 (11.9)
: d
I(v):J- V[Zf——(xzy’)]dx. (11.10)
A dx
(iv) V?u=0, u=0 on the boundary C of R. A1.11)
1(v) = ” (auj dxdy (11.12)
EY
(v) V2u=—f, u=0 on the boundary C of R. (11.13)
2
Ju Ju
. . 11.14
I(v)= JJ{ [(axJ (ay]] uf}dxdy ( )
. d4y
(vi) El —+ky=f(x), 0<x<I
dx (11.15)
y:0=ﬂ at x=0, |
dx?
1 a2 Y
W= [|& (_ZJ +kv2—2vf | dx (11.16)
2 0 dx

11.1.2 Base Functions

Suppose we wish to approximate a real-valued function f(x) over a finite
interval [a, b]. A usual approach is to divide [a, b] into a number of subintervals
[x;, x;1],1=0,1, 2,...,n=1 where xy=a and x, =b, and to interpolate
linearly between the values of f(x) at the end points of each subinterval. In
[x;, x;:1], the linear approximating function is given by

li (x) = [(X|+1 X) fi + (x=%) fial, (11.17)

where h; = X;,1 — %. From this, we construct the piecewise linear interpolating
function over [Xg, X,] by the formula

P(X)=i & (x) f; (11.18)

i=0
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where

(% —x)/hg Xo SX< X

o (X) ={
0, X < X< X,
(X=Xi_1)/h 4, Xig S X< X;

i () =1 (Xa =)/, X <X< Xy (11.19)
0, X2 Xy
0, Xo X< Xnq

¢n (X) = n
(X=Xn-1)/hn4 Xng SXS Xy |

The functions ¢;(X), i=1, 2, ...,n are called base functions or shape
Sfunctions. 1t is easily seen that the base functions ¢;(X) are identically zero
except for the range [x;_1, Xj;1] with ¢;(x;) =1.

Other types of base functions such as piecewise Hermite polynomials,
cubic splines, etc., are also used in the literature but these will not be
considered in this book.

11.2 METHODS OF APPROXIMATION

In this section we discuss two methods of approximation, viz. the Rayleigh—
Ritz and Galerkin methods. As mentioned earlier, the former method is based
on the existence of a functional which is then minimized. The second technique
is due to Galerkin who proposed it as an error minimization method. It
belongs to a wider class of methods called weighted residual methods. An
advantage of the Galerkin method is that it works with the governing equations
of the problem and does not require a functional.

Both the methods have a common feature in that they seek an approximate
solution in the form of a linear combination of base functions. Nevertheless,
they differ from each other in choosing the base functions.

11.2.1 Rayleigh—Ritz Method

In this method we do not obtain the actual minimum but only an approximate
solution as nearer the actual solution as the base functions allow. To obtain
a good approximation, therefore, the choice of the base functions is important
and to improve the approximation, the number of base functions should be
increased.

We explain this method by considering second-order boundary-value
problem defined by

y”+p(x)y +q(x) =0, y(a)=y(b)=0. (11.20)
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The functional for the above problem is given by

? dv 2 2
I(v)=j i —pv- —2qv |dx=0. (11.21)
a

From the definition of the functional we know that if y(x), the solution of
Eq. (11.20), is substituted in Eq. (11.21), then the integral 7/ will be minimum.
Since we do not know the solution of Eq. (11.20), we try with an approximate
solution and determine the parameters of the approximation so that the
integral is minimum. This is the central idea of the Rayleigh—Ritz method.
Now, let

V()= aifi(x) (11.22)
i=1

be an approximate solution where the base functions, ¢;(x), are linearly
independent and satisfy the boundary conditions given in Eq. (11.20), i.e. let

¢ (@)=0 and ¢ (b)=0. (11.23)
Substituting for v in Eq. (11.21), we obtain
2

b
(01, 003,.-00) = | {[%Z i (x)] [Tt -20 Y ouo, (x)} dx=0.

(11.24)
For minimum, we have
ol ol ol
—00y +——60y +---+——00, =0.
Since the dc; are arbitrary, Eq. (11.25) gives
| .
9N o i=12..n (11.26)
aOCi

If 7 is a quadratic function of y and dy/dx, then Eq. (11.26) will be linear in
o; and can be solved easily.

We state, without proof, that the Rayleigh—Ritz method converges to the
actual solution of the problem provided that the functions ¢; are linearly
independent and satisfy atleast the essential boundary conditions of the
problem. The following examples illustrate the method of procedure.

Example 11.2 We consider the two-point boundary-value problem defined by

y’+x=0, 0<x<] y(0)=y@) =0. (i)
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From Eq. (11.6), we have
1 1
I(v) = J V(=2x—V") dx = —J v(2x+ V") dx. (ii)
0 0
Let
n
V() =Y, g (%) (iif)
i=1
where
$0)=¢(H=0 for all i. (iv)
Substituting (iii) in (ii), we obtain
11 n n
1(v) =—j oy () || 2x+ ) o 97(x) | dx. )
0 Li=1 j=1
For convenience, we set
1
pi = [ X109 dx vi)
0
and
1
i = | 910097 () x
0
1
=[¢; (x) ¢ (x)]% —J‘ ¢ (x) ¢7(x) dx, on integrating by parts
0
1
=—[ 600 6709 ax, (vii)
0
using boundary conditions (iv).
Then Eq. (v) becomes
n n n
V)=-2 o=, D, 060G
i=1 i=1 j=1
Hence dl/da; =0 gives
n -
2pi+22 oG =0, (i=1 2,....n). (viif)

i=1

We wish to find an approximate solution with n=2 and we therefore choose
& (x)=x(1-x) and ¢2(X)=X2(1—X), so that the boundary conditions (iv)

are satisfied.
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Now, from (vi), we have

1
[ 2 dxe L
pl_J;x(l x)dx_12

and
1

1
Py :J x3(1—x) dx=2—0.
0

Also, ¢7(x)=1-2x and ¢5(x) =2x— 3x2 Equation (vii) gives

1

1
Gy :—J 1-2x?) dx=—§
0

1
Oy = —J- (1—2x) (2x—3x?) dx = —% =01, by symmetry
0

1
Qoy = —J‘ (2x - 3x2)2 dx = —%.
0
Equations (viii) now give
4oy +200=1 and 1004 +8a, =3,
whose solutionis oy =0, =1/6. Hence

v(X) =%x(l— X) +%x2 1-x) :%x(l— xz).

