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Preface

This book is devoted to integrals and derivatives of arbitrary real order,
methods of solution of differential cquations of arbitrary real order, and
applications of the described methods in various fields.

The theory of derivatives of non-integer order goes back to the Leib-
niz’s note in his list to L'Hospital [123], dated 30 September 1695, in
which the meaning of the derivative of order one half is discussed.

Leibniz’s note led to the appearance of the theory of derivatives and
integrals of arbitrary order, which by the end of the XIX century took
more or less finished formm due primarily to Liouville, Griinwald, Let-
nikov, and Riemann. Surveys of the history of the theory of fractional
derivatives can be found in [44, 153, 179, 226, 232].

For three centuries the theory of fractional derivatives developed
mainly as a pure theoretical field of mathematics useful only for mathe-
maticians.

However, in the last few decades many authors pointed out that
derivatives and integrals of non-integer order are very suitable for the
description of properties of various real materials, e.g. polymers. It has
been shown that new fractional-order models are more adequate than
previously used integer-order models. Fundamental physical consider-
ations in favour of the use of models based on  derivatives of non-
integer order are given in [30, 254].

Fractional derivatives provide an excellent instrument for the descrip-
tion of memory and hereditary properties of various materials and pro-
cesses. This is the main advantage of [ractional derivatives in comparison
with classical integer-order models, in which such effects are in fact ne-
glected. The advantages of fractional derivatives become apparent in
modelling mechanical and electrical properties of real materials, as well
as in the description of rheological properties of rocks, and in many other

fields.

xvil
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The other large field which requires the use of derivatives of non-
integer order is the recently elaborated theory of fractals [142]. The
development of the theory of fractals has opened further perspectives for
the theory of fractional derivatives, especially in modelling dynamical
processes in self-similar and porous structures.

Fractional integrals and derivatives also appear in the theory of con-
trol of dynamical systems, when the controlled system or/and the con-
troller is described by a fractional differential equation.

The mathematical modelling and simulation of systems and pro-
cesses, based on the description of their properties in terms of fractional
derivatives, naturally leads to differential equations of fractional order
and to the necessity to solve such equations. However, effective general
methods for solving them cannot be found even in the most useful works
on fractional derivatives and integrals.

It should be mentioned that from the viewpoint of applications in
physics, chemistry and engineering it was undoubtedly the book written
by K. B. Oldham and J. Spanier [179] which played an outstanding role
in the development of the subject which can be called applied fractional
caleulus. Moreover, it was the first book which was entirely devoted to
a systematic presentation of the ideas, methods, and applications of the
fractional calculus.

Later there appeared several fundamental works on various aspects of
the fractional calculus, including the encyclopedic monograph by S. Sam-
ko, A. Kilbas, and O. Marichev [232], books by R. Gorenflo and S. Ves-
sella [90], V. Kiryakova [116], A. C. McBride [148] K. S. Miller and
B. Ross [153], K. Nishimoto [167], B. Rubin [230], lecture notes by
F. Mainardi and R. Gorenflo [83, 88, 138] in the book [35], and an ex-
tensive survey by Yu. Rossikhin and M. Shitikova [228).

The book by M. Caputo [24], published in 1969, in which he sys-
tematically used his original definition of fractional differentiation for
formulating and solving problems of viscoelasticity, and his lectures on
seismology [28] must also be added to this gallery, as well as a series of
A. Qustaloup’s books on applications of fractional derivatives in control
theory [183, 185, 186, 187].

However, numerous references to the books by Oldham and Spanier
[179] and by Miller and Ross [153] show that applied scientists need first
of all an easy introduction to the theory of fractional derivatives and
fractional differential equations, which could help them in their initial
steps to adopting the fractional calculus as a method of research.



PREFACE Xix

The main objective of the present book is to provide such an overview
of the basic theory of fractional differentiation, fractional-order differen-
tial equations, methods of their solution and applications. Taking into
account the needs of the audience to which this book is addressed, namely
applied scientists in all branches of science, special attention was paid
to providing easy-to-follow illustrative examples. For the same reason
only those approaches to fractional differentiation are considered which
are related to real applications. The language and the general style were
influenced by the author’s wish to make the methods of the fractional
calculus available to the widest possible group of potential users of this
nice and efficient theory.

The book consists of ten chapters.

In Chapter 1 an introduction to the theory of special functions (the
gamma and beta function, the Mittag-Leffler function, and the Wright
function) is given. These functions play the most important role in the
theory of fractional derivatives and fractional differential equations.

In Chapter 2 some approaches to generalizations of the notion of
differentiation and integration are considered. In each case, we start
with integer-order derivatives and integrals and show how these notions
are generalized using some selected approaches. We consider there the
Griinwald Letnikov, the Riemann-Liouville, and the Caputo fractional
derivative, and also the so-called sequential fractional derivatives. The
approach using generalized functions is also discussed, as well as the
notion of left and right fractional derivatives. Properties of the consid-
ered fractional derivatives are introduced, including composition rules,
the links between these approaches, and the use of integral transforms
(Laplace, Fourier, Mellin).

Chapters 3 ‘8 are devoted to methods of the treatment of fractional
differential equations.

In Chapter 3 some useful existence and uniqueness theorems for ini-
tial problems for fractional differential equations are given. Examples are
given of the use of the existence and uniqueness theorem as a method
of solution of fractional differential equations. We also study the depen-
dence of the solution on initial conditions.

In Chapter 4 the Laplace transform method for solving linear frac-
tional differential equations is described and illustrated by examples.
Special attention is paid to the difference between fractional differential
equations containing “standard” and “sequential” fractional derivatives.
There are also examples of the use of the Laplace transform for solving
partial differential equatious.
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In Chapter 5 the definition and some properties of the fractional
Green's function are given, and the explicit expression for the Green’s
functions for a general ordinary linear fractional differential equation is
obtained. There are also given its particular cases for the one-term, two-
term, three-term, and four-term fractional differential equations. Com-
bining the methods of Chapters 4 and 5, it is possible to easily obtain
closed-form solutions of initial-value problems for ordinary linear frac-
tional differential equations.

In Chapter 6 some other analytical methods are described, namely
the Mellin transform method, the power series method, and Yu. I. Ba-
benko’s symbolic method. We also include the method of orthogonal
polynomials for the solution of integral equations of fractional order,
and give a collection of so-called spectral relationships for various types
of kernels. All the methods described in this chapter are also illustrated
by examples.

Chapters 7 and 8 deal with numerical methods.

In Chapter 7 we describe the fractional difference approach to numer-
ical evaluation of fractional derivatives, and discuss the order of approx-
imation. We also describe the “short-memory” principle, which allows
faster cvaluation of fractional derivatives. The use of the fractional dif-
ference method and the “short-memory” principle is illustrated by an
example of their application to the calculation of heat load intensity
change in blast furnace walls. Additionally, there is an example of the
use of the fractional difference approximation of fractional derivatives
for the numerical evaluation of finite parts of divergent integrals, which
often arise in many fields, especially in fracture mechanics.

In Chapter 8 the fractional difference method is used for the numer-
ical solution of initial-value problems for ordinary fractional differential
equations. Again, the use of the method and the “short-memory” prin-
ciple is illustrated by several examples.

Chapters 9 and 10 are devoted to applications of the fractional cal-
culus, and provide illustrations of the use of the methods described in
the other chapters.

In Chapter 9 fractional-order dynamical systems and controllers are
considercd. In fact, this chapter is an extensive demonstration of the use
of the methods described in the previous chapters.

In Chapter 10 we give a survey of various fields of application of
fractional derivatives. Some of these are already well established, and
some have just started their development in the framework of applied
fractional calculus. Where possible, we try to apply the methods de-
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scribed in other chapters. Since it often happens that different objects
or processes in different branches of science are described by the same
equations, this chapter may provide a certain inspiration for applying
fractional calculus in further fields.

The bibliography consists of 259 entries, published up to 1997. How-
ever, it cannot be considered as a complete bibliography, and interested
reader may find many additional references in the monographs which
arc mentioned above, especially in the fractional calculus encyclopedia
by S. Samko, A. Kilbas, and O. Marichev {232].
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Chapter 1

Special Functions
of the Fractional Calculus

In this chapter some basic theory of the special functions which are
used in the other chapters is given. We give here some information on
the gamma and beta functions, the Mittag-LefHler functions, and the
Wright function; these functions play the most important role in the
theory of differentiation of arbitrary order and in the theory of fractional
differential equations.

1.1 Gamma Function

Undoubtedly, one of the basic functions of the fractional calculus is Eu-
ler’s gamma function I'(z), which generalizes the factorial n! and allows
n to take also non-integer and even complex values.

We will recall in this section some results on the gamma function
which are important for other parts of this work.

1.1.1 Definition of the Gamma Function

The gamma function I'(z) is defined by the integral

I'(z) = /(z"ttz Yt, (1.1)
0
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which converges in the right half of the complex plane Re(z) > 0. Indeed,
we have

o0
T(z+iy) = [ et 1t = / ete et loa(t) gy
Q

0\8 0\8

e t® Ycos(y log(t)) + isin(y log(t))]dt. (1.2)

The expression in the square brackets in (1.2) is bounded for all ¢;
convergence at infinity is provided by e, and for the convergence at
t = 0 we must have z = Re(z) > 1.

1.1.2 Some Properties of the Gamma Function

One of the basic properties of the gamma function is that it satisfies the
following functional equation:

'z +1) = 2I'(2), (1.3)

which can be easily proved by integrating by parts:

oc G
fo
Fz+1) = /e'tt’zdt = [—e“ttZL_:} + z—/e—tiz”ldt = 2I'(2).
0 0

Obviously, I'(1) = 1, and using (1.3) we obtain for 2 =1,2,3, ... :

') = 1-r)y=1=14

T(3) = 2.T(2)=2-1=2,

I'4) = 3-T'(3)=3-21=3!,
'Mn+1) = n-n)=n-(n-1)=n!

Another important property of the gamma function is that it has
simple poles at the points 2 = —n, (n = 0, 1, 2, ...). To demonstrate
this, let us write the definition (1.1) in the form:

o

1
F(Z):/c’“ttz_ldt—i-/e—'tz"]dt. (1.4)
0 1
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The first integral in (1.4) can be evaluated by using the series expan-
sion for the exponential function. If Re(z) =z > 0 (i.e. 2 is in the right

half-plane), then Re(z + k) =z +n > 0 and tz““' = 0. Therefore,
1 Lo o ok
/e”‘tz‘ldt = /Z ( k_t') t*~ldt
0 0 k=07
1
X (-1 k o0 1)}k
. ( k-t) /tk-i-z—ldt -y k'(kl) _
k=0 3 im0 Rl(k +2)

The second integral defines an entire function of the complex variable
z. Indeed, let us write

X o
o(z) = /e‘ttz“ldt = /e(z_l)log(t)"tdt. (1.5)
1 1

The function e(z~D1&l)-t js 4 continuous function of z and t for
arbitrary z and t > 1. Moreover, if t > 1 (and therefore log(¢) > 0), then
it is an entire function of z. Let us consider an arbitrary bounded closed
domain D in the complex plane (z = z+1iy) and denote zg = max Re(z).

z€
Then we have:

1€—-ttz—1l _ ‘e(z—l)log(t)—t} — le(z—l)log(t)—tl )

eiylog(t) ‘

— ic(zfl)log(t)—t‘ < 6(3:0—1)log(t)—t — C_ttxo_l.

This means that the integral (1.5) converges uniformly in D and, there-
fore, the function ¢(z) is regular in D and differentiation under the
integral in (1.5) is allowed. Because the domain D has been chosen ar-
bitrarily, we conclude that the function ¢(z) has the above properties in
the whole complex plane. Therefore, p(z) is an entire function allowing
differentiation under the integral.

Bringing together the above considerations, we see that

RN NS P
= K k+z o )
= 1
= (-DF 1
= Z (=) + entire function, (1.6)
= k' k+z
and, indeed, I'(z) has only simple poles at the points z = —n, n =

0,1,2,....
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1.1.3 Limit Representation of the Gamma Function
The gamma function can be represented also by the lmit

) = I nln?
Z) = ni
n—00 z(z +- 1) . (Z +n)

; (L.7)

where we initially suppose Re(z) > 0.
To prove (1.7), let us introduce an auxiliary function

falz) = f <1 - %)” £t (1.8)

0

Performing the substitution 7 = £ and then repeating integration by

n
parts we obtain

1
fle) = [ pear
j

1
4
= "y /(l — )y lrtdr

0

&
z ' 1
_ n*n! chn=ly

z(z+1)...(z+n~1)/7— o

0
n®nl!

Zz+1) .. (z+n=1)z+n)

Taking into account the well-known limit

t n
Hm (1 — ,> =t
Th— O T

we may expect that

7

x
t T . B )
lim fo(2) = linp/(l — ) t* dt = /e*’r"’dt, (1.10)

T n .
0 0

which ends the proof of the limit representation (1.7) of the gamma
function, if the interchange of the limit and the integral in (1.10) is
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R

justified. To do this, let us estimate the difference

X

A = /e—tf,zwldi — fu(z)
0

1 G
t n ) 3 L
/ {(2"”' - (1 - ~) ] >t +/e Ny (1.11)
: n
0

n

Let us take an arbitrary ¢ > 0. Because of the convergence of the
integral (1.1) there exists an N such that for n > N we have

/c”’f,z"dt < /e”"t“’“ldt <5 = Re(2), (1.12)

n n

Fixing now N and considering n > N we can write A as a sum of
three integrals:

N n ™ x
A= /+/ {ct - (1 - —) }t“ldH— /c“tz"‘d,i,. (1.13)
. n .
0 N n
The last term is less then 5. For the second integral we have:
| n I n }
} t n . | t n . 1
[e_t - (1 - —) ] = ldt, < / [(zﬁt - (1 - —) } Tt
]. n | . n
N N
o
< /e"‘t"’"ldt < £ (1.14)
N '

where, as above, x = Re(z).
For the estimation of the first integral in (1.13) we need the following
auxiliary inequality:

¢ 7 t‘.l
0<ce—‘~<1~;> <5 (0 <t<n). (1.15)

which follows from the relationships

t
t T _ T
R (1 — —) = /(3’ (1 - I) Tdr (1.16)
T T T
0
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and
/ ™\" T f T t2
0< /eT (1——) —dr < /eT~dT=et;. (1.17)
J n n d n 2n

(Relationship (1.16) can be verified by differentiating both sides.)
Using the auxiliary inequality (1.15) we obtain for large n and fixed

|Jl e

Taking into account inequalities (1.12), (1.14) and (1.18) and the
arbitrariness of € we conclude that the interchange of the limit and the
integral in (1.10) is justified.

This definitely completes the proof of the formula (1.7) for the limit
representation of the gamma function for Re(z) > 0.

With the help of (1.3) the condition Re(z) > 0 can be weakened to
z #0,-1,-2,... in the following manner.

If -m < Re(z) € —m + 1, where i is a positive integer, then

N
1 €
< — [ 7t < <. 1.18
2n_0/ 3 ( )

I'(z +m)
) = 2(z+1)...(z+m—-1)
_ 1 n*tmn!
oz(z+ 1) (z+m~1)n—*oc(z+m) (z+m+n)
_ 1 lim (n —m)**™(n — m)!
zz+1) ... (z4+m—1)n>x(z+m)(z+m+1)...(z+n)
= lim nn! . (1.19)

n—oo z(z+1)...(2 +n)
Therefore, the limit representation (1.7) holds for all z excluding

z#0,-1,-2,...

1.1.4 Beta Function

In many cases it is more convenient to use the so-called beta function
instead of a certain combination of values of the gamma function.
The beta function is usually defined by

1
B(z,w) = -/'rz“l(l -7 dr, (Re(z) >0, Re(w)>0). (1.20)
0
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To establish the relationship between the gamma function defined by
(1.1) and the beta function (1.20) we will use the Laplace transform.
Let us consider the following integral

t
haow(t) = /rl“(l — ) ldr. (1.21)
0

—1 tw—l

Obviously, h; ., (t) is a convolution of the functions ¢*~' and and
hew(l) = B(z,w).
Because the Laplace transform of a convolution of two functions is

equal to the product of their Laplace transforms, we obtain:
I'(z) T'(w I'(z)'{w
Ho(s) = (Z) Tlw) T )’ (1.22)

s sw Sz+'w

where H, ,,(s) is the Laplace transform of the function h, ,,(¢).

On the other hand, since I'(2)I'(w) is a constant, it is possible to
restore the original function h,,(t) by the inverse Laplace transform
of the right-hand side of (1.22). Due to the uniqueness of the Laplace
transform, we therefore obtain:

I‘(‘Z)F(w)tz-+—w-~1

zwll) =
e (t) Iz +w)

, (1.23)

and taking t = 1 we obtain the following expression for the beta function:

I'(z)I(w)

B(z,w) = I(z+w)

: (1.24)

from which it follows that
B(z,w) = B(w, 2). (1.25)

The definition of the beta function (1.20) is valid only for Re(z) > 0,
Re{w) > 0. The relationship (1.24) provides the analytical continua-
tion of the beta function for the entire complex plane, if we have the
analytically continued gamma function.

With the help of the beta function we can establish the following two
important relationships for the gamma function.
The first one is

)1~ 2) = —

sin(mz)’ (1.26)
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We will obtain the formula (1.26) under the condition 0 < Re(z) < 1
and then show that it holds for z # 0, £1, £2, ...
Using (1.24) and (1.20) we can write

M)l —z)=B(z,1-2) j(lﬁt)z_l d_tt, (1.27)
0

where the integral converges if 0 < Re(z) < 1. Performing the substitu-
tion 7 = t/(1 — t) we obtain

I'(z)I'(1 — z2) / dT. (1.28)
0
Let us now consider the integral
2—1
ds, 5) = , 1.26
/f<s) s 9= (129

along the contour shown in Fig. 1.1. The complex plane is cut along the
real positive semi-axis.

The function f(7) has a simple pole at s = ™. Therefore, for R > 1
we have

/f(s)ds = 27i [Resf(s)]' = —2mie'™*, (1.30)

g™t

On the other hand, the integrals along the circumferences |s| = € and
|s| = R vanish as ¢ — 0 and R — oo, and the integral along the lower
cut edge differs from the integral along the upper cut edge by the factor
—e?™2 Because of this, for € — 0 and R — oc we obtain:

§==gT?

/f(s)ds = QWi[R.esf(s)] = —27mie'™ = [(2)[(1 - 2)(1 — ¢*™%),
r

(1.31)

and

2mier™* s »
I'z)r(1-z)= s ] sn(rz)’ (0 < Re(z) < 1). (1.32)

If m < Re(z) < m+ 1, then we can put z = « + m, where 0 <
Re(or) < 1. Using (1.3) we obtain

L) = 2) = (=1)"I(@)'(1 = a)

—1ym ;
G T =" . (1.33)

~osin(re)  sin(m(a+m))  sin(rz)’
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Figure 1.1: Contour L.

which shows that the relationship (1.26) holds for z # 0, £1, £2, ...
Taking z = 1/2 we obtain from (1.26) a useful particular value of the
gamma function:

r(;)=vr (1.34)

The second important relationship for the gamma function, easily
obtained with the help of the beta function, is the Legendre formula

(z)'(z + %) = /m2%7Ir(22), (22 #0, -1, =2, ...). (1.35)

To prove the relationship (1.35) let us consider

l.
B(z,z) = /[T(l — D) Ydr,  (Re(z) > 0). (1.36)
0

Taking into account the symmetry of the function y(v) = 7(1 — 7)
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and performing the substitution s = 47(1 — 7) we obtain

1/2
B(z,z)=2 /[T(l — 7)) tdr
0

1
= 223_1 /32'1(1 — )" V2s = 2% B(z, %) (1.37)
0
and using the relationship (1.24) we obtain from (1.37) the Legendre
formula (1.35).
Taking z = n+ 3 in (1.35) we obtain a set of particular values of the
gamma function

1) _A/AT(2n+1)  /7(2n)!
T 22D(n41) 22!

T(n+ (1.38)

containing also (1.34).

1.1.5 Contour Integral Representation

The integration variable t in the definition of the gamma function (1.1)
is real. If t is complex, then the function e~ D&~ hag a branch point
t = 0. Cutting the complex plane (t) along the real semi-axis from ¢t = 0
to t = +oc makes this function single-valued. Therefore, according to
Cauchy’s theorem, the integral

/evttz—ldt:/e(z l)log(t)-~tdt
C C

has the same value for any contour ' running around the point £ = 0
with both ends at +oc.

Let us consider the contour C (see Fig. 1.2) consisting of the part
of the upper edge (+oc,€) of the cut, the circle C, of radius € with the
centre at ¢t = 0 and the part of the lower cut edge (e, +00).

Taking log(t) to be real on the upper cut edge, we have

tzvl - e(z—l) log(t)'

On the lower cut edge we must replace log(t) by log(t) + 2mi:

17=1 = e(z—l)(l()g({,)+27ri) — e(z—l)log(t)c(z——l)‘Zﬂ'z — tz—~1c‘2(z~1)m_
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C
/ 3 =10
Q ¢ =2r X
Figure 1.2: Contour C'.
Therefore,
€ + 00
/e*ftz“‘dt: /e"tt"'"ldt—b— /e'ttz‘ldt+e2<z'”“ / et L.
0 +00 CE €

(1.39)
Let us show that the integral along C, tends to zero as ¢ — 0. Indeed,
taking into account that |t| = ¢ on C¢ and denoting

M = max

—yarg(t)—t =7
max o | w=Im)),

where M is independent of ¢, we obtain (z = x + iy):

/C"ttz"'ldt < / |e*ttz"1|dt :/ tz—ll ) l(z—yarg(t)-vt]dt
% Ce C
< Me! / dt = Me® ! 2me = 2 Me®,
Ce
and therefore
lg%/Ca*~ttZ"1dt =0 (1.40)
Ce
and
0 +00
/e"ﬁ"ldt: /e""tz'ldt—f-ez(z"l)m /e"ﬁ*ldt. (1.41)

C +00
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Using (1.1) we obtain:

1
F(Z) = (—)2—7;;—:‘—1' /ff.irtz_ldt. (142)
c

The function €27 — 1 has its zeros at the points z = 0, £1, 42, .. ..