It can be verified that this is the exact solution of the problem (i).

Example 11.3 Solve the boundary-value problem defined by
y'+y=-x, 0<x<1 @)
with
y(0)=y@®)=0 (i)
The exact solution of the problem (i) and (ii) is given by

sin x

X)="—"—x. iii

Yo =351 (iif)

To find the approximate solution by the Rayleigh—Ritz method, we take the
functional in the form

1
I(v) = J (W + V2 + 2vx) dx. (iv)
0



Section 11.2: Methods of Approximation 415
Let an approximate solution be given by
n
v(x) = eigi (x), W)
i=1
where
¢, (0)=¢;1) =0 for all i. (vi)

Substituting for v in (iv), we obtain

1 n n n n
W)= 21 i, () 21 a,—¢3’(x)+; 0y (X) zla,-¢,-(x)+2x 21 iy (X) [dx
ol 1= = 1= 1= iI=

As in the previous example, we let

1

pi = | xgi (o

0

and

1 1
05 = [ 60097 () dx == 6009} () ox.
0 0

Further, let

1
= [ 6:099;00 ox
0
Equation (vii) now becomes
n n n n n
|(V =2 Z OCiOquij +Z 2 OCiOerij +22 o; P
i=1 j=1 i=1 j=1 i=1

For minimum, we, therefore, have

a_zz an,J+22 a;rj +2p; =0,

=1
which simplifies to
n
D (g +n)=-p,  i=L2..n
j=1

(vii)

(viii)

(ix)

)

(xi)

(xii)

To obtain an approximate solution, we take n=2. Then, Eq. (xii) becomes

(g +Rp) + 0o (0 +12)=—py }

0 (01 + 1) + 0 (Agg +122) = — P2

(xiii)
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Choosing ¢;(x) =x(1—x) and ¢,(X) = x%(1—x), we then obtain
1

2 1
p1=J- X“(l-x)dx =—;
s 12
1

[ 3a—x)dx= L
pz_'gx(l x)dx_zo,

1

1

Gy =] @-207 de=—3;
0

1
o =—.[ 1-2x) (2x—3x2)dx=—1;
0 6
‘ 2
=—| (2x-3x?)2dx=-=;
U2z J(; ( ) G

1
2 2 1
rﬂ:J- X“(1-x)dx=—;
s 30
; 1
rlzz.[ 31— X)? dx:a;
0

1
Iy, = J x*(1-x)? dx =%.
0
Equation (xiii) now give
180y + 90, =5
630y +52a, =21.
Solving, we obtain
0y =0.1924 and o, =0.1707.
Hence the approximation is given by
y=X(1-x)(0.1924 +0.1707X)

Example 11.4 Solve the boundary-value problem defined by
y'=x=0 @
and
, 1 ..
y(0)=0 yM=-3 (i)
by the Rayleigh—Ritz method.
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In this case, one of the boundary conditions is essential and the other
natural. Also, the exact solution of the problem is given by

3

X
X) =——X. (iii)
y()="
The functional for this problem is given by
1
I(v)= J (v'? + 2vx) dx + v(1). (iv)
0
Let
V(X) = 04X + 01X v)

be an approximate solution so that v(x) satisfies the essential boundary
condition, viz., v(0)=0. Then V'(x) =04 +20,x and Eq. (iv) gives

1

I(v)= J [(oq + 2a2x)2 +2X (g x + oczxz)] dx+oq + o (vi)
0
Hence,
al ;
—=0=J. [2 (a1+2a2x)+2x2] dx+1
aal 0
N . (vii)
2 ozj [2 (0 + 206,X) 2x + 2x3] dx +1.
aaz 0
Simplification gives the two equations
5 4 3
o toy=—— d o, =—=
1T & 6 and oy + 3 oy 2 (viii)

whose solution is o =-13/12 and o, =1/4.
The approximate solution is given by
y® = —Ex+£x2.
12 4

The student should compare this with the exact solution.

11.2.2 Galerkin’s Method

The Rayleigh—Ritz method discussed in Section 11.2.1 is a powerful technique
for the solution of boundary-value problems. It has, however, the disadvantage
of requiring the existence of a functional which is not always possible to
obtain. In fact, not all differential equations have a variational principle. Most
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engineering problems are expressed in terms of certain governing equations
and boundary conditions, and not in terms of a functional. Galerkin’s method
belongs to a wider class of methods called the weighted residual methods.
In this method, an approximating function called the trial function (which
satisfies all the boundary conditions) is substituted in the given differential
equation and the result is called the residual (the result will not be zero since
we have substituted an approximating function). The residual is then weighted
and the integral of the product, taken over the domain, is then set to zero.
It can be shown that if the Euler—Lagrange equation corresponding to a
functional coincides with the differential equation of the problem, then
both the Rayleigh-Ritz and Galerkin methods yield the same system of
equations.

See Section 8.10.3 for application of this method to solve two-point
boundary value problems.

11.3 APPLICATION TO TWO-DIMENSIONAL PROBLEMS

The application of the Rayleigh—Ritz and Galerkin methods to two-dimensional
problems, although straightforward, is more complicated because of the
increase in the number of parameters to be determined. We illustrate the
application of Ritz method with an example.

Example 11.5 We consider Poisson’s equation
x> oy?

with u=0 on the boundary C of the region S.

The functional for the above problem is given by

2 2y

=k, 0<x y<1 (i)

where v vanishes on the boundary C. Let

V(X y)=axy(x-1)(y-1) (iii)

be a first approximation to u. Clearly, v satisfies the boundary conditions,
i.e. v=0 on the boundary C. The derivatives are given by

=ay (y-1) (2x-1); ——ax(x—l)(zy—l);
ady .
) (iv)

0V

il
ox
2V

52 2y = 2ex(e),
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Substituting for v in Eq. (ii), we obtain

11
|(v)=j j axy (x—1) (y—1) [2k — 20ty (y —1) - 2ax (x =] dx dy.  (v)
00

Let

<)
Il

1
xy (x=1) (y-1) dx dy =£

2 2 1 :
xy® (x=1) (y—=1)* dxdy = ——— (vi)
ye (x=1) (y-1 y 180

2 2 1
Xy (x=1 -1 dxdy=——.
y (x=1)% (y—1) dxdy 180

o
Il

o

Il
ot oO*—/mpr ot—/mr
ot—r O*—mpr ot—mr

Equation (v) now simplifies to

1 (v) = 2kora — 20:%b — 20%c.
Hence
ol
—=0=2ka—4cab-4ac.
Ja
Thus

ak 5 . .
o= =——k, using (vi).
2(b+c) 4 g O

It follows that the required approximation for u is given by

u zv=—%kxy(x—l) (y-21.

The student should verify that the Galerkin method gives the same solution
as above.

11.4 FINITE ELEMENT METHOD

The Rayleigh—Ritz and Galerkin methods, discussed in the previous sections,
cannot be applied directly for obtaining the global approximate solutions of
engineering problems. An important reason for this is the difficulty associated
with the choice of trial functions (satisfying the boundary conditions) particularly
for complicated boundaries. This means that the application is restricted to
problems with a simple geometry. Another reason is that very high-order
polynomials have to be used to obtain global solutions with a reasonable
accuracy. In the finite element method, the ideas of both the Rayleigh—Ritz
and Galerkin methods are used in such a way that the above mentioned
difficulties are overcome.
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In the finite element method the region of interest is subdivided into a
finite number of subregions, called the elements, and over each element the
variational formulation of the given differential equation is constructed using
simple functions for approximations. The individual elements are then assembled
and the equations for the whole problem are formed by a piecewise application
of the variational method. For better accuracy it will not be necessary to
increase the order of the functions used, but it would be sufficient to use
a finer mesh. In this way, the difficulties encountered in the direct application
of the variational methods are overcome. The basic steps involved in the
finite element method are as follows:

(i)

(if)

(iif)

(iv)

v)

Discretization: The given domain is divided into a number of finite
elements. The points of intersection are called nodes. The nodes and
the elements are both numbered.

Derivation of element equations: For the given differential equation,
a variational formulation is constructed over a typical element. The
element equations are obtained by substituting a typical dependent
variable, say

n
U=z Ui ¥i
i=1

into the variational formulation. After choosing v, the interpolation
functions, the element matrices are computed.

Assembly: The next step is the assembly of the element equations
so that the total solution is continuous. When this is done, the entire
system takes the matrix form

Ku =F,

where K = assemblage property matrix, and u” and F" are column
vectors containing unknowns and external forces.

Boundary conditions: The above system of equations is modified
using the boundary conditions of the problem.

Solution of the equations: After incorporating the boundary conditions,
the system is solved by any standard technique, for example, the
LU decomposition.

The preceding steps are quite general but they are common to most
finite element approaches. In the following section, these steps are
elaborated and explained with an example of one-dimensional problem.
Since the two-dimensional problems are modelled by partial differential
equations, their finite element analysis is more complicated and are
therefore not considered here.
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11.4.1 Finite Element Method for One-dimensional Problems

We consider the two-point boundary value problem defined by

q2
—!:—f(x), O<x<1 (11.27)
dx
with the boundary conditions
y(0) =0, [ﬂ] 0 (11.28)
dx x=1

The basic steps involved in the finite element method are now elaborated and
explained (see Reddy [1985]):

Step 1 (Discretization of the region): In the present problem, the region
of interest is the x-axis from x =0 to x=1. Suppose that this is divided into
a set of subintervals, called elements, of unequal length, in general. The
intersection points are called nodes. Let these be given by Xg, X, Xo, ..., Xn_1,
Xy, where xg =0 and X, =1. The elements are numbered as @, @, @, ..., @,
a typical element being the eth element of length /4, from node ¢ — 1 to node e.
Let x,_4 and x, be the values of x at the nodes e — 1 and e, and let y(efl) and
@ be the values of y at these nodes, respectively. In general, y© satisfies
the condition that outside e.

y®(x)=0 for all elements e. (11.29)

For example, in Fig. 11.2 y(e)(x3) is nonzero whereas y(e) (x4)=0.

X
| 1 |
| l

X

. |

e-1 3 e 4
Figure 11.2 Typical eth element.

4

Using Eq. (11.29), it follows that the global approximate solution, y (x), can
be written as

yx)=> y® ), (11.30)

where the summation is taken over all the elements.
This completes the discretization process and in the next step, we choose
a particular element e and formulate a variational principle for it.

Step 2 (Variational formulation over the element e): From Eq. (11.27),
we obtain

Xe 2 Xe

J- vd—gdx=—J‘ v f dx
dx

Xe—1 Xe—1
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which is written as

Xe 2
0= I [vd—z+vf } dx
dx
Xe—1

X

Xe e Xg
=[vﬂ] - J v'ﬂdx+ J. vf dx
dx

e ] Xe-1
Xe
=—J. [v'y’—vf]dx+v(xe)D§e)+v(xe_1)D1(e), (11.31)
Xe-1
where
Dfe)z[_ﬂ] and Dg@:[d_y} . (11.32)
dx Xe_1 dx Xe

In the next step, we use a variational method to approximate Eq. (11.31).
We demonstrate this by using the Rayleigh—Ritz method.

Step 3 (Rayleigh—Ritz approximation over the element e): Let y,(x) be an
approximation to y(x) over the element e, so that

Ye () =Y, {99, (x), (11.33)

i=1

where the @ are parameters to be determined and ¢;(X) are approximation
functions to be chosen. Substituting Eq. (11.33) in Eq. (11.31), we obtain

n Xe
P U IEACE{OLR
=1 Xe—1

- f fo, () dx+6;(%)DE + 91 (6)DE,  i=1 2.0 (11.34)

Xe-1
Equation (11.34) can be written in the matrix form
K =F ), (11.35)

where Kj; and F; are called the stiffness matrix and force vector respectively, and
are given by

Xe
Ki? = | 60995 00x (11.36)
Xe-1
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and

Xe
FO = [ 16,000x+6,06)D5 +4 (X 1) D,
Xe-1

(11.37)

In the Rayleigh—Ritz and Galerkin methods, the system of equations is obtained
in terms of the arbitrary parameters ;. In the finite element method, on the
other hand, the unknown values of the dependent variable y at the nodes are

taken as parameters. This is done in the following way. Let
Y(x) = 0 +
be an approximation in the element e. We have