The points z = 1, 2, ... are not the poles of T'(z), because in this case
the function e **~! is single-valued and regular in the complex plane
(t) and according to Cauchy’s theorem

/ et Nt = 0.
c

If 2=0, -1, =2, ..., then the function e"*¢* ! is not an entire func-
tion of t and the integral of it along the contour C is not equal to zero.
Therefore, the points z = 0, —1, —2, ... are the poles of I'(z). Accord-
ing to the principle of analytic continuation, the integral representation
(1.42) holds not only for Re(z) > 0, as assumed at the beginning, but in
the whole complex plane (2).

1.1.6 Contour Integral Representation of 1/I'(z)

In this section we give formulas for the integral representation of the
reciprocal gamma function.

To obtain the simplest integral representation formula for 1/T'(z) let
us replace z by 1 — z in the formula (1.42), which leads to

/(3 YEdt = (7B ) T(1 - 2), (1.43)

c
and then perform the substitution t = 7e¢™ = —7. This substitution
will transform (namely, turn it counterclockwise) the complex plane ()
with the cut along the real positive semi-axis into the complex plane
(7) with the cut along the real negative semi-axis. The lower cut edge
arg(7) = —m in the (7)-plane will correspond to the upper cut edge t = 0
in the (t)-plane. The contour C will be transformed to Hankel's contour
Ha shown in Fig. 1.3, Then we have:

/(»i"’""{,"’zdt = - / eT(e™T) i dr = —¢ 7 / e’ T dT. (1.44)
&

Ha Ha
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@ ¢

’ i . / :
w7
Ha

Figure 1.3: The Hankel contour Ha.

Taking into account the relationships (1.43) and (1.26) we obtain

27

/(.eTT'Zd,T = (=TT (1=2) = 2isin(m2) (1—-2) = T (1.45)

Ha

Therefore, we have the following integral representation for the reciprocal
gamma function:

1 1
1t / Tt dr (1.46)

Let us now denote by v(e, ) {¢ > 0, 0 < ¢ < 7) the contour consist-

ing of the following three parts:
1) argm = —¢. I > 6
2) —p <argT < |7 =&

3) argT = —, 7] > €.

The contour is traced so that argr is non-decreasing. It is shown in
Fig. 1.4.

The contour y(e, ) divides the complex plane 7 into two domains,
which we denote by G~ (¢, p) and G (e, ¢), lying correspondingly on the
left and on the right side of the contour v(e. ) (Fig. 1.4).

If 0 < ¢ < m, then both G~ (e, ) and G* (¢, ) are infinite domains.

If o = 7. then G~ (€, @) becomes a circle |7| < ¢ and G* (¢, ¢) becomes
a complex plane excluding the circle |7} < ¢ and the line |arg | = 7.

Let us show that instead of integrating along Hankel’s contour [a

in {1.46) we can integrate along the contour (e, ), where L < ¢ < 7,
g g kel ) ¥ ’
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G (e, )

N

0 X
D
&
Figure 1.4: Contour v(e, ¢).
i.e. that
! ! / Tridr, (€30, - << (1.47)
— = €T e>0, = < 7). i
T(z)  2nmi ’ g =¥

(&)
Let us consider the contour (A* BTC* D) shown in Fig. 1.5. Using
the Cauchy theorem for the contour gives:

Bt ¢t Dt

0= / eT*dT—/ / // (1.48)

(A*B+C+DH) A+ Bt ¢t D
On the arc (AT B*) we have || = R and

€

T = ofcos(argT) —rlog R+ yarg 7

< o~ Rceos(m—p)—zlog R+ 2;'Ty7

from which it follows that
B+
lim = 0. (1.49)

R

A+
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Figure 1.5: Transformation of the contour Ha to the contour (e, ©).

Taking R — oo in (1.48) and using (1.49) we obtain:

Dt ot Ot

or

/ 7 / (1.50)

¢+ DTt

Similarly, consideration of the contour (A~ D~ C~ B7) leads to

D-  C- C

Jol-1

x~ D~ B
Using (1.50) and (1.51) we see that

(O ct

/ ! C/ / Ttrdr = / Tt dr

Ha (e,0)
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and, indeed, the integral representation (1.47) for the reciprocal gamma
function holds for all z.

Now we can obtain the following two integral representations for the
reciprocal gamma function.

The first integral representation is obtained for arbitrary complex z.

Let us perform the substitution 7 = ¢/, (a < 2) in (1.47) and in

the case of 1 < o < 2 consider only such contours 7(e, ) for which
% < ¢ < L. Due to this, since € > 0 is arbitrary, we arrive at the
following integral representation

1 1

— \ 1/a (1~z—cr)/ad 1.55
o = arar | e 3 (1:52)

(D]

(a < 2, zr_?(z < pt < min{mw, 7wa}).

Another integral representation for 1/I'(z) can be obtained if we note
that in the case of Re(z) > 0 the formula (1.47) holds also for o = 7 /2:

') =5 / e“u*du, (e >0, Re(z)>0). (1.53)
(e F)

Performing the substitution u = 1/ in (1.53), we obtain the integral
representation

el ﬁ / exp(C2)¢EHU24c (€>0, Re(z) > 0).
()
(1.54)
We would like to emphasize that the integral representation (1.52)
is valid for arbitrary z, whereas the integral representation (1.54) holds
only if Re(z) > 0.

1.2 Mittag-Lefller Function

The exponential function, e*, plays a very important role in the theory
of integer-order differential equations. Its one-parameter generalization,
the function which is now denoted by [65]

0 Lk
Eo(z) = kg:;(] MF(O’]C 1) (1.55)
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was introduced by G. M. Mittag-Leffler [155, 156, 157] and studied also
by A. Wiman (256, 257].

The two-parameter function of the Mittag-Leffler type, which plays a
very important role in the fractional calculus, was in fact introduced by
Agarwal [3]. A number of relationships for this function were obtained
by Humbert and Agarwal [107] using the Laplace transform technique.
This function could have been called the Agarwal function. However,
Humbert and Agarwal generously left the same notation as for the one-
parameter Mittag-Lefler function, and that is the rcason that now the
two-parameter function is called the Mittag-Lefller function. We will
use the name and the notation used in the fundamental handbook on
special functions [65]. In spite of using the same notation as Agar-
wal, the definition given therc differs from Agarwal’s definition by a
non-constant factor. Some parts of this section are based on results by
M. M. Dzhrbashyan [45, Chapter III].

Regarding the distribution of zeros, the papers by A. Wiman [257],
A. M. Sedletskii [240], R. Gorenflo, Yu. Luchko, and S. Rogosin [87], and
the book by M. M. Dzhrbashyan [45, pp. 139-146] must be mentioned;
we will not discuss them here.

1.2.1 Definition and Relation to Some Other Functions

A two-parameter function of the Mittag-Leffler type is defined by the
series expansion [65]

x Lk

z A vy 3 > 0). .56
E{l ;3( ) ];) I.‘((]’k‘% /3) ((Y > 07 + > ) (]‘ )b)

It follows from the definition (1.56) that

o

Er(z) =) = Z = ¢, (1.57)
k-o‘““) ko’*'
oC ~- 20 7[9 1 o0 k+] CZ.‘l
Ei = _ y
L2 2:: T(k + 2) ;)(Ale) § k+1) =
58)
o) k < k 00 L2 e

z z 1 z -1-2z

E B 7 = - —— T e T .
1a(2) E}r(k+3) Zeo(lwz)! -:22;) k+2) 22
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and in general

1 m—2 Zk'
Eim(z) = 1 {ez -3 F}' (1.60)
k=0

The hyperbolic sine and cosine are also particular cases of the Mittag-
LefHler function (1.56):

oc 2k % 2%
Ea1(2%) Z Tk D) kz: 2 = cosh(z), (1.61)
k=0 c==0
o] 2k o> 2k+1 T
L z 1 z sinh(z)
Eaal=) kz:%r(%w) z,;)(%ﬂ)! 2 (1.62)

The hyperbolic functions of order n [65], which are generalizations
of the hyperbolic sine and cosine, can also be expressed in terms of the
Mittag-Lefler function:

0 znk+r'1

hy(z,n) = —— =
r(zm) (nk+r—1)!

2 THE, (2™, (r=1,2,...,n),
k=0
(1.63)

as well as the trigonometric functions of order n, which are generaliza-
tions of the sine and cosine functions:

o0 ]an+r 1 r——lE . L9
g CrE—T nr{—2"), (r=1,2,...,n).
(1.64)
Using [2, formulas 7.1.3 and 7.1.8] we obtain
E1/21 Z = (fzzeffC(—Z), (165)

where erfc(z) is the error function complement defined by

erfe(z / -t dt.
\/_

For # = 1 we obtain the Mittag-Leffler function in one parameter:

Eay(z) = i 2 = Bu(2). (1.66)
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The function & (v, a), introduced in [153] for solving differential equations
of rational order, is a particular case of the Mittag-Leffler function (1.56):

S(ua)*t”i%~t”F (at) (1.67)
MEES LTk e '

Yu. N. Rabotnov’s [218] function 3,(3,t) is a particular case of the
Mittag-Lefller function (1.56) too:

o0 ﬁktk(a«(wl)

Sl t) = t° ,
2%F“k+lﬂl+an

= t°Boi1am (BT, (1.68)

It follows from the relationships (1.67) and (1.68) that the properties
of the Miller—Ross function and Rabotnov’s function can be deduced
from the properties of the Mittag-LefHler function in two parameters
(1.56).

Plotnikov [190, cf. [250]] and Tseytlin [250] used in their investiga-
tions two functions Sc,(z) and Cs,(z), which they call the fractional
sine and cosine. Those functions are also just particular cases of the
Mittag-Leffler function in two parameters:

o (w 1 )nz(Q—a)’n.Jrl

p— —_ ""‘ ol — 2—(!
Sea(z) = 2T a2 = zFs_q0(—2"7%), (1.69)
. B 2 (_1)712(2~a)‘nv . - _
C'.s(,(z) = TLE:O F((? — (x)n T 1) = Egﬁ(,J( z ) (1.70)

Another “fractionalization” of the sine and cosine functions, which
can also be expressed in terms of the Mittag-Leffler function (1.56), has
been suggested by Luchko and Srivastava [128]:

s E (=2%),  (1L71)
< . — . = z Il - —_2Z , .
blﬂ)\,; < = [‘(Q/J,k + 2# —A + 1) 2.2 —A+1
0 k., 2k
(=1)%2 2
-3 = Eyy et (—22). 1.72

Of course, the properties of both versions of the fractional sine and
cosine follow from the properties of the Mittag-LefHler function (1.56).

Generalizations of the Mittag-Leffler function (1.56) to two variables,
suggested by P. Humbert and P. Delerue [108] and by A. M. Chak [36],
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were further extended by H. M. Srivastava [243] to the following sym-
metric form:

00 PRITE S d('/":'l)“l, pe-plemsliz]
{Z’_;’/\‘“(flhy) = Z Z - - ’ ! : \ .
n=—0n—0 F(ma + (vn + 1)[)’) I‘(n/\ + (om + l)u)
(1.73)
An interesting generalization of the Mittag-Leftler function to several
variables has been suggested by S. B. Hadid and Yu. Luchko [100], who
used it for solving linear fractional differential equations with constant
coefficients by the operational method:

E((n.....n,,,).,t’i(zlﬁ B Z"l) (174)
(k:ly, oo L) Zh

- =1
= Z Z 7 =

B0l =k T+ L ail)
I >0,.... L >0

where (k;ly, ..., l;,) are multinomial coefficients [2].

1.2.2 The Laplace Transform of the Mittag-Leflier
Function in Two Parametears

As follows from relationship (1.57), the Mittag-Leffler function E,, 3(z)
is a generalization of the exponential function e® and, therefore, the
exponential function is a particular case of the Mittag-Leffler function.

We will outline here the way to obtain the Laplace transform of
the Mittag-LefHler function with the help of the analogy between this
function and the function ¢*. For this purpose, let us obtain the Laplace
transform of the function t*¢* in an untraditional way.

First, let us prove that

o
1

-ttt =

e et = —— < 1. 1.7

b/( At = . 2 (1.73)

Indeed, using the series expansion for e*, we obtain

2

5

1 oC Zk . ) "

k=0 1 +2
(1.76)
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Second, we differentiate both sides of equation (1.75) with respect to
z. The result is

J. k!
/(i ttk€i~t(1t = m (]Z’ < 1), (177)
0

and after obvious substitutions we obtain the well-known pair of Laplace
transforms of the function tFe*at,

X
. k!
/c—pttkciatdt = ———  (Re(p) > la|). (1.78)
\ k+17
0 )

Let us now consider the Mittag-Leffler function (1.56). Substitution
of (1.56) in the integral below leads to

=5 (<), (1.79)

o>
/t?“tt‘/’"lEas;g(Zf”)dt —
0

and we obtain from (1.79) a pair of Laplace transforms of the function

(63 k o l\ = [}\
(FALES(£2t%), (BSY() = e Fas():

o0 /.
Kl pa—?
[ B ey = e (Relw) >l )
0 '
(1.80)
The particular case of (1.80) for a« = 3 = %
o0 El
/(”’" (;)% (avt)dt = m (Re(p) > a?). (1.81)
. PFa
0

is useful for solving the semidifferential equations considered in [179, 153].

1.2.3 Derivatives of the Mittag-Leffler Function

By the Riemann--Liouville fractional-order differentiation yD] (v is an

4

arbitrary real number) of series representation (1.56) we obtain

k- - & 4 Iy k 9
[)D?(t,k%li IE((y,,{)i(/\tx)) t(rkki ¥ IE(E Bj 7( ta>' (1.82)
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The particular case of relationship (1.82) for k = 0, A = 1 and integer
7 is given in [65], equation 18.1(25) and has the form

d ™ _ A
(’CE) (1 Eap(t) = 77" Bapon(t), (m=1,2,3,..)).
(1.83)
Formula (1.83) has some interesting consequences. Taking a = =%,
where m and n are natural numbers, we obtain

m

d\™ 8-1p mjnyy __ 43-1 m/n 8-1 t
(gi) (t E?n/71.,/3(t )) =t Em/n (t +1 Z '"('?':__—)a

(1.84)
(m,n=1,2,3,...).

Setting n = 1 and taking into account the well-known property of
the gamma function

1
= 0 e O 1. 2 seofy
r(_y) (V b b k4 )
we obtain from (1.84) that
d\™ [—-1 (4 e 331 m =
(E) (77 B g(t™)) = t7 B s(t™), (1.85)

(m=1,23,...; [5=0,12,...,m).

Performing the substitution t = z"/™ in (1.84) we obtain

m oy ’;i " (B—-1)n/m i
( o dz) (Z Em./n,ﬁ(z))

7
(B—1)n/ pms 2
o SB-Dn/mp; (B-1)n/m
= Z E,\,}/(Z)ﬁ-t e T Y
m/lr3 ;F(d—%k)
(1.86)

(m,n=1,23,...).

Taking m = 1 in (1.86), we obtain the following expression:

Wd (B—1D)n g _ . Bn—1 Bn-1 L .
ndz( Em, ()> 2 Bynp2) ¥ 2 21‘(/3_5>

n=1,2,3,...).
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1.2.4 Differential Equations for the Mittag-Lefller
Function

It is worthwhile noting that relationships (1.84)-(1.87) can also be inter-
preted as differential equations for the Mittag-Leffler function; namely,
if we denote

wi(t) = 7 By (M),
y2(t) t'B_lEm,ﬂ(tm)»
ys(t) = tTONTE L (),
ya(t) = (P70NE L (0,

il

then these functions satisfy the following differential equations respec-
tively:

dmyl(t) 5 _m A
el () =t 1.
drm ) Z m ) ( 88)

(m,n = 1,2,3,...)

dT’l 2 t
d:"t’n,f ) ity =0, (1.89)
(m=1,2,3,...; 5=01,2,....m)
m  _n d\™ (B-1In/m - t*
M-z CNT o el = ¢ S 1.90
(5 ) - (0 Sy 0

(m,n=1,2,3,...)

1 dya(?) -1 An-1 tk
———=—ya(t) — " yu(t) =7
n di AE:] T (/3 _ _)

(n=1,2,3,...).

(1.91)

1.2.5 Summation Formulas

Let us start with the obvious relationsghip

m—1 .
i2rvk/m in, k=0 (HlOd m)
2« - { 0, ifk£0 (modm) (1.92)

v=0
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where the notation k& = p (mod m) means that the remainder of the
division of & — p by m is zero (k, p and m are integer numbers).

Combining (1.92) and the definition (1.56) of the Mittag-Leffler func-
tion, we obtain

m—1

Y Eop(2¢®™/™) = mEpap(z™), (m>1). (1.93)

Replacing o with & and z with Z/™ in (1.93), we arrive at

. 1 m—1 .
E‘a,ﬁ(z) - 7—,; Z ba/m.ﬂ(zl/meﬂmj/m): (7"’ 2 1) (194>
v=0

The following particular case of formula (1.94) must be mentioned.
Taking m = 2 and z = t?, we obtain

Ea,[)’(z) + Ea,ﬁ(—z) = 2E{1,/’3(z2)- (195)
Similarly, starting with the obvious formula

f: 2Tk (2m+1) _ { 2m + 1, if k=0 (mod2m+ 1) (1.96)

ve—m 0, if k0 (mod2m+ 1),
we obtain
1 m—l
Boslz) = 5077 S Eajamen)s(z/ e/ Cmily - (m > 0),
’ p=—m

(1.97)
A generalization of the summation formula (1.93) has been obtained
by H. M. Srivastava [244]:

m—1

Z ei2 mr{m—n /mF ( et?m//m) mz"Ee 3+7La( m) (1.98)
=0

Obviously, for n = 0 the relationship (1.98) gives the summation
formula (1.93).

1.2.6 Integration of the Mittag-Leffler Function

Integrating {1.56) term-by-term, we obtain

/ B (M) dt = 2By gor(M2), (8> 0).  (1.99)
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Relationship (1.99) is a particular case of the following more general
relationship obtained by the fractional-order term-by-term integration of
the series (1.56):

1 z
) /(z — 1) E, (MO dE = YU, 5, (A2%), (1.100)
0

(83>0, v>0).
From (1.100) and formulas (1.57), (1.61) and (1.62) we obtain:

/(7 — 1) leMdt = 2%y o p1(M\2), (a0 >0), (1.101)

“Veosh(VA)dL = 2%Fy q41(A2%), (> 0), (1.102)

t «
/( ) lsmh \/— = 2% By 44a(A2?), (o >0). (1.103)
I'(a)

Let us also prove the following formula for the fractional integration
of the Mittag-Leffler function:

z

e /(Z _ f,.)“”lf,‘gaﬂ(tz")t‘/"'dt 3 lFZu 3( ) ‘} 1E(1 ( )
(1.104)

To prove (1.104), let us consider the integral

/ 2y 431 (Z - )
oo 3 (1 ' 1
/Ez,wj(t )t {l + g “)}(f
0

>

_ i /tzkmﬂv 1 {1 + (=) }dt
> zkn FZha + ) I(1+a)

x Z?A.u 20 2 (2k+1)a

— S0 3
o Zr(zka+,3+1 i ZF 2k + Do+ 3+ 1)
=0 k=0

< ko

3 § : ~ 3 33
I — = E().A . 1.105
z p I"(k:oz—}—ﬁ—i—l) “1( ) ( )
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Comparing (1.105) and (1.99) we have

z o
/Ega,g(t'?a)tﬁvl{1+§1 +t))}dt /E (MNP 1dt, (3> 0),
0

(1.106)
Differentiating (1.106) with respect to z, we obtain (1.104).
There is also an interesting relationship for the Mittag-LefHler func-
tion, which is similar to the Cristoffel-Darboux formula for orthogonal
polynomials; namely,

¢
/7'7—1Ea,7(y7’“)(t — T)ﬁ"lEa,ﬁ(Z(t —7)%)dr
D

_ yEa,7+g(yt“) — 2E0’7+3(zt(’)t’,v+[3~1’ (a/ > 0, ;H > O),

Yy — =z
(1.107)

where y and z (y # z) are arbitrary complex numbers.
Indeed, using the definition of the Mittag-Leffler function (1.56) we
have:

t
/TV_IE(,’H, (y7™)(t — T)ﬂ—lEa,ﬁ(Z(t ~7)%)dr
0

t

— i io: .7/ z /Trxn+7 1 T)am—*-ﬂ—ldT
= = T{an +y)I'(am + 3) /

nymnpa(n4m)+g+y--1

_ oo 20 y ,
2 2 Lla(n+m)+3+7)
k——nt(xk

_ 4 O4+y-1
=t Zzl(ak+;3+7)

n=0 k=

k‘ ak
t
- o S S (Y
k=0 F((kk + [3+ ’7) n=0
tB+y—1 Lak(,ulc+l _ zk+l)

= : , 1.108
y—zkgo T(ak + 3+ 7) ( )

[ o

and utilizing the definition (1.56) we obtain (1.107).
Another interesting formula establishes the relationship between the
Mittag-Leffler function and the function e~* /4. This relationship plays
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an important role in the solution of the diffusion (heat conduction, mass
transfer) equation:

X
/1“’2/‘“)5 3(z*)2” e = VAtEE, 1 54012 (1773), (1.109)
0

(>0, t>0).