Y(Xe1) =04 + 0tpXeg = yl(e)

Y(%) = 0q +ap% = y 5.
Solving the equations given in Eq. (11.39), we obtain

3 yl(e)xe - yga Xe-1

o
Xe = Xg1
and
y ge) —y 1(e)
Oy =
Xe — Xe—1

Equation (11.38) now becomes

(¢) (e) () _

Y1 Xe =Yy X . Yo yl(e)

y(x) =
Xe = Xe1 Xe = Xg1
Xo — X X — Xg_
__"Te yl(e) + Xe-1 yge)
Xe — Xe-1 Xe = Xe-1
2
= 2 y &0 (x)
i=1
where
Xe — X @y _ X~ X1
6@ x)=—"2""  and ¢P)=——TeL
! Xe = Xe—1 ? Xe = Xg1

With x; =X, and x, = X,, the functions d)i(e) have the property

0, i#]

®)(x.)=
R A

(11.38)

(11.39)

(11.40)

(11.41)

(11.42)

(11.43)

(11.44)
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Instead of Eq. (11.35), we now have

KOy =F©, (11.45)

where Kige) and Fi(e) are %iven by Eq. (11.36) and (11.37).

With the choice of (])ie)(x) as in Eq. (11.43), we now demonstrate
the computation of K and F. In particular, we choose f =2.
With h, =X, —X._;, we obtain

do® do®
P11 g Y1 (11.46)
&  h d  h
where
Xo 2
Kyq = J I
Xe—l e e
Xe
1 1
Ky = J-—h—zdxz_E:Kﬂ (11.47)
Xe-1 ©
Xe
1 1
Ky, = —dx=—
22 J- h2 he
Xe1 ©
and

Xe
,:(e)_ZJ‘ Xe ~X () _ (e)
= X+D;” =hy + Dy

e

Xe—
! (11.48)
() R X—Xe1 (e) (e)
e —
F=2 | ~Ldx+D{7 =, + D,
Xe—1 ¢
As a particular case, we consider the following example.
Example 11.6 We consider the following problem defined by
d?y : .
—=-2, 0<x<], y(0)=0, y’(2)=0. (1)
dx
The exact solution of the above problem is given by
y(X) = 2x - X? (ii)

Comparison with Eq. (11.27) shows that f(x)=2.
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(a) To demonstrate the steps involved in the finite element solution, we
divide [0, 1] into two equal subintervals with h, =1/2. From Egs. (11.43)
and (11.44), we obtain the equations for both elements.

(i) e=1:x%_1=0, x,=1/2,

2 2 £+D1(1)

KO - FO_|2
1 1 1
2 2 2+D¢

(i) e=2:%4=U2 %=1

2 -2 (L, p@

K@ — F@_|?2
1 1 2
-2 2 E+D§)

Having determined the equations for each element, these have to be assembled
now to determine the global approximations. This will be the next step in the
finite element solution.

Step 4 (Assembly of element equations): We shall explain this step with
reference to the two elements obtained in Example 11.6. In this case, the
two elements are connected at the node 2. Since the function y (x) is continuous,
it follows that y, of element 1 should be the same as y; of element 2. For
the two elements of Example 11.6, the correspondence can be expressed
mathematically as follows:

yl(l) =Y, ygl) =Y, = y1(2)’ y(zz) =Y.

In the finite element analysis, such relations are usually called interelement
continuity conditions.

Using the above relations, the global finite element model of the given
boundary value problem is

2 =2 0] 1/2+DJ
2 2+2 =2 ||Y,|=|1+DP +DP? |
0 2 2 || v2+DP

The next step is the imposition of boundary conditions.

Step 5 (Imposition of boundary conditions). The homogeneous boundary
condition gives Y; =0. Then, we obtain the equations:

Wy -20=1, Ny +2¥,= %

since D él) and Déz) cancel each other and Déz) =0 is the natural boundary
condition.



426 CHAPTER 11: The Finite Element Method

The solution of this system is given by
Y,== and Y3=1

Finally, the approximate solution throughout the interval [0, 1] can now be
found using the formula

2 | ¥,69 001,69 (0), OSXS%
y (x) =2 Yi 0 (x) =
i=1

Y, 052 (%) + Y5052 (x), %s x<1
Ex, OSXSl
_ 2 2
X—+1, 1SXS1
2 2

on substitutions and simplification.

From the above, we obtain the approximate value of y (1/4) = 3/8 = 0.375,
whereas its exact value =2(1/4)-1/16 =7/16.

(b) To improve the accuracy, we now consider four elements of length
1/4. In this case, the element matrices become

(i) e=1:x_4=0, x,=1/4
KD =4, kKID=kP=1u k-4

12 —
FO=1,p®  FO-1,p®
4 4
v4+DY

K(1)=|: N _4:|’ FO =

-4 4 1/4+D

(i) e=2:x%_ =14, x,=1/2

i o
K<2>=[ 4 —4} @ _|V4+o
-4 4 1/4+D

(i) e=3: X, =12, X, =3/4

_ (1/4+D O ]
K(S):|: 4 4:|’ F(S): + 1
-4 4 1/4+DY

(iv) e=4:x%_=3/4 %=1

] 0
K(4)=[ 4 —4} o 1/4+ D}
-4 4 1/4+D{¥
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To avoid confusion, we now write down the complete system for each element

(4 4 0 0 0[] [va+D®]
44 0 0 O Yo |y, DY
e=1 0 0 0 0 0ofYal=|
0 0 0 0 0| Ys 0
0 0o 0 0 oflYs] | o |
[0 0 0 0 olffy,] [ 0o ]
o 4 -4 o0 0||Y| |v4+D?
e=2 0 -4 4 0 ol| Y5 |=|ya+ D@
0 0 0 0 ol v, 0
0 0 0 0 oflYs] | 0o |
[0 0 0 0 olffvwl1 [ 0O ]
0 0 0 0 0l| v, 0
e=3 o 0o 4 -4 ofv|=|14+DP
0 0 -4 4 0 Y| |v4a+DP
0 0 0 o of]|Ys] | o |
0 0 o0 0 olff ,1 [ 0 ]
0 0 0 0 ol| Y, 0
e=4 0o 0 0 0 of| v |=| ©
o 0o o 4 4|y, D,?
o 0 o0 4 4| ¥s | _D§4)d
Adding up the above, we obtain
[ 4 —4 0 0 o[ v; | ’1,4+D1(1) 1
4 4+4 4 0 of v, | |v2+p®+D®
0 4 444 -4 0| v, |=|v2+DP +DP
0 0 4 4+4 4| vy, | [1v2+D{ +D?
0 0 0 4 4]l vy | |va+DPY