To prove formula (1.109) we note that for every fixed value of ¢ the
series
oC ak—i—[')——l

—1‘2/4tE Y ,'ﬁ_] . VV:I,‘Z/-M, Iz 1.11
e wp(z™)a ?_jomf(amﬁ)c , (B>0)  (1.110)

can be term-by-term integrated from 0 to co. Performing the integration
we obtalin:

7 B[ ak+f-1
’——;E2/4£E Qg™ 'fﬁﬂldt — / T v'—:v2/4t d
/ ¢ (@) kz T(ak+8)" ’

0 0 =0
o0 1 oo
im0 Llak +3) J

~ T (rxk% d) )
= Z 3 ak+ﬁ) (2V1)2k+53, (1.111)
k=0

and the use of the Legendre formula

gives formula (1.109).

The use of the Laplace transform of the Mittag-Leffler function (1.80)
is also a convenient way for obtaining various useful relationships for the
Mittag-LefHer function.

For example, it follows from the identity (s denotes the Laplace trans-
form parameter)

177 B (1.112)
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and from the known Laplace transform of the function t¥ [62, formula

1.3(1))

L{t;s} =Tw+1)s™"  (Re(s) > 0) (1.113)
that
7 / N
Bl =P (= )T |
- =t, 114
./T Faos(t™) { T(2-3) Tlo—312) dr (1 )
0

D<B<2, «>0).

The formula for the fractional integration of the Mittag-Leffler func-
tion (1.104) can also be obtained immediately by the inverse Laplace

transform of the identity
20e—3 20—/ v i3
§ §oa 8
Rl € S _
s 1 % T Tga T 1 (1.115)

The formula (1.109) can also be obtained with the help of the Laplace
transform technique. Indeed, if F(s) denotes the Laplace transform of a
function f(t), i.e.

o0
P(s) = LT} = [ ity
0
then [62, formula 4.1(33))

U .
L {——ﬁ_}(}/c_'"l/‘“f(x)(ix; s} = sTV2p (517, (1.116)

Let us take in (1.116)
f(x) = 2" E, 5(2®) (1.117)

According to (1.80) we have

and, therefore,

i , 5(\/2~(13+]}/2 a1 "y
S 1/21,.(51/2) = —;a—;tl— =L {f 2 IEQM[,*(t /2), S} . (1118)
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Comparing (1.116) and (1.118) we arrive at the relationship (1.109).

Similarly, using the Laplace transform of the Mittag-Leffler function
(1.80), starting with the identity

',,(y—,d P .,2(1 (3+7)
’ - = (1.119)

s —a s%+a  s*—a?

we obtain the convolution of two Mittag-Lefller functions:

t
/ T B g(am)(t = 1) By (—a(t = 7)%)dr = 7477 By g (aP877)
0
(1.120)
(B>0. ~v>0).

The relationship (1.120) can also be obtained from (1.107), where we
can take z = —y and then utilize the relationship (1.95).
1.2.7 Asymptotic Expansions

Integration of the relationship (1.87) gives

(= Bn [ (A=8)n 20t 4s .
Eiuglz) = 200 {0 e S E y(20)

+n /Z‘G—T” i ——T“—k—TB""1 d’/"} (n>1)
| =1 T (/3 - %) ’ o

which is valid for arbitrary zg # 0.
If 3 =1, then 2z = 0 can be taken in (1.121). This gives:

N z e i Tk-_] ,
Eyma(z) =" {1+ 71/ Y m . (n>2). (1.122)
k=1 o

0 n

Taking n = 2 in (1.122), we obtain the formula

L2 2 i 2 ,
E1/2‘1(2> = ¢~ {1 + ﬁ / e dT} (1123)
0

from which the following asymptotic formula follows:

P s §
By ~2¢7,  Jarg(z)] < 1 |z] — oc. (1.124)
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General asymptotic formulas for the Mittag-LefHler function E, g(z)
are given below in the form of theorems. The contour ¥(¢, p) and the
domains G~ (¢, ) G (¢, ) used below have been defined in Section 1.1.6.
The cases & < 2, a« = 2 and « > 2 are considered separately.

First let us obtain the corresponding integral representation formulas,
which are necessary for obtaining the asymptotic formulas.

THEOREM 1.1 o Let 0 < a < 2 and let § be an arbitrary complex num-
ber. Then for an arbitrary € > 0 and u such that

/2 < p < min{rw, 7o} (1.125)
we have
1 exp(¢!/m)¢t -/ -
Eap(2) = ; 126
iD= o [ TR seGew. (1126)
Y(en)
1 3 1 ex (Cl/a)c(l—ﬂ)/a
= 1=/ 1/a p
Eq p(z) =2 exp(z /) + Sy / = dc¢,
y(em)
(1.127)
2€ G (e, 1) o
Let us prove this statement.
If |z| < e, then
% <1, Cevlep). (1.128)

Using the definition of the Mittag-Leffler function E, 3(z) (1.56) and
the integral representation for the function 1/T'(s) (1.52) and taking into
account the inequality (1.128), we obtain for & < 2 and |z| < € that

> 1 (1 B) e .
Bap(2) =Y 5o =4 [ exp(¢teycmaiak-ge f ob
k=0 len)
1 Vay ~(1—-8) fa—1 = (2\*
- 20vmi / exp(C7) ¢ ?;O(Z) dc
Y(en) -
_ 1 exp(¢t/a)ctt /e
=5 / T dC. (1.129)

(e.u)
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It follows from the condition (1.125) that this integral is absolutely
convergent and defines a function of z, which is analytic in G~ (e, ) and
in G (e, p). On the other hand, for every p € (ra/2, min{r, na}) the
circle |z| < € lies in G (¢, u). Therefore, in accordance with the principle
of analytic continuation, the integral (1.129) is equal to E, g(z) not only
in the circle |z] < €, but in the entire domain G~ (e, 1), and we have
proved formula (1.126).

Now let us take z € G7 (e, ). Then for an arbitrary €; > |z| we have
z € G (€1, 1), and using the formula (1.126) gives, on the one hand,

1 exp(¢!/*)¢ -/
2aemi / (—z
7((‘17“)

Eop(z) = dc. (1.130)

On the other hand, if € < |z] < ¢ and —u < arg(z) < p, then the
use of the Cauchy theorem gives

! exp(¢t/ )¢t -Are
2ai _/ (—z
Yler ) —y{epn)

1
(= az(l”a)/“ exp(z/?), (1.131)

and combining (1.130) and (1.131) we obtain the integral representation
formula (1.127).

THEOREM 1.2 o If Re(3) > 0, then for arbitrary ¢ > 0

L[ em(cc0e
4mi / {—z
(e,m)

Eqp5(2) = ¢, zeG (em), (1.132)

1 3 ) 1 eX)(C1/2)C(1_ﬁ)/2
= 2, (1-8)/2 /2y L 1 I
Es 5(2) 5% exp(z )+47ri / s d¢, (1.133)
y(€,m)

z2€ G (e,m). ®

The proof of this theorem is similar to the previous one. However,
instead of the integral representation (1.52) of the function 1/I'(s) we
must use the formula (1.54) leading to the relationship (1.132). The
integral on the right-hand side of equation (1.132) converges for Re(3) >
0 and converges absolutely for Re(3) > 1. Taking into account that
formula (1.131) holds also for o« = 2 and g = 7, we obtain (1.133).

Now let us use Theorem 1.1 for establishing the following asymptotic
formulas.
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THEOREM 1.3 o If 0 < @ < 2, 8 is an arbitrary complex number and u
18 an arbitrary real number such that

7r_2a_' < p < min{r, wa}, (1.134)

then for an arbitrary integer p > 1 the following expansion holds:

1 4 ’ P Z"k
Ca(2) = =2 Wexp (/) =N 2 O (|2 1P), (1135
Eo(2) = - exp(:17) = 3 =y O (1277) (1189
2] = oo, arg(z)| S p. @

Let us start the proof of formula (1.135) by taking ¢ satisfying the
condition o
5 < p <@ <min{nr, 7a}. (1.136)

Taking now ¢ = 1 and substituting the representation
1 P Ck:~1 Cp

C’z:_kg SRy (1.137)

into equation (1.127) of Theorem 1.1, we obtain the following expression
for the Mittag-Leffler function E, g(z) in the domain G™(1,¢) (i.e., on
the right side of the contour (1, p)):

1 -3}/ o o
E(_hj(z):——z(] 8)/ exp(zl/ )

«
l) ] . i
_ Z :2 / exp(c/e) =D ark g0 |k
ke1 e,
(1)
1 ‘ 1/ay (1 —-3)/a+p .
T / exp(C/ ™M)t dc. (1.138)
(L)

The first integral can be evaluated with the help of formula (1.52):

1
2ma

1
(8- ak)’

[ exp(tiygi-aneiaige - (K > 1).

Y(he)

(1.139)
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Substituting this expression into equation (1.138) and taking into
account the condition (1.136), we obtain:

1
. _ _2(1_}3)/(1 1/r1
B = L0y 3

[ ep(ctmct-erag, (1.140)
(L)

2mxizP

(larg(z)] < p, 2] > 1),

Let us estimate the integral

() = 5o [ exp(@HecUAetn,

2raiz?
v(Le)
for large |z| and |arg(z)| < p.
For large |z| and |arg(z)| < p we have

min |[( — z| = |2] sin(p — y).
CEY(Lp)

and therefore for large |z| and |arg(z)| < p we have

ol

L(2)] <
p(2)] < 2rasin(p —

(L)

The integral on the right-hand side converges, because for ¢ such that
arg(() = +y and [¢] > 1 the following holds:

= exp (\C’l/a COos (5)) )

where cos(¢/a) < 0 due to condition (1.136).
Combining equation (1.140) and the estimate (1.141) we obtain the
asymptotic formula (1.135).

exp(c)

THEOREM 1.4 o If0 < « < 2, 8 is an arbitrary complex number and p
s an arbitrary real number such that

%(ﬁ < p < min{r, Ta}, (1.142)
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then for an arbitrary integer p > 1 the following expansion holds:

) _
Eaplz) = ;; TG —oF) +0(|2]7177), (1.143)

|z| — oo, p<|arg(z)| < 7. o

To prove Theorem 1.4, let us take

Z;E < < p < min{r, 7o} (1.144)

Taking ¢ = 1 in equation (1.126) of Theorem 1.1 and using formula
(1.137), we obtain

p
E,5(z) = }:F +Ip(z), z€G(1,9), (1.145)
k=1

where I,(z) is the same as above.
For large |z|, such that u <|arg(z)|] < 7, the following holds:

min -2z 2| sin(p — p).
min ¢ 2] = 2] sin(e - )

Additionally, the domain g < |arg(z)| < = lies in the domain G~(1, ¢),
for which equation (1.145) holds. Therefore, for large |z| we have the
estimate

Z—~~1——p
el S gt [ fenatc)

2rasin(p —
y(1.¢)

lc“—ﬁw{ ¢, (1.146)

(1 < |arg(2)]| < 7).

Combining equation (1.145) and the estimate (1.146), we ohtain the
asymptotic formula (1.143).

The following two theorems, which give estimates of the behaviour
of the Mittag-LefHler function E,, 3(z) in different parts of the complex
plane, are obvious consequences of Theorems 1.3 and 1.4:
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THEOREM 1.5 o If o < 2, 3 is an arbitrary real number, p is such that
naf2 < p < min{w, ra} and Cy and Cy are real constants, then

Ca
1+ |z

Eop(2)] < C1(1 4|2 |)(1 Bl exp (Re(zl/a)) 4 , (1.147)

(|arg(z)] < p), |2/ >0. e

THEOREM 1.6 o If o < 2, 3 is an arbitrary real number, p is such that
ma/2 < p < min{m, ra} and C is a real constant, then

)| <

(1.148)

1+ 2|

(p<larg(z)] <w), |2|>0. e

Let us now turn our attention to the case of « > 2.

THEOREM 1.7 o If a > 2 and (3 is arbitrary, then for an arbitrary integer
number p > 1 the following asymptotic formula holds:

1 2aniN\ !~ # 2mni
Ea,a(Z):;Z( Ve ex p( - )) exp{exp( " )Z‘/”‘}

n

P Lk L
- §m+0(lz| ), (1.149)

where the sum is token for integer n satisfying the condition

|arg(z) + 2nn| < W_ch .

Let us start the proof by recalling formula (1.97)

) 1 m—1 ‘ ) o/
‘E’Q,ﬁ( ) - é_ﬂ_{:-—i V—E;m Eu/(2m-rl)‘ﬁ(zl/(27n+1)e 2/l m+]))’ (777-' > 0)7

where o« > 0. Taking into account that under the conditions of the
theorem a > 2, let us take integer m > 1 such that a1 = o/(2m+1) < 2.
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In such a case we can apply Theorems 1.3 and 1.4 to all terms of the
above sum (1.97).
Let us take an arbitrary g satisfying the inequality

Tk

< min{m, 7o} “)
— NN 7w, Ty 1, )] = .
5 H T T om 1

Taking an arbitrary integer ¢ > 1 and using the asymptotic formula
(1.135) of Theorem 1.3 and (1.143) of Theorem 1.4, we obtain

1 2mni\\ 2mni
Eop(z) = = Z (zl/”‘ exp ( " )) exp {exp (—L}—) z‘/“‘}

X

, L~k (2m+1) Gyry [ =2mkno
1 i ’ZI ok (2m )0xp< 2;@'{') o (i~[*“1+1)/(2"1‘""”
- S ko <l i )
2m+1 n=—m | k=1 (5 - 2m{+1
(1.150)
The first sum in (1.150) is taken for integer values of n satisfying the

| . 2mni
f;}arg‘ (z]/(z"’“) exp (‘Zm 21:1))' < pu. (1.151)

condition

Obviously, the condition (1.151) is equivalent to the condition
larg(z) + 27n| < (2m + 1)p. (1.152)

Now let us suppose that z is fixed. If we take p. > 7o /2 and p. is
close enough to ma /2, then the inequalities

ge’
larg(z) + 2mn| < -5 (1.153)
and
larg(z) + 2mn| < pu.
are satisfled for the same set of values of n.
The number (2m + 1)p > 5% can be chosen close enough to 53
therefore, the expression (1.150) can be written as

! 2mni\\' 7 i\
Eo3(z)=— Z (Zl/u exp ( g nz)) exp {exp ( "r’ru) z‘m}
' o e «
1 i: . k/(2m+1) i o ( Yrkni )
B xp |~
2m+1 (i ke ) : 2m + 1

N
k=1 I — m Mz T

+ 0 (1'3;7((1?1)/(2771‘{1))" (].154>
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where the first sum is taken for n satisfying the condition (1.153).
Until now, q was an arbitrary natural number. Now for a given p let
us take
g=2m+(p+1)-1.

Then, taking into account that

Ui 2rkni 2m+1 k= 0(mod(2m + 1))

» — e | = . 155
H;I”LXD ( 2m + 1) 0 k # 0(mod(2m + 1)), (1.155)
the asymptotic expansion (1.149) follows from (1.154). The proof of
Theorem 1.7 is complete.

1.3 Wright Function

The Wright function plays an importanl role in the solution of linear
partial fractional differential equations, c.g. the fractional diffusion wave
equation.

This function, related to the Mittag-Lefller function in two parame-
ters Eq (z), was introduced by Wright [258, cf. [65, 107]]. A number of
useful relationships were obtained by Humbert and Agarwal [107] with
the help of the Laplace transform.

For convenience we adopt here Mainardi’s notation for the Wright
function W (z; o, 3).

1.3.1 Definition

The Wright function is defined as [65, formula 18.1(27)]

Wiz 1.156
v 0) IZU KT (w/s +3) (1.156)

1.3.2 Integral Representation
This function can be represented by the following integral [65, formula
18.1(29)]:
] " B o o
Wiz, 3) = /T"%*" dr (1.157)
2mi '
Ha

where Ha denotes Hankel's contour.
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To prove (1.157), let us write the integrated function in the form
of a power series in z and perform term-by-term integration using the
integral representation formula for the reciprocal gamma function (1.46)

1 T.,.—Z
F—(;S_/CT dr.

Ha

1.3.3 Relation to Other Functions

It follows from the definition (1.156) that

W(z;0,1) = ¢* (1.1538)
(E)VW(xf’i- Lv+1)= Ju(2) (1.159)
2 4 b} bl - IV(Z)‘ . (¥
Taking 3 = 1 — «, we obtain Mainardi's function M (z; «):
W(—z—a, 1~ a) = M(z;q) i (-1)* (1.160)
—_—— — = Vi Z5 == . .
TxiTa ZHT(—alk+ 1) +1)

The following particular case of the Wright function was considered
by Mainardi [131]:

W(-2i— )= M(z2) = —e (—f;) (1.161)

We see that the Wright function is a generalization of the exponential
function and the Bessel functions. For a > 0 and 8 > 0 it is an entire
function in z [65].

Recently Mainardi [131] pointed out that W (z; «, 3) is an entire func-
tion in z also for —1 < a < 0.

Let us prove this statement. Using the well-known relationship (1.26)

7r
sin{my)’

Tyl —y) =

we can write the Wright function in the form

o Lk —- — 3 :
(si0 ) = Z I'(1 —ak i’,) sin(ak + »3). (1.162)
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Let us introduce an auxiliary majorizing series
S=- —_—t .

N

The convergence radius of series (1.163) for —1 < o < 0 is infinite:

(1.163)

I'(l —ak - 3) (k+1)!
k! I'l—ak-a-7)

= lim +1 =0
T it [aftk—a
(1.164)

R = lim
ko0

(We use here relationship [63, formula 1.18(4)].)

It follows from the comparison of the series (1.156) and (1.163) that
for a > —1 and arbitrary 3 the convergence radius of the series repre-
sentation of the Wright function W(z; a, 8) is infinite, and the Wright
function is an entire function.

There is an interesting link between the Wright function and the
Mittag-Lefller function. Namely, the Laplace transform of the Wright
function is expressed with the help of the Mittag-LefHler function:

o k
L{W(t:a,3); s} =1L K Tk + 3)
{W(t:a,B); s} {kz::() kI T(ak + 3) S}
~c 1 1

/- Jﬂf
o Tlak + 3) skt
=s"'E,5(s7Y). (1.165)
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Chapter 2

Fractional Derivatives
and Integrals

In this chapter several approaches to the generalization of the notion
of differentiation and integration are considered. The choice has been
reduced to those definitions which are related to applications.

2.1 The Name of the Game

Mathematics is the art of giving things misleading names. The beautiful
and at first look mysterious - name the fractional calculus is just one
of the those misnomers which are the essence of mathematics.

For example, we know such names as natural numbers and real num-
bers. We use them very often; let us think for a moment about these
names. The notion of a netural number is a natural abstraction, but is
the number itself natural?

The notion of a real number is a generalization of the notion of a
natural number. The word real emphasizes that we pretend that they
reflect real quantities. The real numbers do refieet real quantities, but
this caunot change the fact that they do not exist. Everything is in order
in mathematical analysis, and the notion of a real number makes it eas-
ier, but if one wants to compute something, he immediately discovers for
himself that there is no place for real numbers in the real world; nowa-
days, computations are performed mostly on digital computers, which
can work only with finite sets of finite fractions, which serve as approxi-
mations to unreal real numbers.
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Let us now return to the name of the fractional calculus. It does
not mean the calculus of fractions. Neither does it mean a fraction
of any calculus — differential, integral or calculus of variations. The
fractional calculus is a name for the theory of integrals and derivatives of
arbitrary order, which unify and generalize the notions of integer-order
differentiation and n-fold intcgration.

Let us consider the infinite sequence of n-fold integrals and n-fold
derivatives:

t T2 t )
/dT‘z/f(Tl)dTl-, /f(Tl)dTl, f(t), f%(fl’ ddjigt),

The derivative of arbitrary real order o can be considered as an in-
terpolation of this sequence of operators; we will use for it the notation
suggested and used by Davis [39], namely

DY)
The short name for derivatives of arbitrary order is fractional derivatives.

The subscripts a and t denote the two limits related to the operation
of fractional differentiation; following Ross [227] we will call them the
terminals of fractional differentiation. The appearance of the terminals
in the symbol of fractional differentiation is essential. This helps to avoid
ambiguities in applications of fractional derivatives to real problems.

The words fractional integrals mean in this book integrals of arbitrary
order and correspond to negative values of ov. We will not use a separate
notation for fractional integrals; we will denote the fractional integral of
order 8 > 0 by

oD f(1).

A fractional differential equation is an equation which contains frac-
tional derivatives; a fractional integral equation is an integral equation
containing fractional integrals.

A fractional-order system means a system described by a fractional
differential equation or a fractional integral equation or by a system of
such cquations.
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2.2 Grunwald-Letnikov Fractional Derivatives

2.2.1 Unification of Integer-order Derivatives
and Integrals

In this section we describe an approach to the unification of two notions,
which are usually presented separately in classical analysis: derivative
of integer order n and n-fold integrals. As will be shown below, these
notions are closer to each other than one usually assumes.

Let us consider a continuous function y = f(t). According to the
well-known definition, the first-order derivative of the function f(t) is
defined by

PP S (O R ()
dt  h—0 h
Applying this definition twice gives the second-order derivative:

(2.1)

() = %2[ — i () - i’(t — )

= },,ii’bl {.f(t) —.}i(t— h) f(t=h) —hf(t——Qh,)}

= Jim f(t) = 2f(t —hi;) +f(t—2h) 22)
Using (2.1) and (2.2) we obtain
F(1) = d_iéf i F(t) = 3f(t=h)+ 3;;@ o) - fE=3)

and, by induction,

F(r) = ‘;tf = lin Ohnz( 1) ( ) (t — rh), (2.4)

r=0)

where

e (2.5)

r!

(n) nn-1n-2)...(n—-r+1)

is the usual notation for the binomial coefficients.
Let us now consider the following expression generalizing the frac-
tions in (2.1)-(2.4):

’(lp) - Z(_ ( ) —rh), (2.6)
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where p is an arbitrary integer number; n is also integer, as above.
Obviously, for p < n we have
dP f

; ) gy — £ (1) —
Jim £, (t) = f7(t) R

because in such a case, as follows from (2.5), all the coefficients in the

(2.7)

numerator after (g) are equal to 0.
Let us consider negative values of p. For convenience, let us denote

pl_plp+1)...(p+r—1)
] st b 29
Then we have
- —p(=p=1)...(-p—=r+1) . o ¢
( rp) - ! — == [ﬂ (29)

and replacing p in (2.6) with —p we can write

fl(z m(f) hlp Z [p} f(f - Th)* (2'][))
r=0

where p is a positive integer number.