By boundary condition, we have Y; =0.
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The system now becomes
8Y, —4Y; =1/2
—4Y, +8Y; —4Y, =1/2
—4Y; +8Y, —4Y; =1/2
—4Y, +4Y5 =14+ DY

But DY = y'1) =0,
The solution of the system is

7 3 15

Y,=—, Yg=—, =—, =1.
275 BTy e Yo7l
Then the approximate solution valid for [0, 1] is
x 0<x<t
4’ 4
tox+1 1 _ 1
4 2
y() = 683
X+
8 2 4
ig, ESxSl
4 4

From the above, we obtain y(1/4)=7/6, which is the same as the exact
solution.

11.5 CONCLUDING REMARKS

We have attempted, in this book, to supply to the reader some basic numerical
methods which are indispensable for current scientific research. Many methods
have been excluded since we do not intend to be exhaustive. There is indeed
much more to include. Unfortunately, the limitations of space and our own
experience have forced us to exclude many important topics such as eigenvalue
problems in differential equations, linear and non-linear programming,
convergence and stability criteria for partial differential equations and numerical
solution of singular integral equations. Our motivation throughout has been
to present the various methods in a very simple way so as to enable the
reader to understand and apply them to solve the specific problems arising
in his work. The book is, therefore, intended to be an introductory text only.*

*The reader who wishes to pursue the subject and understand the analysis of
these methods is recommended to refer to: Isaacson and Keller, Analysis of
Numerical Methods, and other references cited in the Bibliography.
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EXERCISES

11.1 Explain the difference between a function and a functional. Prove that

(@) 6(dx) = d(6x).

(b) 5Jf(x) dx = J5f(x) dx.
11.2  Establish the Euler—Lagrange equation

A _d(at)
gy dxloy |

for a functional defined by

b
()= [ f(xy,y)dx

Obtain functionals for the following boundary value problems
(Problems 11.3-11.8):

2

d
11.3 OITg’zg(x), $(0) = (1) = 0.
d2y 3 |:dy:|
. — = ) = s o :1
11.4 02 +ky =X y(a) =0 ax )y,
d? d
1.5 XZKZH 2 =900, YO =y®)=0.
d?y
11.6 d_2+ pP(X)y+q(x)=0, @) = y(b) = 0.
X
4
11.7 Z—Z+ky=f(x), 0<x<l,
X
d?y
y=——-=0 atx =0 and x = 1.
dx?

Solve the following boundary value problems by Rayleigh—Ritz method
(Problems 11.8-11.10):

d2

11.8 K3’+y=x2, y(0) = y(1) = 0.
d2y
11.9 W+ 2x=0, y0)=y@)=0.
d2y
11.10 —2— 64y + 10 =0, »(0) = (1) = 0.

dx?
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Apply Galerkin’s method to solve the boundary value problems
(Problems 11.11-11.12):

11.11 ZTg’er:xz, y(0)=y(@) =0.
d2y
11.12 o 64y + 10 = 0, »(0) = y(1) = 0.
Answers to Exercises
1 [ 2
1(dv

113 I(v)=J. E(&) +gv]dx

0L

dv 2 > 3
— | —kv® +2vx® |dx —v(b)

1(v) =
14 v i

29 - 2dv }dx
x

-3
(2] e
(

b
il
b
11.5 I(v)= Jv
b
11.6 I(v):J

2
M +kv? — 2fv]|dx
dx

1
17 1w=|
0

_ A 2 | 4o
11.8 '(V)_“(d_x) —vZ + 2ux ]dx,

Y0 =0 = = X x) — X - )

1.9 | tl(avy? . 1 3
. (V):j (d_Xj —4vx|dx; y(X)zV(X):E(X_X ).
11.10 v(x) = —x(l X)

11.11 V(X)__llz_sx(l X)_lx (1)

11.12 v(x)=—x(1 X)
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Model Test Paper 1

B.E./B.Tech. Degree Examination (Numerical Methods)

Answer All Questions
Time: 3 Hours Max: 100 Marks

Section A (10 x 2 = 20 marks)

1. Evaluate ¢ 2

correct to 2 decimal places.
2. Find the sum of the numbers

143.3, 15.45, 0.1734.

@

State the formula for finding the pth root of a positive number N.

=

State Newton—Raphson formula for finding the roots of the equations
S(x, ») =0 and g(x, y) = 0.
5. State the errors in Newton’s forward and backward difference formulae.

6. If ; = 0.6785, and I, = 0.6920, find 7 using Romberg’s method.

7. Explain the solution of a system of linear equations by decomposition
of the matrix into LU form.

8. Write down the fourth order Runge—Kutta formula for the solution of
the problem

dy
L =f(x,¥), Y(X3) = VYp.
i (X ¥), Y(X) = Yo

9. Define a two-point boundary value problem and state any two methods
of solving it.

10. State Laplace’s equation in two dimensions and give its finite difference
analogue.

Section B (5 x 16 = 80 marks)

11. (a) A root of the equation x*> + 3x*> — 3 = 0 lies between —3 and
—2. Find this root, correct to 3 decimal places, by bisection method.

(8]
(b) Compute the value of /10 correct to 4 decimal places. [8]
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Model Test Paper 1

12.

13.

14.

15.

(a) Design a computational algorithm to implement Lagrange’s interpolation
formula and use it to compute the value of f(5) from the following
data for x and f(x): [8]

(2, 46), (7, 71), (10, 110)

(b) Fit a curve of the form

a
= —+bx
Y7 X%

by the method of least squares to the following data of x and f(x):
(1, 5.43), (2, 6.28), (4, 10.32), (6, 14.86), (8, 19.51) [8]

Derive the key equations of Sande—Tukey algorithm for computing the

DFT of the sequence f;, = 0, 1, 2, ..., 7. Apply this method to find the

DFT of the sequence f; = {1, 2, 3, 4, 4, 3, 2, 1}. Draw the flowgraph.
[16]

(a) Define a cubic spline and derive its governing equations, viz.

)3 v 3
s00-% [(x. g )

h? h?
+(yi—1 _?Mi—ll(xi - X) +(yi —?'Mi](x - Xi—l)]

h: 1 h:
EIMi—l +§(hi +hig )M, +%Mi+1

M;

and

= yiﬁi:1 Yi Vi _hiyi_l =% =X [10]

(b) The function y = f(x) is satisfied by the points (1, 1), (2, 5),
(3, 11), (4, 8). Fit a natural cubic spline approximation to this data

and find an approximate value of y (1.5). [6]
Evaluate
1
1
| =I 5 dx
0 1+x

using trapezoidal rule with 2 = 0.5, 0.25 and 0.125. Then obtain a

better estimate by Romberg’s method. Give the errors in the solutions

obtained. [16]
OR

Find y(0.2) given that

dy y
—=3x+=, y(0) =1,
i 5 y(0)

using the Euler, the modified Euler and the fourth order Runge—Kutta
methods with 2 = 0.05. [16]



Model Test Paper 2

B.E./B.Tech. Degree Examination (Numerical Methods)

Answer All Questions
Time: 3 Hours Max: 100 Marks
Section A (10 x 2 = 20 marks)
1. List any three sources of errors which you encounter while solving a

methematical problem.

2. State sufficient conditions for the convergence of the iteration method
to find the roots of the system x = F(x, y) and y = G(x, y).

3. Evaluate A*(x").
4. Form the divided difference table for the data:

X 2 5 10
5 29 139

5. Write the normal equations to fit a quadratic y = a + bx + cx’ to the
data (x;, y), i =1, 2, ..., n.

6. Define DFT and IDFT of a function f(#) defined at points ¢,
i=0,12, .., N-1

7. What are cardinal splines? How are they related to cubic splines?
8. Write the formula for :_y using Stirling’s, interpolation formula.
X

9. Explain the difference between Jacobi and Gauss—Seidel methods for

the solution of a system of equations.
10. Explain the difference between explicit and implicit methods for the
2
solution of the equation —uza—u.
NG

Section B (5 x 16 = 80 marks)

11. (a) Prove that Newton—Raphson method has quadratic convergence.

[6]
(b) Use Bessel’s formula to estimate the value of y when x = 5.0 from
the following data:

(0, 14.27), (4, 15.81), (8, 17.72), (12, 19.96) [6]
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Model Test Paper 2

12.

13.

14.

15.

(c) If the straight line y = ay + a;x is fitted to the data points (x;, ,),
i =1, 2, ..., n, show that
X y 1
X 2y n [=0,i=L12..n [4]
Exi2 X Vi X
(a) Using the Cooley—Tukey algorithm, compute the DFT of the sequence
fe = {1, -1, 1, -1} [10]
(b) Given the data

X -2 -1 2 3
y -12 -8 3 5
compute )’(1.0) using cubic spline approximation. [6]
(a) Evaluate
1 de
5 1+x
using the 4-point Gauss quadrature formula. [6]
OR

If y=A + Bx + Cx? and yo, y;, y, are the values of y corresponding
to x =a, a+ h and a + 2h, respectively, prove that
a+2h

h
J de:g(Y1+4Y1+ Y2) [6]
a
(b) Solve the following equations by triangularisation method:

8 — 3y +2z=20,4x + 1ly —z =33, 6x + 3y + 12z =36 [10]
Solve the following equations by Gauss—Seidel method correct to
3 decimal places:
10x — 5y —2z=3,4x - 10y + 3z = -3, x + 6y + 10z = -3 [16]
OR

Using Taylor’s series, find the values of y (0.1), y (0.2), y (0.3) for the
initial value problem

d
T oxy+y2 y(0)=1.
dx
Hence find the value of y (0.4) using Milne’s method. [16]

Solve the heat equation

au_482u
g— 87 [16]
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with the conditions u (0, #) = u (4, £) = 0 and u (x, 0) = 4x — x°,

1
OSxS4fort=§k,k=0,1,2,3,4,5. [16]
OR
Solve Laplace’s equation
2 2
a—g+a—g=0, 0<x,y<1
ox° oy

with boundary conditions (0, y) = u(1, y) = 10, u(x, 0) = u(x, 1) = 20.

Take 4 = 0.25 and apply Gauss-Seidel method to find values correct
to 3 decimal places. [16]



Model Test Paper 3

B.E./B.Tech. Degree Examination (Numerical Methods)

Answer All Questions

Time: 3 Hours Max: 100 Marks
Section A (10 x 2 = 20 marks)
1. State the formula for finding the absolute error in the function

u = f(xy, x,) if Ax; and Ax, are the errors in x; and x,, respectively.

2. Explain how you can find the reciprocal of a number N by Newton—
Raphson method.
3. Explain Graeffe’s root-squaring method for finding the zeros of a
polynomial p,(x) of degree n.
4. What is inverse interpolation? State any formula for it.
5. What are radix-2 algorithms?
6. Define a cubic B-spline and state Cox, de-Boor formula.
7. Explain how you will compute a double integral numerically.
8. Define eigenvalue and eigenvector of a matrix. Explain briefly the power
method for finding the smallest eigenvalue of a matrix.
9. Write down the finite difference analogue of the equation
Vi + gy = hx) at x = x;.
10. State the explicit and implicit formulae for the solution of the equation
w_o
ot %
Section B (5 x 16 = 80 marks)
11. (a) Explain briefly the regula—falsi method to find an approximate root,

correct to 3 decimal places, of the equation x> — 3x — 5 = 0 that
lives between 2 and 3. [8]

(b) Establish Newton’s divided difference formula and give an estimate
of the remainder term in terms of the appropriate derivative. Deduce
Newton’s forward and backward interpolation formulae as particular
cases.

If f(x) = Xiz, find the divided differences [a, b] and [a, b, c] [8]
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12.

13.

14.