If n is fixed, then f,(;p)(t) tends to the uninteresting limit 0 as h — 0.
To arrive at a non-zero limit, we have to suppose that n — oo as h — 0.
We can take h = L—“ where a is a real constant, and consider the limit

value, either finite or infinite, of f( ») (t), which we will denote as

: _ ~p g
lim Y () = WD), (2.11)
nh=t—a
Here ,D; ?f(t) denotes, in fact, a certain operation performed on the
at’y ) ’
function f(t); @ and t are the terminals -~ the limits relating to this
operation.
Let us consider several particular cases.
For p = 1 we have:

50 = 1S f - h). (2.12)

r==(}

Taking into account that £ — nh = a and that the function f(¢) is
assumed to be continuous, we conclude that

}li_I.I(l) f,(,vhl)(/,) = D/l / flt —z)dz /f(T Y. (2.13)

nh=t -a
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Let us take p = 2. In this case

2 S R r—
_ 23 (247 1):7,“’
r 7!
and we have: .
',(; 2)(t) =h Z(rh)f(t —rh). (2.14)
r=0}
Denoting t + h = y we can write
. n+1
i) =S rh) f(t - rh), (2.15)
r==]
and taking h — 0 we obtain
t—a t
lim 720 = WD) = / 2f(t—2)dt = /(t — 1) f()dr, (2.16)
nh l a '(} @

because y — t as h — 0.

The third particular case, namely p = 3, will show us the general
expression for D, P

Taking into account that

[2] :3-4-...-(3+7'-]) _ (r+1)(r+2)
r! 1.2 ’

A

.
we have
n

l.
A = Tl'i (r+ 1)(r + 2R2F(t — Th). (2.17)
r=={)
Denoting, as above, t + h = y, we write

} ll+1

fh 5)(1) =15 Z (r+ D)h*fly — rh) (2.18)

Expression (2.18) can be written as

} n-+1 9 n+l
f( })(,) ]—%Z(rh) fly —rh)+ T 227hf(1/—rh). (2.19)
= =i r=1

Taking now h — 0, we obtain

t--a i
w 1 o . > . ,
D7) = 2 / Zfl—2)dz = /(f — 1) f(7)dT, (2.20)

0 @
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because y — t as A — 0 and

2 n+l ¢
. 4 .
}}Bg T3 E 1 rhf(y —rh) = lim h,/(t — 1) f(T)dr = 0.
nh=t-—-a = nh=t—a a

Relationships (2.13)-(2.20) suggest the following general expression:

T t

DIfE = Jim 30| =) = g [ = (o,
nh=t—a r=0 :

a

(2.21)
To prove the formula (2.21) by induction we have to show that if it

holds for some p, then it holds also for p + 1.
Let us introduce the function

fie) = [ fryar, (222

which has the obvious property fi(a) = 0, and consider

DO = Jim WS P e o
r=(0

nh=t-a

n

. p+1
= }llwﬂ’(l) hP Z 1' - J fl(t b T'h)
nh=t-q r=0
n

- ;EIEIS hpz {p: 1} filt—(r+1Dh) (2.23)

nh=t—a r=0

Using (2.8) it is casy to verify that
[p+1}: [p}+{1)+1}’ (2.24)
T T r—1
p+1]
e

Relationship (2.24} applied to the first sum in (2.23) and the replace-
ment of 7 by 7 — 1 in the second sum gives:

where we must put

n

DO = tm Y|P e )

nh=t--a r=0
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+ lim hf’zl[ffﬂ}h(t—rh)

1th—;00 r=0 r- 1
n+1
— P P+1 —
,1111}(1) h Z {7‘ fi(t —rh)
nh=t—a r=1
_ +1
= oD/ Pfi(t) — lim h? [p n ] fit = (n+ 1)h)
'nh, t a

t—a

= DA - (o Jim [P T S

nyr n

).

It follows from the definition (2.22) of the function fi(t) that

t—a

Jim fila — )=0.

Taking into account the known limit (1.7)

lim =
n—00 n

[p+l]i_ (p+p+2)...(ptn) 1
nP T noe n¥n! T T(p+1)’

we obtain

t
DI = JDIPA() = / t— 7P L (r)dr

(p—1)!
_ _U=mPhr) T)Tfl(T) ~ + -1—, (t—7)Pf(r)dr
p' T==( [
11
- l%!./(t—T)pf(T)dT, (2.25)

which ends the proof of formula (2.21) by induction.

Now let us show that formula (2.21) is a representation of a p-fold
integral.

Integrating the relationship

[4
% (aDt_pf(t)) = G—_l—jz-,j /(t — 7-)1"2f(’r)dT = aDt‘]H—lf(t)
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from a to ¢t we obtain:

oD f(t)

[ (w00 an

DI () (D772 (1)) dt cte.,

Il
R

and therefore

aDt,"pf({') =

di... / F(t)dt. (2.26)

p times

We see that the derivative of an integer order n (2.4) and the p-fold
integral (2.21) of the continuous function f(t) are particular cases of the
general expression

oDUf(t) = lim AP Z(—l)r (f) f(t —rh), (2.27)

nh=t—-a r=0

which represents the derivative of order m if p = m and the m-fold
integral if p = —m.

This observation naturally leads to the idea of a generalization of the
notions of differentiation and integration by allowing p in (2.27) to be an
arbitrary real or even complex number, We will restrict our attention to
real values of p.

2.2.2 Integrals of Arbitrary Order

Let us consider the case of p < 0. For convenience let us replace p by
—p in the expression (2.27). Then (2.27) takes the form

n .
(:,D;P_/'([/) = }Lln(l) hP Z [p:i f(t . ’f'h)7 (228)
nh—t—a r={}
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where, as above, the values of h and n relate as nh = f — a.
To prove the existence of the limit in (2.28) and to evaluate that limit
we need the following theorem (A. V. Letnikov, [124]):

THEOREM 2.1 o Let us take a sequence B, (k= 1,2, ...) and suppose
that

lim 3, =1, (2.29)
k—o0
n]inolo =0 forallk, (2.30)
“151310; ok =A forallk, (2.31)
=]
Z lap x| < K for all n. (2.32)
k=1
Then ,
Jim dompB=A e (2.33)
k=1

Proof. The condition (2.29) allows us to put

O, =1~ oy, where  lim oy = 0. (2.34)

k—noc

It follows from the condition (2.30) that for every fixed r

-1
Jim Y e =0 (2.35)
k=1
and
r—1
T}}{I;C’; o = 0. (2.36)

Using subsequently (2.35), (2.34), (2.31), and (2.36) we obtain

T n
limn on ke = lim @ 2Ok
vt "Z:l n.kik Mo kZ n,kk
¢ (=T

mn T
= lim E Qpp — lim E Qy LOE
n—oo ! n—oc ’
k=1 k=1
n I3
= lim E Gy g — lim E Oy 1Ok
100 ! DG !
k=1 k=

T
= A— lim E Qe kOk-
nﬂzx}‘ ’
o
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Now, using (2.36) and (2.32), we can perform the following estima-
tion:

n n
A - lim 1; om k| < lim ?:, |t k| - |o]
= o7

n n
< o lim > Jonpl =0 Jim > lan ]
k=1 k=1
< o'K
where o* = max |oy|.
k>r

It follows from (2.34) that for each arbitrarily small ¢ > 0 there exists
r such that ¢* < ¢/K and, therefore,

T
A~ T}grolok}: ek Br| < €,
=1

and the statement (2.33) of the theorem holds.

Theorem 2.1 has a simple consequence. Namely, if we take
lim gy = B,
k-0

then

A
lim Z OnkOr = AB. (2.37)

TL—00
k=1
Indeed, introducing the sequence
- B
g %

= ==, lim G =1
'k B k_—)oofk )

we can apply Theorem 2.1 to obtain

mn T
. 3 . B
/- p— . —
nlm(}o g lamkdk = nhm g ]an'k = A,

from which the statement (2.37) follows.

To apply Theorem 2.1 for the evaluation of the limit (2.28), we write

D7 f() = lim hﬁzm f(t—rh)
r=0

nh=t—a
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™ 1 p
- lim Y|

nh=t—a =0

} h(rh)p_]f(t —rh)

=

= L iy ng@[f] h(rh)?~Y £ (¢ — rh)

F (p) nhet—o 7=0

n n

and take

TP r
t—a [ t—a\P™! t—a
Qppr = —— (’r ) flt—r )-
n 0 n
Using (1.7) we have
I'(p) [p] _
rl—an}c 8, = rlm;c s [7] =1. (2.38)

Obviously, if the function f(t) is continuous in the closed interval
[a,t], then

i i "t—a [ t—a\P! t—a
i s = Jim () -

=0 r=0 " n n

— lim S Plpit— g
,lllir(ljrgoh(rh) f(t—rh)

t

- /(t — 1)L (r)dr (2.39)

@

Taking into account (2.38) and (2.39) and applying Theorem 2.1 we
conclude that

t
- L . Ip _ 1 1
oDV (L) = n,%g‘liﬂ h? Z:U {7} flt—rh) = ) /(t — ¥ f(r)dr
(2.40)
If the derivative f'(¢) is continuous in [a, b], then integrating by parts
we can write (2.40) in the form

fla)(t — a)?

Di7f(t) = T(p+1) +F(p+1)/

(t — 7P f'(r)dT, (2.41)
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and if the function f(¢) has m + 1 continuous derivatives, then

"R @) (t = a)PtR 1 ;

P — _aptm p(metl)
a Dy S (1) ,go Cip+k+1) Fp+k+1) ./(t ™) f (7)dr.

(2.42)
The formula (2.42) immediately provides us with the asymptotics of
«D;Pf(t) at t = a.

2.2.3 Derivatives of Arbitrary Order

Let us now consider the case of p > 0. Our aim is, as above, to evaluate
the limit

ZDUf(t) = lim hl'z(q)r(’f) fle—rhy= lm fP(1) (243)

nh=t-—a r==0 rihz=t —a

where .
—_ AP
f,(f’)(t) =hP> (1) (r> f(t —rh). (2.44)
r=0
To evaluate the limit (2.43), let us first transform the expression for
,(lp) (t) in the following way.
Using the known property of the binomial coefficients

y p—1 -1
T 7 77— 1
we can write

P = hf”i(ﬂ)’"(p;1>f(t——rh)

r.=0

+ /rl’g(q)" (f: })f(t —rh)
- h,‘”ij(—])”' (1’; 1) F(t —rh)
r=0

n-1
+ S~y (p - 1>f(t — (r + 1)h)

r=0Q r

= (=" (p N 1)’l”’f(a)

n

7—1
+ AT (1) (” . 1)Af(t —rh),  (2.46)

=0
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where we denote

Af(t—rh) = f(t —rh) — f(t — (r + 1N).
Obviously, Af(t —rh) is a first-order backward difference of the function
f(r) at the point 7 = ¢ — rh.

Applying the property (2.45) of the binomial coeflicients repeatedly
m times, we obtain starting from (2.46):

ey = (—1)"(p;1)/f”f(a,)+(—1)”’1(2:?% """ PAf(a+h)

n—2

+ RS (=) (p . 2) A2f(t — rh)
=0

= (-1)" (” - 1) P f(a) + (—1)" (” - 2) WPAf(a + h)

n n—1

. -3 .
+ (=12 (i - 2) h7PA? f(a + 2h) (2.47)

1n—3 P
+ RS (-1) (p . 3) A3F(t —rh)

r=0
™m

St (p " ’ K 1) hPAF f(a + kh)
k=0 '

1l

n—m—1

+h? Y (—1)T<p"7:‘”1)A'"+1f(t-rh,). (2.48)

r=10

Let us evaluate the limit of the k-th term in the first sum in (2.48):

lim (—1)"*% (p —k- l>h' PAFf(a + kh)

n}:';;lla n- k/
— 3 _ 1k p_k"l EAY
o Kl S E0
n \Pk AR f(a+ kh)
p) Ptk

) (Tl - k) (mh) h*
_ - wptk oy _1\n—k p—k,-—l _ ap—k
= (t—a) nh_l}}c( 1) < ok (n—k)

x lim (—llw——>p_k % lim _Aif@ﬂﬁl

n—oo \n — k h—0 h¥
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P (a)(t = a) 7

_ , 2.49
M'(—p+k+1) (2.49)
because using (1.7) gives
: _1\n—k p_k:_'l Pk
nlgrolo( 1) ( - )(n k)
— lim (~p+k+)(=p+k+2).. (—p+n) 1
~ n—oo (n — k)=Ptk(n — k)! S T(—p+k+1)
and .
n \P7F
line =1
et (n — k) ’
}LIE}}) h¥ = /).

Knowing the limit (2.49) we can easily write the limit of the first sum
in (2.48).

To evaluate the limit of the second sum in (2.48) let us write it in
the form

1 -1 . N -1 ’
> (—1)7T(“P+m+1)(p " )r—mw

F(=p+m+1) o 7

AL F (¢ — rh)

X h(’f'h)m—p hmtl

(2.50)

To apply Theorem 2.1 we take

—m—1
Br=(-1)T(-p+m-+1) (p T )r"m”,

ey ATFLE(E — rh) t—a
an,r = h(rh) p———h‘r-nt:]-——’ h = T

Using (1.7) we verify that

, ” y—m —1
lim B, = lim (~1)"D(~p +m + 1) (,, . )T"'"”p =1 (251)
In addition, if m — p > —1, then

n—m-—1 n-—m-—1 ’
A™FLf(t — rh)
: T ByM—P
gm0 o= limo 30 h(rh) i
r=0 nhwt—a r=0
t
= / (t = 7)™ P fm ) (r)dr, (2.52)

a
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Taking into account (2.51) and (2.52) and applying Theorem 2.1 we
conclude that

n—m-1
) p (P I g,
lim A E (-1) ( ATt~ rh)

r
nh=t-un r=0

1

. m p £(m+1) %
F( p+m+1) (t—7)mrf (r)dr. (2.53)

Using (2.49) and (2.53) we finally obtain the limit (2.43):

JDYFE) = lim £ (1)
f(“(a)(t — a) Ptk
k=0 P(—'p + k + l)

4
1 - 17
T Tprma ) /(t — 7)) () dr (2.54)

The formula (2.54) has been obtained under the assumption that the
derivatives fU)(¢), (k = 1,2, ..., m + 1) are continuous in the closed
interval [a,t] and that m is an integer number satisfying the condition
m > p — 1. The smallest possible value for m is determined by the
inequality

m<p<m+1.

2.2.4 Fractional Derivative of (t — a)”

Let us evaluate the Griinwald-Letnikov fractional derivative ,DF f(t) of
the power function

f(t) =t —a)",

where v is a real number.

We will start by counsidering negative values of p, which means that
we will start with the evaluation of the fractional integral of order —p.
Let us use the formula (2.40):

oDP(t—a)’ = — r( o /(f—v) P17 — a)Vdr, (2.55)
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and suppose v > —1 for the convergence of the integral. Performing in
(2.55) the substitution 7 = a 4+ £(¢ — a) and then using the definition of
the beta function (1.20) we obtain:

1
Yl v o__ 1 _au—) v _ ——1(
DI a) = s (= a) ’Jﬁ(l &) lde
= [y Bl + D=0
=ﬁ%}§350—wwm (p <0, v>—1). (2.56)

Now let us consider the case 0 < m < p < m+ 1. To apply the
formula (2.54), we must require ¥ > m for the convergence of the integral
in (2.54). Then we have:

dm+1 (7. . a‘)u

t
1 m—
DU =) = gy O T (250
a

because all non-integral addends are equal to 0.
Taking into account that

d"n+1(7' —a)” o T+ o
T =v(v—=1)...(v—m)(Tt—a) = —U—;—TT(T—G)

and performing the substitution 7 = a + £(¢ — a) we obtain:

v v +1) e
Py - t — m p - v—rn—1
oDi(t - a) 'y —m)I'(-p+m+1) /( a) dr
1’(1/+l)B(—p+m+1,z/—m) o
(t—a)
My —-m)I'(-p+m+1)
r 1
= ~_(1/_+__).~_,(t — a)V“P' (2.58)

M-p+rv+1)

Noting that the expression (2.58) is formally identical to the ex-
pression (2.56) we can conclude that the Griinwald-Letnikov fractional
derivative of the power function f(t) = (t — a)¥ is given by the formula

(v +1)

Py _ o\ —
P R D

(t - a)*P, (2.59)
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(p<0, v>-1) or (0<m<p<m+1, v>m).

We will return to formula (2.59) for the Griinwald--Letnikov fractional
derivative of the power function later, when we consider some other
approaches to fractional differentiation. The formula will be the same,
but the conditions for its applicability will be different.

From the theoretical point of view, the class of functions for which the
considered Griinwald-Letnikov definition of the fractional derivative is
defined ((m + 1)-times continuously differentiable functions) is very nar-
row. However, in most applicd problems describing continuous physical,
chemical and other processes we deal with such very smooth functions.

2.2.5 Composition with Integer-order Derivatives

Noting that we have only one restriction for m in the formula (2.54),
namely the condition m > p — 1, let us write s instead of m and rewrite
(2.54) as

SRt - a) Pt
3 [P (a)(t — a)

DU = I'(-p+k+1)

k=0

s p (s+1) i s
+ M——I( Disii /(t T) (7)dr. (2.60)

In what follows we assume that m <p <m -+ 1.

Let us evaluate the derivative of integer order n of the fractional
derivative of fractional order p in the form (2.60), where we take s >
m +n — 1. The result is:

d‘n f t - a p—n+k
11 a )—- Z o )
dtn = I( p—n+k+ )
{
~+ ! /(f — TP "f('9+1)(7)d{"2.61)
(—p—-n+s+1).
= Dy f (). (2.62)

Since s > m + n — 1 is arbitrary, let us take s = m +n — 1. This
gives:

d’n

Hﬂ (a I)I)f( )) = aDian(t)



58 2. FRACTIONAL DERIVATIVES AND INTEGRALS

B m+n-—1 f(k)((l)(t _ a)—p—n+k
- I(~p—n+k+1)

k=0
i
t — 7ym-p—t (m-+mn) d 263
iy [T ar 2.63)
a
Let us now consider the reverse order of operations and evaluate

the fractional derivative of order p of an integer-order derivative ﬂ’dean_)
Using the formula (2.60) we obtain:

p ()N _ - fOH (@)t - a) Ptk
”Df( dtr )~k « T(-p+k+1)

e p+s+1) / Loy (264

Putting here s = m — 1 we obtain:

DP (d”f(t)) _ = LB ) (1 — a) 7tk
TP atr = T(-p+k+1)
t

f(al“:gaj [t=rmrigtri ey, (265)

a

and comparing (2.63) and (2.65) we arrive at the conclusion that

dn
dtn

(2.66)

dnf n—1 (k) a —a —p—n+k
(DPF(8) = oD (1_1@) s /F(( )(t - a)
k=0

dt» ~p—n+k+1) "

The relationship (2.66) says that the operations (‘Iit—: and ,DV are
commutative, i.e., that

i o) = o (CE) < o, e

only if at the lower terminal t = a of the fractional differentiation we
have

f*®(a) =0, (k=0,1,2,....,n—1). (2.68)
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2.2.6 Composition with Fractional Derivatives

Let us now consider the fractional derivative of order ¢ of a fractional
derivative of order p:

DY (aDIF(1)).

Two cases will be considered separately: p < 0 and p > 0. The first
case means that — depending on the sign of ¢ — differentiation of order
g > 0 or integration of order —¢ > 0 is applied to the fractional integral
of order —p > 0. In the second case, the object of the outer operation is
the fractional derivative of order p > 0.

In both cases we will obtain an analogue of the well-known property
of integer-order differentiation:

dn (dm,f (f)) dm (dn (”) _ d'm,-+nf(t)
dtn dtm dtm di T gpmetn

Case p <0

Let us first take ¢ < 0. Then we have:

t
oD DY f (1) / a1 ,DEf(r))dr

- T p)/t—r) S [ o0 s

a
t

1 g
= i ] 7 §“ﬁ/t—T g

a

t
= s [-o e

I'(-p—q)
= a.Dtp-rq (t), (269)
where the integral
t 1
/(t — 7)Y — )P dr = (¢~ g)pa! /(1 — )" TP gy
£ 0
- F( ) ( p)( é)—p~q~1

I'(-p—-4q)
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is evaluated with the help of the substitution 7 = £ + z(t — £) and the
definition of the beta function (1.20).

Let us now suppose that 0 < n < ¢ < n + 1. Noting that ¢ =
(n+1)+(g—n—-1), where g — n — 1 < 0, and using the formulas (2.62)
and (2.69) we obtain:

N dn! - 2
nD.?(uDgf(t)) = W{U«Dti ](aDgf(t))}
dn+] ptq—mn—1 p
= W{apt, f(t)}
= (ID{) H]f(t)' (270)

Combining (2.69) and (2.70) we conclude that if p < 0, then for any
real ¢

DI (aDPF() = WDYYF ().

Case p >0

Let us assume that 0 < m < p < m + 1. Then, according to formula
(2.54), we have

Difty=lim £ @)

nhztea

" f P a)(t —a) v
'(-p+k+1)

k=0

1
TEpEmt)

t
/ (t — )y P (yar, (2.71)

Let us take g < 0 and evaluate
D1(uDE )
Examining the right-hand side of (2.71) we see that the functions
(t — a) "P** have non-integrable singularities for k = 0, 1, ....m — 1.