(a) Find the values of a, b, ¢ such that the parabola y = a + bx + cx?
fits the following data (x;, y;) in the least squares sense:
0, ), (1, 5), (2, 10), (3, 22), (4, 38). [8]
(b) Given the points, viz.
(1, -8), (2, —1), and (3, 18)

satisfying the function y = f(x), find the linear and quadratic splines
approximating the function f(x) and determine the value of y (2.5) in

each case. [8]
w2
(a) Find the value of J sinx dx with 4 = 2—7; using both the trapezoidal
0
. 1
rule and Simpson’s 3 -rule. [8]

(b) Use Householder’s method to reduce the matrix

4 2 2
A=|2 5 1
2 1 6
to a tridiagonal form. [8]

Using the fourth order Runge—Kutta formula, find y (0.2) and y (0.4)
given that

dy_yz—x2 B
&_y2+x2’ y(0)=1. [16]
OR

Solve Laplace’s equation at the interior points of the square region
given below. Use Gauss—Seidel method upto 7 iterations:

500 1000 1000 1000 500

0 Uy Ug Ug 0

0 0
U, Us Us

0 0
Uy U Us

0 0 0 0 0 [16]



444

Model Test Paper 3

15.

Derive the explicit scheme for the solution of the wave equation
82u 2 82u
2o d T
ot ox
Solve this equation with ¢®> = 4 and the boundary conditions
ou
w0, ) = u(4, 1) = 0, E(X, 0)=0 and u(x, 0) = 4x — x>. With h = 1
and k = 0.5, find the values of u(x, 7) upto 3 time steps.



Model Test Paper 4

B.E./B.Tech. Degree Examination (Numerical Methods)

Answer All Questions
Time: 3 Hours Max: 100 Marks
Section A (10 x 2 = 20 marks)
1. Find the value of +/3.02 —+/3,correct to 3 decimal places.

2. State the conditions to be satisfied by ¢ (x) if the equation x = ¢ (x)
possesses a unique solution in [a, b].

3. State the condition of convergence of Newton—Raphson formula for
finding the root of f(x) = 0.

AZ
4. Show that E=—.
52

5. Transform the equation y= to a linear form.

a+bx
6. Explain the terms ‘Decimation in Time’ and ‘Decimation in Frequency’.
7. State the cubic spline formula for approximating the data (x;, y,),
i=0,1, .., n in terms of the spline second derivatives.

1
8. Give the error in Simpson’s g-rule.
9. What is meant by saying that the Runge—Kutta formula is of the fourth
order?

10. State the local truncation error of the Crank—Nicolson formula.

Section B (5 x 16 = 80 marks)

11. (a) Explain the underlying principle of Muller’s method and give the
computational steps to compute a root of the equation cos x = xe*
by Muller’s method. Find the root which lies between 0 and 1,
correct to 4 decimal places. [10]

(b) Using Lagrange’s formula, estimate the value of y(10) from the
following data (x, y):

(5, 12), (6, 13), (9, 14), (11, 16) [6]
12. (a) Obtain the first four orthogonal polynomials f,(x) on [-1, 1]
with respect to the weight function W(x) = 1. [6]

445



446 Model Test Paper 4

(b) using the Cooley—Tukey algorithm, compute the DFT of the sequence
{1, =1, 1, =1}. Draw the flow-graph of the computations. [10]

13. (a) Fit natural and D, cubic splines for the following data satisfying
the function y = ™
(0.10, 1.1052), (0.20, 1.2214), (0.30, 1.3499).

Approximate ¢”!* in each case and state which of these is the

best fit. [10]

(b) Prove the minimization property of natural cubic splines. [6]

14. (a) ngte down the formulae for computing the values of % and
Z—z at any point, obtained from Newton’s forward difference
ini(erpolation formula. Obtain the approximate values of % and
d2y _ .

d? for x = 1.2 from the following data:

(1.0, 2.7183), (1.2, 3.3201), (1.4, 4.0552), (1.6, 4.9530),
(1.8, 6.0496), (2.0, 7.3891), (2.2, 9.0250). [8]
(b) Derive the trapezoidal rule

b
h
Iydx=§[yo +2(y1 + Yo+ Ynoa) + Vn]

a

and find an expression for the error in this formula. [8]
15. (a) Using Gauss—Seidel method upto 5 iterations, solve the system:

30x =2y +3z=75,2x + 2y + 182 = 30, x + 17y — 2z = 48
(b) Solve the boundary value problem

d2y

d?_ y =0, »(0) =0, »(2) = 3.62686
by finite difference method with # = 0.5. Find the value of y(1.0)
and state the absolute error in the solution. [8]

OR
. . ou 2%u
Use Crank—Nicolson method to solve the equation EZ 8_2 with
X

the boundary conditions u(x, 0) = 0, (0, /) = 0, u(1, ) = 200¢.

1
Find the values of u(x, ) for two time steps taking 4 = 2 and

1
k=g [16]
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Absolute accuracy, 8

Absolute error, 8

Acceleration of convergence, 36
Adams—Bashforth formula, 316
Adams—Moulton formula, 317
ADI method, 356

Aitken, A.C., 115

Aitkens’s Az-process, 36
Aitken’s scheme, 115
Algebraic equations, 22, 262
Approximation of functions, 148
Averaging operator, 79
Axioms, of norms, 260

Backward differences, 77
Backward difference formula, 85
Backward difference operator, 77
Backward formula of Gauss, 92
Bairstow’s method, 56
BASIC, 4
Bender—Schmidt’s formula, 363
Bessel’s formula, 94
Bisection method, 23
Boundary-value problems, 325
finite-difference method, 325
Galerkin’s method, 333
Rayleigh—Ritz method, 411
shooting method, 338
spline method, 330
B-splines, 197
computation of, 200
Cox-de Boor formula, 199
least squares solution, 203
representation of, 198

C, 4
Cardinal splines, 195

Carré, B.A., 350
Cauchy’s problem, 343
Central differences, 78
central difference interpolation formula,
90
central difference operator, 78
centro-symmetric equations, 297
Characteristic equation, 284
polynomial, 284
Chebyshev polynomials, 149
Chebyshev series, 390
Crank—Nicolsen formula, 361
Cubic splines, 181
errors in derivatives, 192
governing equations, 186
in integral equations, 393
minimizing property, 191
numerical differentiation, 207
numerical integration, 218
surface fitting by, 193
two-point boundary value problems, 330
Curve fitting, 126
exponential, 133
least squares, 126
nonlinear, 130