Therefore, the derivative of real order q of ,D¥ f(t) exists only if

f(k)(a) =0, (k=0,1,...,m—=1). (2.72)
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The integral in the right-hand side of (2.71) is equal to D™~ ! fi)
(the fractional integral of order —p+m -+ I of the function f(t)). There-
fore, under the conditions (2.72) the representation (2.71) of the p-th
derivative of f(?) takes the following form:

_ [T (a)(t - ay e

oDVt
I I(—p+m+1)

oDl gy (2.73)

Now we can find the derivative of order ¢ < 0 (in other words. the
integral of order —¢ > 0) of the derivative of order p given by (2.73):
f(m)(a)(L . a)—p~r]+ m

N=p—-—qg+m+1)

¢
v ! §0 D (7
F(ﬁp - q + m + ]_) (1‘ — 7—)])-‘,41-.,,”

DY (DLF(1) =

. (2.74)

because
a]);l(a])g)—mn—lf(m—H)(t)) =, [)P%—(I"—mﬂlf(m'%])(t)

1 ’”“)(T)dT
(- p—(1+m+l) (t — r)pra-m’

Taking into account the conditions (2.72) and the formula (2.71) we
arrive af

2D (WDYF()) = oDY (1), (2.75)

Let us now take 0 < n < g < n + 1. Assuming that f(t) satisfies
the conditions (2.72) and taking into account that ¢ —n — 1 < 0 and,
therefore, the formula (2.75) can be used, we obtain:

DI (WDEI®) = L upp 7 (WD)}

drH‘l p+l—rn--1
dt"+] { D f(t>}
= oD f (1), (2.76)

which is the same as (2.75).
Therefore, we can conclude that if p < 0, then the relationship (2.75)
holds for arbitrary real ¢; if 0 < m < p < m + 1, then the relationship
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(2.75) holds also for arbitrary real ¢, if the function f(¢) satisfies the
conditions (2.72).

Moreover, if 0 < m <p<m+land 0 <n < qg<n+1 and the
function f(t) satisfies the conditions

f% @) =0, (k=0,1,...,7r-1), (2.77)

where 7 = max(n, m), then the operators of fractional differentiation
oD and (D7 commute:

oD («DP1() = oD (aDIf(1)) = oDETIf (). (278)

2.3 Riemann—Liouville Fractional Derivatives

Manipulation with the Griinwald—Letnikov fractional derivatives defined
as a limit of a fractional-order backward difference is not convenient.
The obtained expression (2.54) looks better because of the presense of
the integral in it; but what about the non-integral terms? The answer
is simple and elegant: to consider the expression (2.54) as a particular
case of the integro-diffcrential expression

m+1
DW= (%) [e-rrri@en msp<mi). @79)
[¢2

The expression (2.79) it is the most widely known definition of the
fractional derivative; it is usually called the Riemann-Liouville defini-
tion.

Obviously, the expression (2.54), which has been obtained for the
Griinwald-Letnikov fractional derivative under the assumption that the
function f(¢) must be m+1 times continuously differentiable, can be ob-
tained from (2.79) under the same assumption by performing repeatedly
integration by parts and differentiation. This gives

£

) / (t— )" f(r)dr

& F9 @)t a)
I(-p+k+1)

DY f(2)

Il

k=0
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t

Y[ ymep plmt)
+F(—p+m+1)/(t TR

= JDVf(t), (m<p<m+1). (2.80)

a

Therefore, if we consider a class of functions f(¢) having m+1 contin-
uous derivatives for £ > 0, then the Griinwald-Letnikov definition (2.43)
(or, what is in this case the same, its integral form (2.54)) is equivalent
to the Riemann-Liouville definition (2.79).

From the pure mathematical point of view such a class of functions
is narrow; however, this class of functions is very important for appli-
cations, because the character of the majority of dynamical processes
is smooth enough and does not allow discontinuities. Understanding
this fact is important for the proper use of the methods of the fractional
calculus in applications, especially because of the fact that the Riemann-
Liouville definition (2.79) provides an excellent opportunity to weaken
the conditions on the function f(t). Namely, it is enough to require the
integrability of f(t); then the integral (2.79) exists for ¢ > a and can be
differentiated m + 1 times. The weak conditions on the function f(t) in
(2.79) are necessary, for example, for obtaining the solution of the Abel
integral equation.

as the result of the unification of the notions of integer-order integration
and differentiation.

2.3.1 Unification of Integer-order Derivatives
and Integrals

Let us suppose that the function f(7) is continuous and integrable in
every finite interval (a, t); the function f(¢) may have an integrable sin-
gularity of order r < 1 at the point 7 = a:

lim (7 — a)" f(t) = const (# 0).

T

Then the integral
¢
$0 = [ smar (281)

exists and has a finite value, namely equal to 0, as ¢ — a. Indeed,
performing the substitution 7 = a + y(t — a) and then denoting ¢ = t —a,
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we obtain

t
}im e = }im /f(‘r)dT

1
= }im (t — a)/f(a +y(t —a))dy
L~
0

e—0

1
= limée ™" / (ey)"fla+ye)y "dy =0, (2.82)
0

because r < 1. Therefore, we can consider the two-fold integral

f(‘Q)(t) = /dTl /f dT'/ ‘(T>(1T/td7'1

- /(t—‘r) (7)dr. (2.83)

a

Integration of (2.83) gives the three-fold integral of f(7):

59 = j dr ‘?dT‘z/mf(T:a)dT:z
= ](hl ]I(n —7)f(r)dr

11
= 5 [u=an (2.84)

and by induction in the general case we have the Cauchy formula

t
FEm) = Fl——/ VU () (2.85)

Let us now suppose that n > 1 is fixed and take integer & > 0.
Obviously, we will obtain

t
FE) = D7 [ty (2.56)
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where the symbol D% (k > 0) denotes k iterated integrations.
On the other hand, for a fixed n > 1 and integer k > n the (k—n)-th
derivative of the function f(¢) can be written as

(k— n) ,, Ndr <
£ = s /a Ly, (2.87)

where the symbol D* (k > 0) denotes k iterated differentiations.

We sce that the formulas (2.86) and (2.87) can be considered as
particular cases of one of them, namely (2.87), in which n (n > 1) is fixed
and the symbol D* means k integrations if k < 0 and k differentiations
ifk>0. Iftk=n—-1,n-2,..., then the formula (2.87) gives iterated
integrals of f(t); for &k = n it gives the function f(t); for k = n+1, n+2,
n+3, ... it gives derivatives of order k—n = 1, 2, 3, ... of the function

f(t).

2.3.2 Integrals of Arbitrary Order

To extend the notion of n-fold integration to non-integer values of n, we
can start with the Cauchy formula (2.85) and replace the integer n in it
by a real p > O

t

P b )P (1) 2.88°
D) = g [ (L= (283)

a

In (2.85) the integer n must satisfy the condition n > 1; the cor-
responding condition for p is weaker: for the existence of the integral
(2.88) we must have p > 0.

Moreover, under certain reasonable assumptions

II)LH(I) (lDt_pf(t) = f(1). (2.89)

SO we can put

DYf() = f(1). (2.90)

The proof of the relationship (2.89) is very simple if f(¢) has contin-
uous derivatives for ¢ > 0. In such a case, integration by parts and the
use of (1.3) gives

'
(t —a)?f(a)
I'p+1) F(p-l—l /

D7 f(t) = t— 7)Y f(7)dr,
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and we obtain
lig JD;7f(0) = f(a) + / £/(r)dr = fla) + (£(0) - £(@)) = F(©)

If f(t) is only continuous for ¢t > a, then the proof of (2.89) is some-
what longer. In such a case, let us write ,D; ?f(¢) in the form:

_ 1 ; p
DI = o a/(t—f)”‘ () - £(t)) Lar
1 t—48
- T (t— 7P (F(r) — F(t)) dr (291)
+ ﬁl—) /5 (t — 7P (f(7) - F(t)) dr (2.92)
+—(If—z]%:—g)—p (2.93)

Let us consider the integral (2.92). Since f(t) is continuous, for every
& > 0 there exists € > 0 such that

1f(r) = fB) < e
Then we have the following estimate of the integral (2.92):

t
€oP
ol < = /r—rphh<
)

;. REESIL (2.94)

and taking into account that ¢ — 0 as § — 0 we obtain that for all p > 0
lim |15 = 0. 2.
fu 12 (299
Let us now take an arbitrary € > 0 and choose § such that
| <€ (2.96)

for all p > 0. For this fixed & we obtain the following estimate of the
integral (2.91):
My M
I <———/t— Plgr < ———— (6P — (t — a)?), 2.97
Inl< o5 [ =l < e ms (7= (¢ -ap), (297)

¢
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from which it follows that for fixed § > 0

lim |I;| = 0. (2.98)
p—0

Considering

DI — S0)] < 10+ 1]+ 150 [T -

Fip+1)

and taking into account the limits (2.95) and (2.95) and the estimate
(2.96) we obtain

DiPS() = ()] < e,

lim sup
p—0

where € can be chosen as small as we wish. Therefore,

D) = FB)] =0,

}Egré sup
and (2.89) holds if f(t) is continuous for t > a.

If f(t) is continuous for ¢ > a, then integration of arbitrary real order
defined by (2.88) has the following important property:

Dy (D 4f (1)) =a DT (0). (2.99)

Indeed, we have

D7P( D) = ﬁlzﬁ / (t— )4 oD P f(r)dr

1 T 'y
= F(p)F(Q) a/(t—T)q 1dT!(T_£)p ]f(g)dg

— ! / / — Y ey gy
e / 7(€)de !(t )N - e ld

t
1 _
= ﬁm!(t—ﬁ)mq Lf(g)dg

= oD PTU().
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(For the evaluation of the integral from € to ¢ we used the substitution
7 =&+ ((t — &) allowing us to express it in terms of the beta function
(1.20).)

Obviously, we can interchange p and g, so we have
aDg—D(QD;q.f(t» — nD;q<aDL_pf(t)) — ”'Dr_p_qf(‘t). (2.100)

One may note that the rule (2.100) is similar to the well-known prop-
erty of integer-order derivatives:

d™ (d”f(t)) _ 4 (d"’f(t)) _ A

(2.101)

Et"? vdtn - d—,ﬁ dtm dem=n

2.3.3 Derivatives of Arbitrary Order

The representation (2.87) for the derivative of an integer order & —n
provides an opportunity for extending the notion of differentiation to
non-integer order. Namely, we can leave integer k and replace integer n
with a real o so that k — a > 0. This gives

t
1’(]();) gtk—" _/“ — ) f(rdr, (O<a<1). (2102)

@

aDéc-()'f(t) —

where the only substantial restriction for « is o > 0, which is necessary

for the convergence of the integral in (2.102). This restriction, however,

can be - without loss of generality --- replaced with the narrower con-

dition 0 < « < 1; this can be easily shown with the help of the property

(2.100) of the integrals of arbitrary real order and the definition (2.102).
Denoting p = k — « we can write (2.102) as

t
- 1 dk 1.
D (1) = mﬁ/(t—ﬂ" Pl fr)dr, (k=1<p < k) (2.103)
or .
, d” —(k=—p ‘ R
D) = Jﬁ( D * "f(t)), (k—1<p<k). (2.104)

If p =k — 1, then we obtain a conventional integer-order derivative
of order k — 1:

fl

gk
DE L) ;(1_( rlDt—(k‘—(AT—l))f(t))

= (D) = 1),
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Moreover, using (2.90) we see that for p=~k>1and ¢ > a

1 d* f(t)

PE() = S 0 = STV k) 5
DY) = 22 (WD) = = = 1), (2.105)
which means that for ¢t > a the Riemann- Liouville fractional derivative
(2.103) of order p = k > 1 coincides with the conventional derivative of
order k.

Let us now consider some properties of the Riemann Liouville frac-
tional derivatives.

The first - - and maybe the most important — property of the Riem-
ann- Liouville fractional derivative is that for p > 0 and t > ¢

D (D7) = £, (2.106)

which means that the Riemann- Liouville fractional differentiation op-
erator is a left inverse to the Riemann Liouville fractional integration
operator of the same order p.
To prove the property (2.106), let us consider the case of integer
=n > 1:

d T
dtn

t
Dy (LD, " (1)) [t=n(eyar

t
1
- o[£ = 1)

Taking now k — 1 < p < k and using the composition rule (2.100) for
the Riemann-Liouville fractional integrals, we can write

(lD;Arf(t) = “Df._(k"')( aD{Pf(t))v (2.107)

and, therefore,

DI(D7f0) = S (D))

which ends the proof of the property (2.106).
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As with conventional integer-order differentiation and integration,
fractional differentiation and integration do not commute.

If the fractional derivative ;DY f(t), (k — 1 < p < k), of a function
f(t) is integrable, then

Dy (aD,f(t) Z[ DI f(1) ]_a%. (2.108)
7=1

Indeed, on the one hand we have

t
D7 (DIF(1)) :-%/t—?’ -1 . D?f(7)dr

df 1 N
=7 {ma/(t —7) aDTf(T)dT} .(2.109)

On the other hand, repeatedly integrating by parts and then using
(2.100) we obtain

t
1
m a/(t —7)P D2 f(r)dr

t

FGITIE?JS/ S G ) L

k drk=7 ~(k—p) (t — a)p—j+1
B> [dtk = (P pf(t))L:a T(2+p—j)

j=1

T Tk ~1k +1) /(t TP DR () fdr

(t o a)])-j+1

Z[ DY £(t) ]_u R (2.110)
= D, " k“’(a CP )
k .
p— (t_’a)p s+l
-> [an 10 L_am (2.111)

J=1
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(t — a)p—i+!

Ty (2112

k
= D7) =Y DY ()]
7=1
The existence of all terms in (2.110) follows from the integrabil-
ity of ,Df f(t), because due to this condition the fractional derivatives
JDEVF®), (J=1,2,..., k), are all bounded at t = a.
Combining (2.109) and (2.112) ends the proof of the relationship
(2.108).
An important particular case must be mentioned. If 0 < p < 1, then

D (D) = £0) - [oDi )], 2

T (2.113)

The property (2.106) is a particular case of a more general property
D} (D]7f(1)) = DE (), (2.114)

where we assume that f(t) is continuous and, if p > ¢ > 0, that the
derivative ,DY 4 f(t) exists.

Two cases must be considered: ¢ > p>0and p>q > 0.

If ¢ > p > 0, then using the properties (2.100) and (2.106) we obtain

aDi)<aD;df(t)) — QD?(Q‘DZ—T) aDg(q—P))
_ aDt-(qﬂJ) = DITIf(1).

Now let us consider the case p > ¢ > 0. Let us denote by m and n
integers such that 0 <m—-1<p<mand 0 < n < p-g < n. Obviously,
n < m. Then, using the definition (2.103) and the property (2.100) we
obtain

DD ) = D (D))

SO}

d]l

= D0} = D).

]

The above mentioned property (2.108) is a particular case of the more
general property

aDt—p(QDg.“)) = JDIPf(1) i [(LD‘I IF(t }

J=l1

(t—a)P7
t=a I(1+p —j)
(2.115)
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0<k-1<g<k).

To prove the formula (2.115) we first use property (2.100) (if ¢ < p)
or property (2.114) (if ¢ > p) and then property (2.108). This gives:

D;”(DIf®) = Df P { D, (D) ]

k ) _q)a-
aD?“p {f(t) - Z [(LD?#Jf(t)] t:af%)ig%}

7=1

I

fl

(t —a)P~
t=a T(1+p~j)

]

DI Xk: [aDq If(t }

=1

where we used the known derivative of the power function (2.117):

Dq-p (t"“a)q_j — (t"a)p—]
T T 4g-5) ) TO+p—i)

2.3.4 Fractional Derivative of (t — a)”

Let us now cvaluate the Riemann- Liouville fractional derivative ,DY f(¢)
of the power function

f(t)=(t—a)”,
where v is a real number.

For this purpose let us assume that n — 1 < p < n and recall that by
the definition of the Riemann-Liouville derivative

d" —(n— ‘ :
DI = o5 — (D" ), (m-1<p<n). (2.116)

Substituting into the formula (2.116) the fractional integral of order
a = n — p of this function, which we have evaluated earlier (see formula

(2.56), p. 56), i.e.

-y 174 F(l + 1/) P4
a f = —(t —qa) ",
D; (( - a) ) I‘(1+u+a‘)( 2
we obtain:

DH0-0) = T e

and the only restriction for f(t) = (t — «)¥ is its integrability, namely
v>-—1.
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2.3.5 Composition with Integer-ofder Derivatives

In many applied problems the composition of the Riemann- Liouville
fractional derivative with integer-order derivatives appears.

Let us consider the n-th derivative of the Riemann Liouville frac-
tional derivative of real order p.

Using the definition (2.102) of the Riemann-Liouville derivative we
obtain:

dr N 1 d""* k o ek
dt"( DIt )) - ['(e) dentk /( )" (r)dr = DT (),
(2.118)
D<a<l),
and denoting p = k — o« we have
d” ) "

To consider the reversed order of operations, we must take iuto ac-
count that

ti
D;nf(n)(t) - (n i 1)‘ /(1‘ _ T')n-]f(n)(,l,_)dT
,,,,, L
_ O a)(t -~ ay
= f(t) - JE;U~ T (2.120)

and that
DYg(t) = D" (D "g(1)). (2.121)

Using (2.120), (2.121) and (2.117) we obtain:

oLy aDi’””(aD{"f(")(t))

dtn
rn—1
_ p+n f (L) t_ a)}
n--1
f— J—p—n
= DPUU() - Z PO = 0P o 1)

= F(I—I—]—p——n)

which is the same as the relationship (2.66).
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Therefore, as in the case of the Griinwald—Letnikov derivatives, we see
that the Riemann-Liouville fractional derivative operator ,D¥ commutes
" dn . .
with 77, i.e., that
T
d p

o (uops = o7 (L

dtn

) = DI f(1), (2.123)

only if at the lower terminal t = a of the fractional differentiation the
function f(t) satisfies the conditions

™ Na)=0, (k=012 ...,n-1). (2.124)

2.3.6 Composition with Fractional Derivatives

Let us now turn our attention to the composition of two fractional
Riemann-Liouville derivative operators: (DY, (m — 1 < p < m), and
DY (n—-1<qg<n).

Using subsequently the definition of the Riemann -Liouville fractional
derivative {2.104), the formula (2.108) and the composition with integer-
order derivatives {(2.119) we obtain:

D (D) = S {07 (D2 (0) )

am b0
- dtm { aD’{ " f(t)

~ T q-—j (t . a);rn-—p—]
; [aDt f(t>]f.:n F(]_ +m-—-—p-— ]) }

(t —a) PJ

(2125
t=aI'(1 = p - j) (2.125)

= DI f(t)—‘i [aDi’"’f (t)}

1=1
Interchanging p and ¢ (and therefore m and n), we can write:

1( DPFE) = JDP ) -S| D (t—a) 7
Di(DEB) = aDF =3B, Ty,

. (2.126)

The comparison of the relationships (2.125) and (2.126) says that in
the gencral case the Riemann- Liouville fractional derivative operators
an and ,LD;” do not commute, with only one exception (besides the
trivial case p = ¢): namely, for p # ¢ we have

D} (uD{f(1)) = oD} (DIf(2)) = DVH1(2), (2.127)
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only if both sums in the right-hand sides of (2.125) and (2.126) vanish.
For this we have to require the simultancous fulfillment of the conditions

[uDﬁ"Jf(t)]tm =0, (=12 ..., m), (2.128)
and the conditions
[uD?"-’f(t)Lia =0, (j=1,2,...,n) (2.129)

As will be shown below in Section 2.3.7. if f(¢) has a sufficient number
of continous derivatives, then the conditions (2.128) are equivalent to

f9Na)=0, (G=0,1,2,...,m=1) (2.130)
and the conditions (2.129) are equivalent to
f9@y =0, (G=0,1,2,...,n—1), (2.131)

and the relationship (2.127) holds (i.e. the p-th and ¢-th derivatives
comimute) if
fUlay=0, (G=0,1,2 ..., 7=1), (2.132)

where r = max(n, m).

2.3.7 Link to the Griinwald—-Letnikov Approach

As we mentioned above, sce p. 63, there exists a link between the Riem-
ann-Liouville and the Griinwald-Letnikov approaches to differentiation
of arbitrary real order. The exact conditions of the equivalence of these
two approaches are the following.

Let us suppose that the function f(¢) is (n — 1)-times continuously
differentiable in the interval [a, 7] and that f0")(t) is integrable in [a, T).
Then for every p (0 < p < n) the Riemann-Liouville derivative ,D7 f(#)
exists and coincides with the Griinwald -Letnikov derivative , DY f(t), and
fO<m-—1<p<m<n, then for a < £t < T the following holds:

—1 - t
v g =S LU ) 1 [ (r)dr
anf(t) —(,,Dé f(f) _]z:;:) I‘(], +j —[)) + F(?TL _ p) 'a/(t _ T)p—m+1 :

(2.133)

Indeed, on the one hand the right-hand side of formula (2.133) is

equal to the Griinwald- Letnikov derivative o D? f(#). On the other hand,
it can be written as

. . L
dm "l"lf(])((L>(t _ a)"L+J"I’ 1 2
{ — m—p—1 ¢(m) i .
i { Fl+m+j—p) * Ir'(2m — p) /( ™) frtmdr

7=0
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which after m integrations by parts takes the form of the Riemann -
Liouville derivative ,DY f(#)

1
" dm o
J— rn p—1 - 2 D (m—p) t
dtm F(m —p) / Jr)dr dtm {a t f( )}

— DU,

The following particular case of the relationship (2.133) is important
from the viewpoint of numerous applied problems.

If f(¢) is continuous and f’(t) is integrable in the interval [a, T], then
for every p (0 < p < 1) both Riemann- Liouville and Griinwald-Letnikov
derivatives exist and can bhe written in the form

DUf(t) = oDPf(t) =

¢
fa)(t—a)7 + ! /(t —7)Pf(r)dr
(1 -p) ra-p)
(2.134)
Obviously, the derivative given by the expression (2.134) is integrable.

Another important property following from (2.133) is that the ex-
istence of the derivative of order p > 0 implies the existence of the
derivative of order ¢ for all ¢ such that 0 < ¢ < p.