Data fitting, with cubic splines, 185
Detection of errors using difference tables,
82

Deferred approach to the limit, 225
Degenerate Kernels, 382
Differences, 75

backward, 77

central, 78

divided, 111

finite, 75

forward, 75
Difterences of a polynomial, 83
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Index

Differential equations, 302
ordinary, 302
partial, 342
Differentiation, numerical, 207
Dirichlet’s problem, 343
Divided differences, 111

Divided difference formula, Newton’s 113

Double integration, numerical, 245
Double interpolation, 118

Economization of power series, 152
Eigenvalue problems, 284
householder’s method, 289
iterative method, 284
QR method, 291
Elliptic equations, 343
Errors, 7
absolute, 8
detection of, 82
general formula, 12
in a series approximation, 14
in polynomial interpolation, 74
in Simpson’s rule, 221
in the cubic spline, 192
in trapezoidal rule, 221
percentage, 8
relative, 8
truncation, 8
Euler—-Maclaurin formula, 232
Euler’s method, 307
error estimates, 308
modified, 310
Everett’s formula, 96
Exponential curve fitting, 133
Extrapolation, 90

False position, method of, 28
Finite differences, 75
Finite difference approximation, 346
to derivatives, 346
Finite element method, 405
base functions, 410
functionals, 406
Galerkin method, 333
one-dimensional problems, 421
Rayleigh—Ritz method, 411
two-dimensional problems, 418
FORTRAN, 4
Forward differences, 75
interpolation formula, 84
Forward difference operator, 75
Forward formula of Gauss, 90

Fourier approximation, 153

Fourier integrals, 244
numerical calculation, 244
trapezoidal rule, 244

Fourier series, 153

Fourier transform, 156
Cooley—Tukey algorithm, 161
fast fourier transform, 161
Sande—Tukey algorithm, 170

Functional, 406

Galerkin’s method, 333

Gaussian elimination, 263
Gaussian integration, 238
Gauss—Seidel method, 281, 352
Generalized Newton’s method, 42
Generalized quadrature, 242
Generalized Rolle’s theorem, 5
Graffe’s root squaring method, 53
Gram—Schmidt’s process, 145

Hermite’s interpolation formula, 108
Householder’s method, 289
Hyperbolic equations, 343

Ill-conditioned matrices, 277
Initial value problems, 303
Integral equations, 379

invariant imbedding, 400

numerical solution of, 379
Integration, 218

Gaussian, 238

numerical, 218

Romberg, 225
Intermediate value theorem, 5
Interpolation, 73

by iteration, 115

cubic spline, 181

double, 118

inverse, 116
Invariant imbedding, 400
Inverse of a matrix, 267
Iteration method, 279

for a system of nonlinear equations, 62

for solution of linear systems, 279
for the largest eigenvalue, 284

Jacobi’s iteration formula, 280, 349

Kernel, of integral equations, 380
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Lagrange’s interpolation, 101
formula, 104
error in, 107

Laplace’s equation, 344
Gauss—Seidel method, 349
Jacobi’s method, 349
SOR, 350

Least squares method, 126
continuous data, 140
weighted data, 138

Legendre polynomials, 240

Lin—Bairstow’s method, 56

Linear systems, solution of, 262

Lipschitz condition, 306

Love’s equation, 389

Lower triangular matrix, 256

Maclaurin expansion, 6
for e*, 18
Matrix, 255
factorization, 257
ill-conditioned, 277
inverse, 267
norms, 259
tridiagonal, 275
Mean operator, 79
Mean value theorem, 5
Milne’s method, 318
Minimax polynomial, 152
Monic polynomials, 151
Muller’s method, 51

Neville’s scheme, 116
Newton’s backward difference interpolation
formula, 85
Newton—Cotes formulae, 225
Newton’s forward difference interpolation
formula, 84
Newton’s general interpolation formula, 113
Newton—Raphson method, 38
for a nonlinear system, 64
Norms, of vectors and matrices, 259
Normal equations, 128
Numerical differentiation, 207
error in, 212
Numerical integration, 218
adaptive quadrature, 234
cubic spline method, 223
Euler—Maclaurin formula, 232
Gaussian, 238
Newton—Cotes formulae, 225
Romberg, 223
Simpson’s rules, 221
trapezoidal rule, 220

Ordinary differential equations, 302
Adams—Moulton method, 316
Euler’s method, 307
Milne’s method, 318
numerical solution of, 303
Picard’s method, 305
Runge—Kutta methods, 310
spline method, 321
use of Taylor series, 303

Orthogonal polynomials, 143

Parabolic equations, 343
Crank—Nicolson formula, 361
explicit formula, 361
iterative methods, 365

Partial differential equations, 342
numerical methods for, 346
software for, 372

Partial pivoting, 265

Percentage error, 8

Picard’s method, 305

Pivot, 265

Poisson’s equation, 418

Polynomial interpolation, 74
error in, 74

Practical interpolation, 97

Predictor—corrector methods, 315
Adams—Bashforth formula, 316
Adams—Moulton formula, 317
Milne’s method, 318

QR method, 291
Quadratic convergence, 39
Quotient-difference method, 58

Ramanujan’s method, 43
Rayleigh—Ritz method, 411
Relative accuracy, 8
Rolle’s theorem, 5
generalized, 5
Romberg integration, 223
Rounding errors, 7
Rounding oft, 7
Runge—Kutta methods, 310

Shift operator, 79
Shooting method, 338
Significant digits, 7
Simpson’s 1/3-rule, 221
error in, 222
Singular value decomposition, 291



450 Index

Spline interpolation, 181 Truncation error, 8
cubic splines, 181 Two-point boundary value problems, 325
errors in, 192 finite difference method, 325
linear splines, 182 Galerkin method, 333
minimizing property, 191 Rayleigh—Ritz method, 411
quadratic splines, 183 shooting method, 338
surface fitting, 193 spline method, 330

Stirling’s formula, 94

Symbolic relations, 79

Symmetric matrix, 287

Systems of nonlinear equations, 62

Undetermined coeffecients, method of, 251
Upper triangular matrix, 256

Taylor’s series, 303 Vandermonde’s determinant, 103

Trapezoidal rule, 220
Tridiagonal matrix, 287 Wave equation, 369
eigenvalues of, 287 Weirstrass theorem, 73
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