More precisely, if for a given continuous function f(t) having inte-
grable derivative the Riemann- Liouville { Grilnwald-Letnikov) derivative
«D? f(t) exists and is integrable, then for every ¢ such that (0 < ¢ < p)
the derivative ;Df f(#) also exists and is integrable.

Indeed, if we denote g(t) = ,,‘D;(lgp)f(t), then we can write
D! D7) = g
DY f(t) = po D f)) =g').

Noting that ¢'(t) is integrable and taking into account the formula
(2.134) and the inequality 0 < 1+ ¢ —p < 1 we conclude that the
derivative QD:J”’"” g(t) exists and is integrable. Then, using the property
(2.114), we obtain:

a IHI P (f) . l+q—P((1D£ (1 Ii)f(t)) — u,D(tlf({')-

The relationship (2.133) between the Griinwald Letnikov and the
Riemann Liouville definitions also has another consequence whicl is
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very important for the formulation of applied problems, manipulation
with fractional derivatives and the formulation of physically meaningful
initial-value problems for fractional-order differential equations.

Under the same assumptions on the function f(¢) (f(t) is (m — 1)-
times continuously differentiable aud its m-th derivative is integrable in
[a,T]) and on p (m — 1 < p < m) the condition

[DIF®] =0 (2.135)

=71

is equivalent to the conditions

f(])(a) =0, (j=0,1,2,...,m-=1). (2.136)

Indeed, if the conditions (2.136) are fulfilled, then putting t — a in
(2.133) we immediately obtain (2.135).

On the other hand, if the condition (2.135) is fulfilled, then multiply-
ing both sides of (2.133) subscquently by (t —a)?™/, (j =m —1, m — 2,

m—3, ..., 2, 1, 0) and taking the limits as ¢ — a we obtain fln- l)(‘a.) =
0, f=2(a) =0, ..., f"(a) =0, f'{la) =0, f(a) =0 - ie., the condi-

tions (2.136).
Therefore, (2.135) holds if and only if (2.136) holds.

From the equivalence of the conditions (2.135) and (2.136) it imme-
diately follows that if for some p > 0 the p-th derivative of f(¢) is equal
to zero at the terminal ¢ = a. then all derivatives of order ¢ (0 < g < p)
are also equal to zero at t = a:

[(]D;ff‘(t)} =0.

t=a

2.4 Some Other Approaches

Among other approaches to the generalization of the notion of differen-
tiation and integration we decided to pay attention to the approach sug-
gested by M. Caputo and to the approach based on generalized functions
(distributions), because of its possible uscfulness for the formulation and
solution of applied problems and their transparency.

The approach developed by M. Caputo allows the formulation of
initial conditions for initial-value problems for fractional-order differen-
tial cquations in a form involving only the limit values of integer-order
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derivatives at the lower terminal (initial time) t = a, such as y'(a), y"(a)
etc.

The generalized functions approach allows consideration and utiliza-
tion of the Dirac delta function §(¢) and the Heaviside (unit-step) func-
tion H(t); both functions are frequently used as models (or parts of
models) for test signals and loading.

2.4.1 Caputo’s Fractional Derivative

The definition (2.103) of the fractional differentiation of the Riemann -
Liouville type played an important role in the development of the theory
of fractional derivatives and integrals and for its applications in pure
mathematics (solution of integer-order differential equations, definitions
of new function classes, summation of series, etc.).

However, the demands of modern technology require a certain revi-
sion of the well-established pure mathematical approach. There have ap-
peared a number of works, especially in the theory of viscoelasticity and
in hereditary solid mechanics, where fractional derivatives are used for a
better description of material properties. Mathematical modelling based
on enhanced rheological models naturally leads to differential equations
of fractional order — and to the necessity of the formulation of initial
conditions to such equations.

Applied problems require definitions of fractional derivatives allowing
the utilization of physically interpretable initial conditions, which contain
fla), f'(a), ete.

Unfortunately, the Riemann-Liouville approach leads to initial con-
ditions containing the limit values of the Riemann-Liouville fractional
derivatives at the lower terminal £ = a, for example

lim D& Lf(t) = by,

t—a

lim DY f(t) = by, (2.137)

t—a

}l_r‘l{i (LD?»nf(t) = bn,
where by, k = 1,2,...,n are given constants.

In spite of the fact that initial value problems with such initial con-
ditions can be successfully solved mathematically (see, for example, so-
lutions given in [232] and in this book), their solutions are practically
useless, because there is no known physical interpretation for such types
of initial conditions.
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Here we observe a conflict between the well-established and polished
mathematical theory and practical needs.

A certain solution to this conflict was proposed by M. Caputo first
in his paper [23] and two years later in his book [24], and recently (in
Banach spaces) by El-Sayed [55, 56]). Caputo’s definition can be written
as

. 1 t o f(r)dr
Cryax - <
DX f(t) = / , In—-1l<a<n). 2.138
a*™t f( ) F(O/ _ Tl) o (t . 7_)(14.1_," ( ) ( )
Under natural conditions on the function f(t), for &« — n the Caputo
derivative becomes a conventional n-th derivative of the function f(t).
Indeed, let us assume that 0 < n —1 < & < n and that the function f(t)
has n+ 1 continuous bounded derivatives in [a, T} for every T > a. Then

" (@)L~ ay=
(ijh E:D?f(t) = g“—f}z ( Mn—a+1)

t

1 n—a p(n+1)
+m/{; (f"T) f +1 (T)dT)

t
= f"(a)+ f fED(rydr = f0(1), n=1.2...

This says that, similarly to the Griinwald- Letnikov and the Riem-
ann-Liouville approaches, the Caputo approach also provides an inter-
polation between integer-order derivatives.

The main advantage of Caputo’s approach is that the initial condi-
tions for fractional differential equations with Caputo derivatives take
on the same form as for integer-order differential equations, i.e. contain
the limit values of integer-order derivatives of unknown functions at the
lower terminal ¢ = a.

To underline the ditference in the form of the initial conditions which
must accompany fractional differential equations in terms of the Riem-
ann-Liouville and the Caputo derivatives, let us recall the corresponding
Laplace transform formulas for the case a = 0.

The formula for the Laplace transform of the Riemann-Liouville frac-
tional derivative is

n—1

> — 17 & g (e nl 4 x—K— [ I3 s
/0 e {ODP(1)} dt = p F(p) = Y p* DI )] L (2139)
k==0)

(n—1<a<n),
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whereas Caputo’s formula, first obtained in [23], for the Laplace trans-
form of the Caputo derivative is (see Section 2.8.3)

-1

[T e {§pesm) de=pF) - 3000, (2140)
0 k=0

(n—1<a<n).

We see that the Laplace transform of the Riemann-Liouville frac-
tional derivative allows utilization of initial conditions of the type (2.137),
which can cause problems with their physical interpretation. On the con-
trary, the Laplace transform of the Caputo derivative allows utilization
of initial values of classical integer-order derivatives with known physical
interpretations.

The Laplace transforin method is frequently used for solving ap-
plied problems. To choose the appropriate Laplace transform formula,
it is very important to understand which type of definition of fractional
derivative (in other words, which type of initial conditions) must be used.

Another difference between the Riemann-Liouville definition (2.103)
and the Caputo definition (2.138) is that the Caputo derivative of a
constant is 0, whereas in the cases of a finite value of the lower terminal
a the Riemann Liouville fractional derivative of a constant C is not cqual
to 0, but

C/‘f‘“(!
D{C = —. 2.141
. I'(l—a) ( )
This fact led, for example, Ochmann and Makarov [174] to using the
Riemann-Liouville definition with a = —oc, because, on the one hand,

from the physical point of view they need the fractional derivative of a
constant equal to zero and on the other hand formnula (2.141) gives 0 if
a — —oc. The physical meaning of this step is that the starting time of
the physical process is sct to —oc. In such a case transient effects cannot
be studied. However, taking a = —oc is the necessary abstraction for the
consideration of the steady-state processes, for example for studying the
response of the fractional-order dynamic system to the periodic input
signal, wave propagation in viscoelastic materials, etc.

Putting a« = —o in both definitions and requiring reasonable be-
haviour of f(t) and its derivatives for t — —oc0, we arrive at the same
formula

1 t fOu (rydr

[Ad . C oy _ y
—ooDl, f(t) T Dt f(") - r(n — (1*) o (IL, - 7—)(\'-!71—71 ’

(2.142)
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(n—-1<a<mn),

which shows that for the study of steady-state dynamical processes the
Riemann- Liouville definition and the Caputo definition must give the
same results.

There is also another difference between the Riemann Liouville and
the Caputo approaches, which we would like to mention here and which
seems 1o be important for applications. Namely, for the Caputo deriva-
tive we have

Cpe ( “prf(e) ) = CDpEmr(t), (m=0,1,2,...; n-l<a<n)
(2.143)

while for the Riemann- Liouville derivative

D (JDYf() )= DI, (m=0,1,2,...; n—-1<a<n)
(2.144)

The interchange of the differentiation operators in formulas (2.143)
and (2.144) is allowed under different conditions:

o (Gprs) ) = (o (SDpi) ) = SO, (2.145)

f(s)(()) =0, s=nn+1,....m
(m=0,1,2,...;n—-1<a<n)
Dp (JDEF(H)) = uDf (uDPF(t)) = JDEF(1),  (2.146)
SO0y =0, s=0.1,2,....m
(m=0,1,2,...;n—1<a<n).

We see that contrary to the Riemann-Liouville approach, in the case
of the Caputo derivative there are no restrictions on the values f)(0),
(s=0,1,....,n—1).

2.4.2 Generalized Functions Approach

This approach is based on the observation that the Cauchy formula
(2.85), see page 64,

{-

! /(f — )" f(7)dT,

I'(n)

S =
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which allows replacement of the n-fold integral of the function f(t) with
a single integration, can be written as a convolution of the function f(t)
and the power function t* 1

tﬂ.—— 1

FEM() = f(t) * )’ (2.147)

where both functions, f(t) and t"~!, are replaced with zero for t < a
and t < 0 correspondingly: the asterisk means the convolution:

o

$)x9) = [ $(r)glt = ).

— 0

Let us consider the function ®,(¢) defined by [76]

Pl
E— t>0

Dy(t) = ¢ L(v) (2.148)
0, t < 0.

Using the function ®,(t) the formula (2.147) can be considered as a
particular case of the more general convolution of the function f(¢) and
the function ®,(¢):

FEPE) = F(2) * p(2). (2.149)

To handle both positive and negative values of p in the same way,
it is convenient to consider the function ®,(t) as a generalized function.
Its properties are known [76]; for our purposes it is essential that

lim &,(t) = ¢_x(t)6® (),  (k=0,1,2,..)), (2.150)

p--k

where 4(t) is the Dirac delta function [76]. The Dirac delta function
is often used in applied problems for the description of impulse loading
(impulse forces). The convolution of the k-th derivative of the delta
function and f(t) is given by

o0

/fﬁwmﬁwTMTZﬂmm. (2.151)

-0

Obviously, if p is a positive integer (p = n), then the formula (2.149)
reduces to (2.147). On the other hand, it follows from the relationship
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(2.150) and the properties of the delta function that for negative integer
values of p (p = —n, n > 0)

FOUt) = f(t) * Bo(t) = F(£) * 5(t) = f(1),
FO) = F@) % @oa(t) = f(8) 8 (t) = f(2),

FE) = F1) x 2ei(t) = F(1) + 60 (0) = 1O ).

Therefore, both integer-order integrals and derivatives of a general-
ized function f(t) can be obtained as particular cases of the convolution
(2.149), which is also meaningful for non-integer values of p. This means
that the formula (2.149) provides a unification of n-fold integrals and
n-th order derivatives of a generalized function and an extention of these
notions to real order p and that we can define the derivative of real order
p of a generalized function f(¢), which is equal to zero for ¢t < a, as

DY F(t) = f(#) * ®p(2). (2.152)

Another property of the function ®,(t), which leads to important
consequences, is

Qp(t — a) * Py(t) = Ppyq(t — a). (2.153)

To prove (2.153), let us first suppose that p > 0 and ¢ > 0. Then
using the substitution 7 = a + ((t — a) and the definition of the beta
function (1.20) we obtain

_ (7'—(1”1(1‘~—‘r)‘11
B,(t —a) * &y(t) = / o
1

= ———— [(r—a) it~ )9 T

I'(p)'(q) !
~ (t—apre! ; —171 =1
BN J“ (o

_ (L * ,,.,1

_ ﬁf@{—;{)& (2.154)

and analytic continuation with respect to p and ¢ gives (2.153).
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It follows from (2.153) that if the function f(t) is zero for ¢ < a, then
(F0) % (1) = By (1) = F(8) 5 (Bp(1) 5 Bg(1)) = J (1) % Bpg(t). (2.155)

from which immediately follows the composition law
oD (DL®)) = uDf (WDEF()) = WDITF(1). (2.156)

for all p and ¢. The simplicity of the composition law (2.156) is, of
course, a great advantage of the use of generalized functions.

From formula (2.153) we directly obtain the derivative of real order
p of the generalized function

q 14
Pyia(t) = _‘t+ = la+1) (&> 0)
g +1) 0, (t<0)
in the form
- (E—a)? (t —a)P—9 .
DY ( = . (t>a). 2.157
t(I‘(q—&-l)) MNl1+qg-p) ( @) (2.157)

In the particular casc ¢ = 0 we obtain the fractional derivative of the
Heaviside unit-step function H(t):

(t—a)F

JDPH(t —a) = —T2—, (t>a), (2.158)
and, in general, for all b < a
- (t—a)~?
JDPH(E —ay={ 109 (t>a) (2.159)
0, (b<t<a).
Putting ¢ = —n — 1 (n > 0) in (2.157), we obtain the fractional

derivative of order p of the n-th derivative of the Dirac delta function:

('t . a)—n—-p-—l

DY M (t — a) = t>a). 2.160
P —a) = S () (260
and, in general, for b < a we have
i (t—a)~ "7~}
y DV (t — a) = ICnp) (t>a) (2.161)
' 0, (b<t<a).
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Finally, if ¢ — p+ 1 = —n (n > 0) then from (2.157) it follows that

¢ — a)p 11
oDV C—a)™ 7 N 5 —a), (> a). 2.162
( — (t-a). (t>a) (2.162)

Relationships (2.158), (2.160) and (2.162) represent an interesting
and useful link between the power function, the Heaviside unit-step func-
tion and the Dirac delta function.

The generalized function approach allows the establishiment of an in-
teresting link between the Riemann-Liouville and the Caputo approaches
and their relationship to conventional and generalized integer-order de-
rivatives.

Using the function ®,(¢), the Riemann-Liouville definition (2.103)
can be written as

([n
dt”

D) = < (F(b) * @,l_p(t)), (2.163)

the Caputo definition can be written as

o = (C1 v, 0) (2.164)

and the relationship (2.133) takes the form

JDYF() = DY +Z¢>A pri(t —a) f®(a). (2.165)
k=0

Taking p — n, where n is a positive integer number and using (2.150),
we obtain from (2.165) the following relationship:

n—1

Py = SDRF)+ Y 00T - a)f W) (2.160)

k=0
Comparing relationship (2.166) with the well known relationship
between the classical derivative fé'l)(t) and the generalized derivative

foe

TL -

f(”)(t)zf((n) Zé‘n —k-1) f—a)f( )( ) (2167)

k=0
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where f(t) = f(t) for t > a and f(t) = 0 for ¢ < a, we conclude that the
Riemann Liouville definition (2.79) serves as a generalization of the no-
tion of the generalized (in the sense of generalized functions) derivative,
while the Caputo derivative (2.138) is a generalization of differentiation
in the classical sense.

Similar results can be found in D. Matignon’s work [143], where a
relationship between the fractional derivative in the sense of distributions
and the “smooth fractional derivative” (which coincides with Caputo’s
derivative) has been given, and in F. Mainardi’s paper [135], where the
relationship between the Riemann -Liouville and the Caputo definitions
of fractional differentiation is also discussed.

2.5 Sequential Fractional Derivatives

The main idea of differentiation and integration of arbitrary order is the
generalization of iterated integration and differentiation.

In all these approaches the general aim is the same: to “replace” the
integer-valued paramecter n of an operation denoted, for example, by the
symbols

(in
dt"

with a non-integer parameter p. Other details vary (function classes,
methods of “replacement” of n with p, some properties for non-integer
values of p), but it is obvious that all efforts are made for the direct
intermediate replacement of an integer n with a non-integer p.

However, there is also another way which is less well known but can
be of great importance for many applications. This approach is based on
the observation that, in fact, n-th order differentiation is simply a series
of first-order differentiations:

d'f(t) _dd d )
dtr  dtdt’dt ’
N

n

(2.168)

If there is a suitable method for “replacing” the derivative of first
order ((T]l with the derivative of non-integer order D®, where 0 < o < 1,

then it is possible to consider the following analogue of (2.168):

D" f(t) = D*D*. .. D* f(¢). (2.169)

n
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K. S. Miller and B. Ross called the generalized differentiation de-
fined by (2.169), where D® is the Riemann-Liouville fractional deriva-
tive, sequential differentiation and considered differential equations with
sequential fractional derivatives of type (2.169) in their book [153, Chap-
ter VI, section 4].

Other mutations of sequential fractional derivatives can be obtained
by interpreting D% as the Grinwald-Letnikov derivative, the Caputo
derivative or any other type of fractional derivative not considered here.

Instead of (2.169) it is possible to replace each first-order derivative
in (2.168) by fractional derivatives of orders which are not neccessarily
equal, and to consider the more general expression:

DUf(t) = D D . DO f(1), (2.170)

=] +ay+...+ay

which we will also call the sequential fractional derivative. Depending
on the problem, the symbol D™ in (2.170) can mean the Riemann-
Liouville, the Griinwald-Letnikov, the Caputo or any other mutation
of the operator of generalized differentiation. Moreover, from this point
of view, the Riemann- Liouville fractional derivative and the Caputo frac-
tional derivative are also just particular cases of the sequential derivative
(2.170).

Indeed, the Riemann-Liouville fractional derivative can be written
as

, dd d
DVf(t) = EZ}E“‘E%“D‘( Pr),  (n—-l<p<n), (2.171)

while the Caputo fractional differential operator can be written as

Cyyp -—(n——p) (1 d (1
DUf(t) = ,D ——
«Dif() = oDy dtdt dt
N S

n

f(t), (n—1<p<mn) (2.172)

The properties of the Riemann-Liouville derivatives and the Caputo
derivatives of the same cumulative order p are different due to the dif-

ferent, sequence of differential operators (-‘117 and Dy (n )
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In the case of the Grinwald- Letnikov approach (p. 59) and the
Riemann-Liouville approach (p. 68) we saw that for the fractional inte-
grals it always holds that

DPDUF(t) = DIDPf(t) = DPYf(t),  (p<0, g<0). (2.173)

Because of this, we do not see a reason for considering sequential integral
operators.

However, in the general case, the property (2.173) does not hold for
p > 0 and/or ¢ > 0 (this explains the difference between the Riemann -
Liouville and the Caputo fractional derivatives). Therefore, only con-
sideration of sequential fractional derivative operators can be of interest
and can give new results.

On the other hand, sequential fractional derivatives can appear in a
natural way in the formulation of various applied problems in physics
and applied science. Indeed, differential equations modelling processes
or objects arise usually as a result of a substitution of one relationship
involving derivatives into another one. If the derivatives in both relation-
ships are fractional derivatives, then the resulting expression (eguation)
will contain — in the general case — sequential fractional derivatives.

It is worth mentioning that the sequential fractional integro-differen-
tial operators of the form (2.170), with ay < 0, a9 > 0, ... , @, > 0 were
first considered and used for various purposes by M. M. Dzhrbashyan
and A. B. Nersesyan at least since 1958 [46, 47, 49, 45, 50]. However, in
this book we call sequential fractional derivatives also Miller Ross frac-
tional derivatives, because they clearly outlined the difference between
the (single) Riemann-Liouville differentiation and sequential fractional
differentiation [153, Chapter VIJ.

2.6 Left and Right Fractional Derivatives

Until now, we considered the fractional derivatives ,Df f(¢) with fixed
lower terminal ¢ and moving upper terminal ¢. Moreover, we supposed
that a < t. However, it is also possible to consider fractional derivatives
with moving lower terminal ¢ and fixed upper terminal b.

Let us suppose that the function f(¢) is defined in the interval [a, b],
where a¢ and b can even be infinite.

The fractional derivative with the lower terminal at the left end of
the interval [a, b], DY f(t), is called the left fractional derivative. The
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DV f(t) Dy f(t)

Left derivative Right derivative

[ i }
H 1 1

a the “past” of f(¢t) t the “future” of f(t) b

Figure 2.1: The left and right derwatives as operations on the “past” and
the “future” of f(t).

fractional derivative with the upper terminal at the right end of the
interval [a, b] is called the right fractional derivative. Obviously, the
notions of left and right fractional derivatives can be introduced for any
mutation of fractional differentiation - - Riemann -Liouville, Grimnwald
Letnikov, Caputo and others, which are not considered in this book.

For example, if k — 1 < p < £k, then the left Riemann- Liouville
fractional derivative is, as we know, defined by

. N d\E ko1 ,

The corresponding right Riemann Liouville derivative is defined by [232,
§2.3]

1 d k b
DYf() = p— (=5 ) [ =077 f(rr (2.175)
’ l(k—P)( dt) /

The right Caputo and Griinwald-Letnikov derivatives can be defined
in a similar manner.

The notions of left and right fractional derivatives can be considered
from the physical and the mathematical viewpoints.

Sometimes the following physical interpretation of the left and right
derivative can be helpful.

Let us suppose that ¢ is time and the function f(t) describes a certain
dynamical process developing in time. If we take 7 < ¢, where ¢ is the
present moment, then the state f(7) of the process [ belongs to the past
of this process; if we take 7 > ¢, then f(7) belongs to the futurc of the
process f.
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From such a point of view, the left derivative (2.174) is an operation
performed on the past states of the process f and the right derivative is
an operation performed on the future states of the process f.

The physical causality principle means that the present state of the
process started at the instant 7 = a, i.e. the current value of f(t),
depends on all its previous (past) states f(7) (a < 7 < t). Since we
are not aware of the dependence of the present state of any process on
the results of its development in the future, only left derivatives are
considered in this book. Perhaps once the right derivatives will also get
a certain physical interpretation in terms of dynamical processes.

On the other hand, from the viewpoint of mathematics the right
derivatives remind us of the operators conjugate to the operators of left
differentiation. This means that the complete theory of fractional dif-
ferential equations, especially the theory of boundary value problems for
fractional differential equations, can be developed only with the use of
both left and right derivatives.

At present, the above interpretation of fractional derivatives and in-
tegrals, related to dynamical processes, seems to be the most transparent
and usable. There was an attempt undertaken by R. R. Nigmatullin [165)
to derive a relationship between a static fractal structure and fractional
integration, but it follows from R. S. Rutman’s [231] critics that a suit-
able practically useful relationship between static fractals and fractional
integration or differentiation still has not been established.

2.7 Properties of Fractional Derivatives

Let us turn our attention to the properties of fractional-order integration
and differentiation, which are most frequently used in applications.

2.7.1 Linearity

Similarly to integer-order differentiation, fractional differentiation is a
linear operation:

D"(x\f(l,) + ug(t)) = ADPF(t) + pu DPg(2), (2.176)

where D? denotes any mutation of the fractional differentiation consid-
ered in this book.

The lincarity of fractional differentiation follows directly from the
corresponding definition. For example, for the Grinwald-Letnikov frac-
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tional derivatives defined by (2.43) we have:

,J){’(Af(t)—%gg( )—— lim A~ ”Z( 1) ( )(z\f(?ﬁ—lh)-%p(}(é—?h))

lh t - r={)
- P
=X lim h PN (-1 (r)f(t—rh)
nhol—a r==0
n p
it — T o
+u 1}11(1} h z%( 1) (T)g(t rh)
nh=t-—aqa r=

AaDVf(t) + paDYg(t).

Similarly, for Riemann Liouville fractional derivatives of order p (k —
1 < p < k) defined by (2.103) we have

DE(MO+ 1900) = 1 S [ 1 (00 gt

& f
_ Mr(k/\— 5 [t =ty (eyar

t
o d*

“TE-p (ﬁa/(t — )P lg(r)dr

=AaD{f(t) + paDVg(t).

2.7.2 The Leibniz Rule for Fractional Derivatives

Let us take two functions, ¢(t) and f(t), and start with the known
Leibniz rule for evaluating the n-th derivative of the product ¢(#)f(t):

;; (etrw) =3 (:L) ()P (@), (2.177)

k=0

Let us now take the right-hand side of formula (2.177) and replace
the integer parameter n with the real-valued parameter p. This means
that the integer-order derivative f("~%)(1) will be replaced with the
Griinwald -Letnikov fractional-order derivative oD} ‘k‘f (t). Denoting

() = i (i) c8V () DY f (1), (2.178)

k=0
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let us evaluate the sum (2.178).
First, let us suppose that p = ¢ < 0. Then we have also p — k& =
q— & < 0 for all &, and according to (2.40)

—k . 1 ' —gt+k— -
DO = f / (t = 7)1 f (7Y, (2.179)

which leads to

mn

QL (t) = Z( ) e / 7)) f(r)dr (2.180)

k=0
k=n X
= /{Z ((1>m (k)(f)(f—T)k}G——{%de. (2.181)
@ k=0 3

Taking into account the reflection formula (1.26) for the gamma func-
tiou, we have

q ! __Plg+n 1 ‘
(1‘7) L(—q+k)  klT(g—k+1) D(—q+k) (2.182)
_ TI'(g+1) . sin(k — q)m )
- k! - (2.183)
= (—1)kH F(C]AT 1) sm(qw) (2.184)

and, therefore, the expression (2.181) takes the form:

T

inlam [ no¢ V& g ‘ T
Q(Til(t)szu ((I )l(q_f_l)/{zg__k_]'_)__v(k)(f)(t - T)k} (t j( )),I,Llf( )d’r.

k=0
(2.185)
Using the Taylor theorem we can write
T -1 k ) i Alm) t
> L’"A:r‘so(")(t)(t —rF=p) + (- T) .+ T ,,,'( L =y

3

=o(n)+ = [ - g,

a

and therefore we obtain

—

() = - nlam)l / “0=Lo(r) f(7)dr
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t
_sin(gm)l'(g+1) /

mn!

l.
r) ([ - e

a s

t
/ () [ ()

t t
1 — - n ¢ 7
+;Im /(t—T) ! lf(T)dT/iﬂ( () (T — €)"de

= DI (PO f (1)) + RA), (2.186)
where
L ‘
RO = Je=nr ) [0 - grde. (2187

Let us now consider the case of p > 0. OQur first step is to show
that the evaluation of QF (£) can be reduced to the evaluation of Q¢ for
a certain negative q.

Taking into account that I'(0) = oo we have to put

p—1
=0,

and using the known property of the binomial coefficients

py _([p— 1 p—1
we can write

Qﬁim:i(p;l) () Dy +"( ) (1D} * (1),
v k=1

k=0
(2.188)
Replacing & with &£ + 1 in the second sum gives

k=0

n—t / (k)
+Z(‘” 1>£lf*~@-a/){"k"‘.f(t), (2.189)
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which can be written as

. p—l n k p—k—1
Qf;(t>~( i ) P (E) uD}” f(t)+dt§:( ) P9(t) aDE T £(0).
(2.190)
Adding and subiracting the expression

- (” - 1)¢<"><t) PP )]

we obtain

dt k=0

o = 53 (p;1)%0"“@)“1){’*“%(0 (2.191)

- (”; I)WW D) (2.192)

or
OB (t) = ﬂp t) - (p;1)¢“’+”<t)an"°‘lf<t). (2.193)

The relationship (2.193) says that the evaluation of Qf(t) can be
reduced to the evaluation of Q271(¢t). Repeating this procedure we can
reduce the evaluation of QP (¢) (p > 0) to the evaluation of 4 (t) (¢ < 0).

Let us suppose that 0 < p < 1. Then p — 1 < 0, and according to
(2.186) we have

(1) = D (1) + BN (). (2.194)
To combine (2.194) and (2.193), we have to differentiate (2.194) with

respect to t. Taking into account that

t

)y [ e - ) g

T T
tR ()= n!I“(~p+1)./(t J

d

n n+ t .
T 2.195
+ S / f(r)dr (2.195)

and that

/ (t— )PP f(r)dr = D(—p 4+ n+ 1) DP " £(2) (2.196)
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(since n — p > 0), we obtain:

Loz1) = 02 (w01 (0)

(=1)"T(—p + n + L)t (¢)
nI'(-p+1)

DY () £(1))

(7)o s re. @

n

- DPTTHR() + RE(E)

and the substitution of this expression into (2.193) gives
Qh(t) = oD (w(0)f (1)) + RE(), (2.198)

which has the same form as (2.186).
Using mathematical induction we can prove that the relationship
(2.198) holds for all p such that p+1 < n.

Obviously, the relationship (2.198) gives, in fact, the rule for the
fractional differentiation of the product of two functions. This rule is
a generalization of the Leibniz rule for integer-order differentiation, so
it is convenient to preserve Leibniz’s name also in the case of fractional
differentiation.

The Leibniz rule for fractional differentiation is the following. If f(7)
is continuous in [a, ] and ¢(7) has n + 1 continuous derivatives in [a, ],
then the fractional derivative of the product ¢(t) f(f) is given by

oD} (D) (1) = Z ( ) ®)(t) DI F(1) — RE(t) (2.199)

where n > p+ 1 and

t t

Ry() = ;;ﬁ:};; [=n @ [ - e, (2:200)

T

The sum in (2.199) can be considered as a partial sum of an infinite
series and RE (1) as a remainder of that series.
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Performing two subsequent changes of integration variables, first £ =
7+ ((t —7) and then 7 = a+n(t — a) we obtain the following expression
for RE(t):

3 1
Ryt = = / (1= 7y 7 i()r [ 4 gt - g
0

n!T(-p)
iy n -p41
:( )n(‘ T //F (t.C.m)dndC, (2.201)
00

Fult,C.m) = fla+n(t —a)p" ™D (a+ (t = a)(§ + 1 — ().

from which it directly follows that

lim RE(t) =0

nN—=+2C

if f(7) and o(7) along with all its derivatives are continuous in [a, t].
Under this condition the Leibniz rule for fractional differentiation takes
the form:

DI (p)f(1)) = Z (Z) M (1) DY (1) (2.202)

The Leibniz rule (2.202) is especially useful for the evalnation of frac-
tional derivatives of a function which is a product of a polynomial and
a function with known fractional derivative.

To justify the above operations on RP(t) we have to show that RP ()
has a finite value for p > 0.
The function

L

F) [ D) = e
T
2.203
(t —7)pt! ( )
gives an indefinite expression 8 for 7 = t. To find the imit we can usc
the 'Hospital rule. Differentiating the numerator and the denominator
with respect to 7 we obtain

f( ) IW(,H—U( )( - C)“df + Ilf j "'H) ) 7— #g)n——]dg
- . (2.204)

~(p+ 1t -

which again gives an indefinite expression % for 7 = t. However, if
m < p < m+ 1, then applying the 'Hospital rule m + 2 times we will



2.7. PROPERTIES OF FRACTIONAL DERIVATIVES 97

obtain (t — 7)P~™~! in the denominator (giving infinity for 7 = t), while
the numerator will consist of the terms containing the multipliers of the

form
¢

/W(H'{"l)(E)(T - 5)'1'—’»‘(15 (2.205)

T

which vanish as 7 — ¢ if n > k. Obviously, k¥ cannot be greater than
m + 2, so we can take n > m + 2 and the function (2.203) will tend to 0
for 7 — t. This means that the integral in (2.200) exists in the classical
sense even for p > —1.

Taking into account the link between the Griimwald-Letnikov frac-
tional derivatives and the Riemann-Liouville ones we see that under the
above conditions on f(t) and ¢(t) the Leibniz rule (2.202) holds also for
the Riemann--Liouville derivatives.

2.7.3 Fractional Derivative of a Composite Function

One of the useful conscquences of the Leibniz rule for the fractional
derivative of a product is a rule for evaluating the fractional derivative
of a composite function.

Let us take an analytic function ¢(t) and f(¢) = H(t—a), where H(t)
is the Heaviside function. Using the Leibniz rule (2.202) and the formula
for the fractional differentiation of the Heaviside function (2.158) we can
write:

[o’s]
) P . ke
«Diet) =3 (k,)sc<‘>(t>,LDi “H(t - a)

k
) —a)kp .
_ (r( ) HZ (I)F(tk (2;1) SR (1), (2.206)

4

Now let us suppose that ¢(¢) is a composite function:
e(t) = F(h(1)). (2.207)

The k-th order derivative of ¢(t) is evaluated with the help of the
Faa di Bruno formula [2, Chapter 24, §24.1.2]:

dk

k ) iy
S FR®) = K Z FOm) (1(1)) ZH % (h )) . (2.208)

m=1
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where the sum Y extends over all combinations of non-negative integer
values of ay, a2, ..., a, such that

k k
Z ra, = k and Z“" = 1m.
r=1 T

Substituting (2.207) and (2.208) into (2.206) we obtain the formula
for the evaluation of the fractional derivative of a composite function:

(t—a)?

anF(h,(t)) = mgﬁ(t)
= P\ Kt - ) ko 1 L
+k2—:1() Pk -p+1 ZJF( (e )ZH(L'< 7‘!()) ’

(2.209)

where the sum ) and coeflicients a, have the meaning explained above.

2.7.4 Riemann—Liouville Fractional Differentiation
of an Integral Depending on a Parameter

The well-known rule for the differentiation of an integral depending on
a parameter with the upper limit depending on the same parameter,
namely [68]

t

t
d  FOF(T) ‘
- O/F(t, P)dr = 0/ 2 Thdr + F(t,t - 0), (2.210)

has its analogue for fractional-order differentiation.

The rule for Riemann Liouville fractional differentiation of an inte-
gral depending on a parameter, when the upper limit also depends on
the parameter, is the following:

A t
oD /K(t,v-)dr:/TD?K(t,T)dT+ lim L DfUK(T),  (2:211)
0 0 a

(0O<a<).
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Indeed, using (2.210) we have

t

t 7
oD /K(t,T)dT** ! di / dn /K(n, )dr
3

D - 0
_ L 4 /dT/tK(W,T)dn
1 -a)dt, (t —n)e
t
/ t,7)
0

K(t,7)dr + lim K(t,7)

T—t-0Q

Sl‘lgl
QJ{Q

I

S O\“

+DYK(t, T)dr + Iilfﬂ DK (t, 1), (2.212)
Tt—0

where

((n,§)dn
Kt.6) = 1—a)/ t—n)

The following important particular case must be mentioned. If we
have K (t — 7) f(7) instead of K (¢, 7), then relationship (2.211) takes the
form:

t t
oD /K(t—T)f(T)dT = /DD:K’(T)f(t—T)dT+T1iEEOf(t—T) oD LK (7).
0
(2.213)
It 1s worth noting that while in the right-hand side of the general
formula (2.211) we have fractional derivatives with moving lower termi-
nal 7, all fractional derivatives in (2.213) have the same lower terminal,
namely 0. This significant simplification can be very useful in solving
applied problems where the fractional differentiation of a convolution
integral must be performed.

2.7.5 Behaviour near the Lower Terminal

We have shown in Section 2.3.7 that the Griinwald-Letnikov derivative
oDV f(t) and the Riemann-Liouville derivative ,D¥ f(¢) coincide if f(¢) is
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continuous and has a sufficient number of continuous derivatives in the
closed interval [a, t].

To study the behaviour of the fractional derivatives at the lower ter-
minal, i.e. for t — a+0, let us suppose that the function f(t) is analytic
at least in the interval [a, €] for some small positive ¢ and, therefore, can
be represented by the Taylor series

Z f f- a)* (2.214)

h=0

in this interval.
Term-by-term fractional differentiation of (2.214) using the formula
for the fractional differentiation of the power function (2.117) gives

> F®) (a)
JDPF() = JDVF() = T——«*»( —a)kr, 2.215
from which it follows that if f (t) has the form (2.214) then
JDUf(1) = (DUI(t) ~ 7!1-@—)“ —a)P, (t—a+0),  (2.216)
- P
and
0, (p < 0)
lim DVf(t)= lim DIf(t) =< fla), (p=9) (2.217)
t—a+0 t—ra+0 '

o0, (p > 0).

If we allow f(t) to have an integrable singularity at ¢ = a, then it
can be written in the forin f(t) = (I — a)?f.(t), where fi(a) # 0 and
g > —1. Supposing that f.(t) can be represented by its Taylor series, we
can write

— _ \g _ _ /(A ((L) k 0«
Ft) = (t —a)ifu(t) = (t )Z o (t—a) (2.218)

oo p(k)
-3 fr(a) (1 — a)itF (2.219)

Performing the term-by-tern Riemann Liouville fractional differen-
tiation of the series (2.219), we obtain

Z /i“’(a P(g+k+1)

DY (L) =
S INg+k—p+1)

(t = a)rh=r, (2.220)
k=0
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from which it follows that
J«(a)T{g +1)

DYS(1) I'(g—p+1) (t=a)™" (t—a+0) (2.221)
and
g, ( ) (p<aq)
. P ) fl@P(g+1 o o
Jim o DYf(E) = Tlg—pr1) ®=4 (2.222)
00, (p > q).

2.7.6 Behaviour far from the Lower Terminal

To study the behaviour of the fractional derivative far from the lower
terminal, i.e. for t — oc, let us start with the formula obtained for an
analytic function ¢(t) in Section 2.7.3:

DPo(t) = i p\ (t—a)P i (233
T Lk Tk p Y s

Using the definition of the binomial coeflicients and the reflection
formula for the gamma function (1.26) we can write the relationship
(2.223) as

) N o F(p + 1) (f — a)]\"—«}? (k)
Dipll) = };) T+ Dkt )Tk—pr ¥ ¥
B I(p+ 1) sin(pr) & (—1)"'(1‘ - (L)"'“”‘ﬁ“‘:) o 0.
= - kg[) TN o). (2.224)

Now let us suppose that 1 is far from the lower terminal a, i.e. that
[t] > |a]. Then we can write

/‘.‘—“‘]) L  2
T o)

(2.225)

[ &)

and therefore

(p — k)ath
{p+1 '

Substituting (2.226) into (2.224) we obtain

Dlp+ D sin(m) [$= (D7 g
T = (p— k) E!

a o (=1)FtRR () .
+ AX}) x (2.227)

(t —a)f P b P 4 ([t > lal). (2.226)

Dlplt) =~

(t)
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and using (2.223) gives

al'(p + 1) sin{pm)p(0)

(ID{)LP(t) ~ ()Dg)¢(t) + P+l

o (> al). (2.228)

Taking t — oo we conclude that for large t
DYp(t) = oD} p(t). (2.229)

This means that the impact of the instant at which the dynamical process
p(t) started (and therefore the impact of the transient effects) vanishes
as t — oo, and therefore for large t the fractional derivative with the
lower terminal ¢ = a can be replaced, for example, with the fractional
derivative with the lower terminal t = 0.

Another way of making the interval between the lower terminal and
the upper terminal larger is considering a — —oo for a fixed value of t.
In this case we have [a] > [t| and therefore

(t — a)t=? = gk (1 _ -2-)“1 — gk (1 - Qta—p—)f +0 (g)) ,

(2.230)
from which it follows that
ey pep (P ) N
(t—a)f P=a" P+ T ({t] > |a}) (2.231)
Substitution of (2.231) into (2.224) gives
L(p+ Vsin(pr) [ & (=D*(E - (¢ —a))?
a—Dp' t ~ () t
et N R v
t o= (DM~ (= a))re™(r)
T o (2.232)
k=0
and using (2.223) we obtain
> th(p+ 1)sin(pr)p(t - a
Dlo(t) ~ uDPp(t) + L@ FDsmPmRt —a)

TapPtl

(2.233)

Therefore, we may conclude that, under certain conditions on (),

for large negative values of a the fractional derivative with a fixed lower

terminal can be replaced with the fractional derivative with a moving
lower terminal:

oDYp(t) = 1 DYp(t). (2.234)
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2.8 Laplace Transforms
of Fractional Derivatives

2.8.1 Basic Facts on the Laplace Transform

Let us recall some basic facts about the Laplace transform.
The function F'(s) of the complex variable s defined by

F(s) = L{f(t); s} = / e~ f(8)dt (2.235)

0

is called the Laplace transform of the function f(t), which is called the
original. For the existence of the integral (2.235) the function f(¢) must
be of exponential order «v, which means that there exist positive constants
M and T such that

evat’f(t)l <M forall t>T.

In other words, the function f(¢) must not grow faster then a certain
exponential function when t — o0.

We will denote the Laplace transforms by uppercase letters and the
originals by lowercase letters.

The original f(t) can be restored from the Laplace tranform F(s)
with the help of the inverse Laplace transform

f{t) = L“‘{F(s); th = / e“tF(s)dys. ¢ = Re(s) > ¢y, (2.236)

C—100

where ¢p lies in the right half plane of the absolute convergence of the
Laplace integral (2.235).

The direct evaluation of the inverse Laplace transform using the for-
mula (2.236) is often complicated; however, sometime it gives useful in-
formation on the behaviour of the unknown original f(¢) which we look
for.

The Laplace transform of the convolution

¢ t
fiy w90y = [ (= yg(rydr = [ fr)gtt = r)dr (2.237)
0 0
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of the two functions f(t) and g{t), which are equal to zero for ¢ < 0, is
equal to the product of the Laplace transform of those function:

L{f(t)* g(t); s} = F(s) G(s) (2.238)

under the assumption that both F(s) and G(s) exist. We will use
the property (2.238) for the evaluation of the Laplace transform of the
Riemann-Liouville fractional integral.

Another useful property which we need is the formula for the Laplace
transform of the derivative of an integer order n of the function f(t):

n—1 n—1
L{fi(t); s} = s"F(s) = 3 s F 1 pB(0) = snF(s) = > sk E71(0),
k=0 k=0

(2.239)
which can be obtained from the definition (2.235) by integrating by parts
under the assumption that the corresponding integrals exist.

In the following sections on the Laplace transforms of fractional
derivatives we consider the lower terminal a = 0.

2.8.2 Laplace Transform of the Riemann-Liouville
Fractional Derivative

We will start with the Laplace transform of the Riemann-Liouville and
Grinwald-Letnikov fractional integral of order p > 0 defined by (2.88),
which we can write as a convolution of the functions g(t) = #~! and

ft):

1
oD (1) =0 DAY = s [ (6= = 7 e fn) (2:240)
0

The Laplace transform of the function t#~ ! is [62]

G(s) = L{t"™1 s} =T (p)s 7. (2.241)

Therefore, using the formula for the Laplace transform of the convo-
lution (2.238) we obtain the Laplace transform of the Riemann-Liouville
and the Grilnwald~Letnikov fractional integral:

L{oD;Pf(t); sy = L{oD; P £(£); 5} = s PE(s). (2.242)
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Now let us turn to the evaluation of the Laplace transform of the
Riemann--Liouville fractional derivative, which for this purpose we write
in the form:

DY f(t) = g™(t), (2:243)

o) = oD P (s [=ry par (2200

0
(n—1<p<n).

The use of the formula for the Laplace transform of an integer-order
derivative (2.239) leads to

L{oD?f(t); s} = s"G(s Zé g E=1 ). (2.245)

The Laplace transform of the function g(t) is evaluated by (2.242):
G(s) = s~ PIP(s). (2.246)

Additionally, from the definition of the Riemann-Liouville fractional
derivative (2.103) it follows that

dn ~k—1 _ o
g™ () = Tt 0D (=P ¢ty = o DP R £ (). (2.247)

Substituting (2.246) and (2.247) into (2.245) we obtain the follow-
ing final expression for the Laplace transform of the Riemann- Liouville
fractional derivative of order p > O:

L{oDVf(t); s} = s"F(s) Z [ Dy k-ly (t)L_U. (2.248)

(n—1<p<n).

This Laplace transform of the Riemann- Liouville fractional deriva-
tive is well known (see, for example, [179] or [153]). However, its practical
applicability is limited by the absense of the physical interpretation of
the limit values of fractional derivatives at the lower terminal £ = 0. At
the time of writing, such an interpretation is not known.
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2.8.3 Laplace Transform of the Caputo Derivative

To establish the Laplace transform formula for the Caputo fractional
derivative let us write the Caputo derivative (2.138) in the form:

§DPF(t) = oD; "), g(t) = F), (2.249)

(n—1<p<mn). (2.250)

Using the formula (2.242) for the Laplace transform of the Riemann-
Liouville fractional integral gives

L{§DYf(t); s} = s~ P)G(s), (2.251)

where, according to (2.239),

n~—1
G( _ .SnF Z g —k— ] ) _ énF(S> . Z Skf(”_k_l)(()).
k=0 k=0

(2.252)
Introducing (2.252) into (2.251) we arrive at the Laplace transform
formula for the Caputo fractional derivative:

-1
L{SDIf(t)} = sPF(s) = 3 2% 1 00y, (2.253)
k=0

(n—1<p<n).

Since this formula for the Laplace transform of the Caputo derivative
involves the values of the function f(¢) and its derivatives at the lower
terminal ¢ = (), for which a certain physical interpretation exists (for
example, f(0) is the initial position, f/(0) is the initial velocity, f”(0) is
the initial acceleration), we can expect that it can be useful for solving
applied problems leading to linear fractional differential equations with
constant coeflicients with accompanying initial conditions in traditional
form.

2.8.4 Laplace Transform of the Griinwald-Letnikov
Fractional Derivative

First let us consider the case of 0 < p < 1, when the Griinwald-Letnikov
fractional derivative (2.54) with the lower terminal @ = 0 of the function
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f(t), which is bounded at ¢ = 0, can be written in the following form:

FOEr

L

l_p)/z—T P fl(r)dr (2.254)

Using the Laplace transform of the power function (2.241), the for-
mula for the Laplace transform of the convolution (2.238) and the Laplace
transform of the integer-order derivative (2.239) we obtain:

L{oDif(1); s} = {1(?1)» + 11 5 (sF() = £(0) =" F(s). - (2:265)

An example of an application of the formula (2.255) is given in [75].

The Laplace transform of the Griinwald--Letnikov fractional deriva-
tive of order p > 1 does not exist in the classical sense, because in such a
case we have non-integrable functions in the sum in the formula (2.54).
The Laplace transforms of such functions are given by divergent integrals.
However, the Laplace tranform of the power function (2.241) allows an-
alytic continuation with respect to the parameter p. This approach is
equivalent to the generalized functions (distributions) approach [76]. Di-
vergent integrals in such a sense are called finite-part integrals. In this
way, assuming that m < p < m + 1, and using the Laplace transform
of the power function (2.241), the formula for the Laplace transform of
the convolution (2.238) and the Laplace transform of the integer-order
derivative (2.239), we obtain:

t—p+k
L{oDlf(t); s} = *)1(0)L ——s
(oD} F(2); 5) AZOf L )
t‘mﬁ'p )
j 7 P — (m+1) £): s
pEAS e VI AR UIEL
= fR)s !
k=0
+Sp—m~l( m+1], Z f(k) $Tm- k)
k=0
= sPF(s). (2.256)

We arrived at the same formula as (2.255).
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In applications it is necessary to keep in mind that the formnula (2.256)
holds in the classical sense only for 0 < p < 1; for p > 1 it holds
in the sense of generalized functions (distributions) and, thercfore, the
formulation of an applied problem must also be done using the language
of generalized functions, as well as interpretation of the results obtained
in this way.

2.8.5 Laplace Transform of the Miller-Ross
Sequential Fractional Derivative

Let us introduce the following notation for the Miller-Ross sequential
derivative:

a O Ay — 1 a1, ~
DI = D DI DY (2.257)

Tm—1 __ Gy —1 (a7 ] oy, e
DI = Dol Dot D (2.258)
m

Om =D _ 0y, D<a; <1, (j=12,...,m).
7=1

il

We can establish the following formula for the Laplace transform of
the sequential derivative (2.257):

m—1

{00503 5} = smp) 5 s [+

k=0

t=0"

(2.259)
U,,._k'l — (YI*‘C-_] Fyn—k-—1 (8]

aDy’ = D" oDy e DY

(k=0,1,...,m—1).

The particular case of (2.259) for f(t) m-times differentiable, a,, = pu,

o =1, (k=1,2,...,m — 1) was obtained by Caputo [24, p. 41] much
earlier. Taking ) = p, g = 1, (k = 2,3,...,m) leads under obvious

assumptions to the classical formula (2.248).

To prove the formula (2.259) let us first recall the Laplace transform
formula for the Riemann-Liouville fractional derivative (2.248), which
in the case of 0 < o < 1 takes the form:

(2.260)

LLoDY f(0): s} = 4 Fs) = [oD27 (0]

and then use the formula (2.260) subsequently m times:

L{ oD f(1); -5‘} = L{UD?'” oDy (1) "}
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= P”'”L{ oDy f (1) ""}

- fonetoprsc]
P L D7 F (1) s - oD ()
= ptm o "‘IL{ U'Df”"zf(f); S}

e oD W]

— [U’Df'" ‘l-f(f’);]h;o

1l

t=0

= () = 3 sk [ D )]

t=0"

2.9 Fourier Transforms
of Fractional Derivatives

2.9.1 Basic Facts on the Fourier Transform

The exponential Fourier transform of a continuous function h(¢) abso-
lutely integrable in (—oc, o) is defined by

FAh(t); w} = / e“th(t)dt, (2.261)

-

and the original 2(t) can be restored from its Fourier transform H,.(t)
with the help of the inverse Fourier transform:

1 T Y ,—twt g 2 96
Mty = 5- / Ho(w)e ™ du. (2.262)

As above, we will denote originals by lowercase letters, and their
transforms by uppcercase letters.

The Fourier transform of the convolution

h(t) = g(t) = / hit — T)g(r)dr = / h{T)g(t — 7)dr (2.263)

-2 -2
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of the two functions h(t) and g(t), which are defined in (—oc, o0), is
equal to the product of their Fourier transforms:

F{h(t) * g(t); w} = He(w) Ge(w) (2.264)

under the assumption that both H.(w) and Ge(w) exist. We will use
the property (2.264) for the evaluation of the Fourier transforms of the
Riemann-Liouville fractional integral and Fourier transforms of frac-
tional derivatives.

Another useful property of the Fourier transform, which is frequently
used in solving applied problems, is the Fourier transform of derivatives
of h(t). Namely, if h(t), K'(t), ..., h"=1(t) vanish for t — oo, then
the Fourier transform of the n-th derivative of h(t) is

FAR™(1); w} = (—iw)" Hy(w). (2.265)

The Fourier transform is a powerful tool for frequency domain anal-
ysis of linear dynamical systems.

2.9.2 Fourier Transform of Fractional Integrals

First we will evaluate the Fourier transform of the Riemann-Liouville

fractional integral with the lower terminal @ = —oo0, i.e. of
1 t’
—ocDy “g(t) = F—(&S / (t — )2 Yg(r)dr, (2.266)
—00

where we assume 0 < o < 1.
Let us start with the Laplace transform of the function

tn—]

h(t) = (o)

(see formula (2.241)), which can be written as

FL“ t*le stdt = 57, (2.267)

0\8
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Let us take s = —iw, where w is real. It follows from the Dirichlet
theorem [68, p. 564] that in such a case the integral (2.267) converges if
0 < a < 1. Therefore, we immediately obtain the Fourier transform of
the function

!
hy(t) = { (&)’ (t>0)
0, (t<0)
in the form
Fohe (6 w} = (=) ™ (2.268)

Now we can find the Fourier transform of the Riemann-Liouville
fractional integral (2.266), which can be written as a convolution (2.263)
of the functions hy(t) and g(¢):

DS () = ha(t) % g(2). (2.269)

Using the rule (2.264) we obtain:
Fo{-ocDi g(t): w} = (iw) "G(w), (2.270)

where G(w) is the Fourier transform of the function g(t).

The formula (2.270) gives also the Fourier transform of the Griin-
wald -Letnikov fractional integral _ .. D; ®g(t) and the Caputo fractional
integral _D;“g(t), because in this case they coincide with the Riem-
ann -Liouville fractional integral.

2.9.3 Fourier Transform of Fractional Derivatives

Let us now evaluate the Fourier transform of fractional derivatives.

Considering the lower terminal ¢ = —oc and requiring the resonable
behaviour of g(t) and its derivatives for t — —oo we can perform integra-
tion by parts and write the Riemann Liouville, the Griinwald-Letnikov
and the Caputo definition in the same form:

wooD‘ty(](t) (n) )
oo Dig(t) = / +1 — D), (2.271)
Coggnf T “> (= T)“ "

(n—1<a<n).

The Fourier transform of (2.271) with the usc of the Fourier trans-
form of the Riemann-Liouville fractional integral (2.270) and then the
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Fourier transform of an integer-order derivative (2.265) gives the fol-
lowing formula for the exponential Fourier transform of the Riemann-
Liouville, Grinwald-Letnikov and Caputo fractional derivatives with the
lower terminal a = —oc:

F D?g(t); w} = (—iw)* " F. { g™ (t); w}

(
(w)* T (~iw)"G(w)
(—iw)*G{w), (2.272)

fi

where the symbol D® denotes any of the mentioned fractional differ-
entiations (Riemann-Liouville _o,D§, Grinwald-Letnikov _. Dfg(t) or
Caputo _ S D¢g(t)).

The Fourier transform of fractional derivatives has been used, for
example, by H. Beyer and S. Kempfle [19] for analysing the oscillation
equation with a fractional-order damping term:

¥ (1) + a —x Diry(t) + by(t) = f(2), (2.273)
by S. Kempfle and L. Gaul [115] for constructing global solutions of linear
fractional differential equations with constant coeflicients, and implicitly

by R. R. Nigmatullin and Ya. E. Ryabov [166] for studying relaxation
processes in insulators.

2.10 Mellin Transforms
of Fractional Derivatives

2.10.1 Basic Facts on the Mellin Transform

The Mellin integral transform F(s) of a function f(t), which is defined
in the interval (0, oc) is

F(s) = f)r1d (2.274)
1=

where s is complex, such as

7 < ]B((") < 9.
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Y 100
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[l 5 o3

Figure 2.2: The Bromuwich (Br) and the Hankel (Ha) contours.

The Mellin transform (2.274) exists if the function f(t) is piecewise
continuous in every closed interval [a, b] C (0, oo) and

1

/lf(t)w”‘dt < 5, / ()12 dl < o0, (2.275)
{ 1

0

If the function f(#) also satisfies the Dirichlet conditions in every
closed interval [a, b] C (0, oc), then the function f(t) can be restored

using the inverse Mellin transform formula

F+i0G
1
f) = 5 / F(s)t™*ds, (0<t< o0), (2.276)
.

™

in which 47 < v < 79. The integration contour in (2.276) is the Bromwich
contour (contour Br in Fig. 2.2).

It follows from the definition (2.274) that

M f(): s} = M{F(); s+ o} = Fs +a). (2.277)

The Mellin transform of the Mellin convolution

s ¥)

F#) 5 9t) = [ fer)giryar (2.278)
0
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of functions f(t) and g(¢), the Mellin transforms of which are F(s) and
G(s), is given by the formula (see, for example, [249]):

M / Fer)g(r)drs s} = F(s)G(1 - s), (2.279)
0
and combining (2.277) and (2.279) gives

M{t’\/ ™ f(tT)g(T)dr; S} =F(s+A)G(1 — s~ A+ p). (2.280)
0

Integrating repeatedly by parts, we have the following relationship
for the Mellin transform of an integer-order derivative:

oo}

M{5P); s} :/f(")(t) £ 1t

0
= [f0 Dty 1}0 (s—l)]of("”l)(t)ts‘th
0
- [f(” D) ] = (s = pM{F V@) s -1}

H

Z( )k I'(s) {(n—k—l)(t)ts_kvl]gc

(s — k) 0
+ ('Un%l’(s ~n)
* E(-F](%ijj::)‘n“)f"(s—n) (2.281)

where F(s) is the Mellin transform of f(t).
If f(t) and Re(s) are such that all substitutions of the limits ¢ = 0
and t = oo give zero, then the formula (2.281) takes the simplest form:

M{f(n)(t); S} ﬂ%(f%j_)ll_).}?(s n). (2.282)
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2.10.2 Mellin Transform of the Riemann—-Liouville
Fractional Integrals

Let us evaluate the Mcllin transform of the Riemann- Liouville fractional
integral oD, “ f(t), (o > 0). Using the substitution 7 = t£ we can write

WDP(0) = o [
0
1
B pex et
- !(1 €)1 (t8)de
7
S o G (2.283)

0
where -l <i<)
—_ e , <t <
9lt) = { 0, (t>1).

The Mellin transform of the function g(#) gives simply the Euler beta
function (1.20),

M{Q(t); s} = B(a, s) = ’I;:((aa)*‘i—(;)z

Then using the formulas (2.280), (2.283), and (2.284), we obtain:

(2.284)

M{ oD f(t); s} = F—(I(EF(s-F(r)B(a, 1—5—a),

Ml oD s0) 5} = 2= Pl o), (2.255)

where F(s) is the Mellin transform of the function f(¢).
The obtained formula (2.285) reminds us of the particular case of
the Mellin transform of the n-th derivative of f(t) (2.282), which can be

formally obtained from (2.285) by putting o = ~n.

or

2.10.3 Mellin Transform of the Riemann—Liouville
Fractional Derivative

Let us take 0 < n —1 < a < n. According to the definition of the
Riemann-Liouville fractional derivative, we can write
d" -
oDFF(8) = S oD VS (@).
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Temporarily denoting g(t) = oD, (m ‘a)f(t), and using formulas (2.281)
and (2.285), we have:
i

/M{ oDy f(t); S} :M{ oDy f(); } ——J\/l{ (n) }

den

n—1
_ r(l — s+ l‘) (n-k=1) s—k=1]>
=3 “raoa W oe ]

k=0
Fl—-s+mn) |
—f—(l——?)—(;(s 72)
n—1 1 n—k—1 o
| 1‘—5+]‘\) d (Y TL P —k—1
_Z o ()D? nf(t)t.s :
& T s [ deE 0
JrF(l —s+n) (1= (s—n)—(n—aw)
I'(1—-s) F'l—(s—n))
x F((s —n)+(n—a)), (2.286)
or
n-1
x R S F(]‘ — s+ k) a—k—1 s—hk—117¢
M{(}th(i)» b}*éﬂﬁ{ﬂ@ ft)t }0
I'l—-s+a) .

8§ — ). .2

(= s) F(s — a) (2.287)
If 0 < o < 1, then (2.287) takes on the form:
o el — —1 511 1\(1 - S+(,Y) (<

M{ (]Dt f(t), .S} = [()D, f(t)f/ L) + _—F—(I_‘::j— F(S - (1).

(2.288)

If the function f(t) and Re(s) are such that all substitutions of the
limits t = 0 and t = oo in the formula (2.287) give zero, then it takes on
the simplest form:

M{ oDf f(); s} = —~——:'—~T;~~~—' F(s — a). (2.289)

2.10.4 Mellin Transform of the Caputo
Fractional Derivative

Let us take 0 < n—1 < a < n. Temporarily denoting h(t) = £ (t) and
using the formulas (2.285) and (2.281), we have:

m{§op(y: s} = mfon, 10 5}
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= M{ UD,,-(n—“)h(t); s}

1l=s—(n- O‘)H(S + (n—a))

ra-—s)
T(l-s-n+a)
B (1l —s)

nn—1
r(l - (5 +n - O‘) + A) (n—kﬁ]) (s+n—a)—k-1]7
x{kz“(‘) M(l—-(s+n—a)) { (1) }0

(- (s+n—a)+n) }
F 'V‘ - - TL
N F(.‘:’+n—~a_n) ((5+7l (1) n)

X—: 1 — 8§ =1+ o+ 'Z') ‘:f(n—k-—l)(t) L,s+n—(y-k—]i|0¢

(1 —s) 0
'l —s—a)
—_— L F(s — .290
+ T =) (s —a) (2.290)
or
n—1
[(a—m—s)
C' L) g b = (I\)fs -a-+k
M{EDEI0: o} =X Zpy K I
INQ ).
—F (s — «). 2.291
+ T =5 (s —a) (2.291)
For 0 < o < 1 the formula (2.291) takes on the form:
I'(ex — ) o I'(l—s+aq)
ry 5 85X Fi(s — .
M{TDES (W) 5} = T(- )[’c()t o * Ty ‘W
(2.292)

If the function f(t) and Re(s) are such that all substitutions of the
limits £ = 0 and ¢ = oo in the formula (2.291) give zero, then it takes on
the simplest form:

I'(l—s+a)

M{ STD;"f(t); 5} = T =) F(s — ). (2.293)

2.10.5 Mellin Transform of the Miller-Ross
Fractional Derivative

Let us recall the following notation for the Miller-Ross sequential frac-
tional derivative defined by (2.257):

_ oy 1
aDa "= aD?m rth T aD;_”;
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angw] = aD?mw] (LD?MV Yo QD?IQ
(fmzz%, 0<a, <1, (j=1,2,...,m)

Let us start with m = 2. Temporarily denoting ¢(t) = ()D?(t) and
using the formula (2.287), we have:

M{UDE’”f(t); S} = M{oDE’QQ(t): S}

Y oo I'(1—8s+ ag)
xy 1 s—1 s '
= {DDt f ]O + 1 ) G(b QQ)

- o si0e |
l~ 9’+(x2){

0

{ a] 1 ts g — 1]
0
+

r(l“'(b‘“OQ) )(11) F((S—‘(Xz)—‘ﬂl)}

(1 - (s— )
[OD(U lf(t)ts 1:[
(1~ s+ a)
r(1-—s)
I'(1 - s+ o02)
I'(l-s)

0

j: ’Dfl ] (1‘) ts-—ag—lJ:)
F(S — 0'2). (2294)

It can be shown by induction that in the general case the Mellin trans-
form of the Miller-Ross sequential fractional derivative is given by the
following expression:

M{ OD?"f(t)§ -9} = i L1 —s+on—0n) {O'D”k lf( )ts—rrn+rrk—1}ooc

Pt r(1-s)
(1 - (1 si;m Fs - on). (2.295)

If the function f(t) and Re(s) are such that all substitutions of the
limits ¢ = 0 and ¢ = oo in the formula (2.295) give zero, then it takes on
the simplest form:

(1 - s+o0,)
Tn N - y )
M{oDF" f(t); s} = Fo Fls—om). (2.296)
which is the same as expressions (2.287) and (2.291) for the Riemann—
Liouville derivative and the Caputo derivative. Therefore, for functions



2.10. MELLIN TRANSFORMS OF FRACT. DERIVATIVES 119

with suitable behaviour for ¢ — 0 and ¢ — oo the Mellin transform
of the Riemann-Liouville, Caputo, and Miller-Ross {ractional derivative
may coincide. This is similar to what we also observe in the case of the
Laplace and Fourier transforms.

Under the conditions of coincidence, using of (2.277) gives

M{t“D"f(t); s}z Hp(s), (2.297)
and
¢ a+k mya+k R 5 s = ak
Mm{ g::(]akt DR f(1); 5} F(s)L(1 )k};} iR —
n k~1

I'(s)I'(1—s .
:_f%f(;*_‘a% S o(=DFax [[(s+a+1),

k=0 7=0
(2.298)

where D® denotes the Riemann-Liouville, or Caputo, or Miller-Ross
fractional derivative.
In particular, we have

M{ta‘?'lD(’+lf(t) + taDaf(t); 3}: F(lr‘}]‘s)_(ls__‘s(;)— (Y)

F(s), (2.299)
and putting « = 1 gives the well-known property of the Mellin transform:
M{tQ £t + tf(b); s}= s2F(s), (2.300)

which is often used in applied problems.



This Page Intentionally Left Blank



Chapter 3

Existence and Uniqueness
Theorems

In this chapter we consider the question of the existence and uniqueness
of solutions of initial-value problems for fractional-order differential equa-
tions. All the results are given for equations in terms of the Miller-Ross
sequential fractional derivatives. This allows direct application of the
obtained results to fractional differential cquations with the Riemann -
Liouville, the Griinwald Letnikov, and the Caputo fractional derivatives,
which can be considered as particular cases of the Miller-Ross sequential
fractional derivative.

First we consider the case of lincar fractional differential equations
with continuous coeflicients and prove the existence and uniqueness the-
orems for a one-term fractional differential equation and for the n-term
fractional differential equation.

Then we give the existence and uniqueness theorem for a general
fractional differential equation of general forin. We also demonstrate on
examples that the method of the proof can sometimes be used directly as
a method of solution of initial-value problems for fractional differential
equations.

Finally, we study the dependence of solutions of a fractional differen-
tial equation of a general form on initial conditions and show that small
changes of initial conditions may cause only small changes of solution in
the intervals not containing the starting point of the interval (the lower
terminal of fractional derivatives appearing in the considered equation).

121
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3.1 Linear Fractional Differential Equations

In this section the existence and uniqueness of solutions of initial-value
problems for linear fractional differential equations with sequential de-
rivatives are discussed.

Let us consider the following initial-value problem:

n-—1
oDy () + Y pi(t) oDy " y(t) + pa(Dy(t) = £(1), (3.1)
J=1
0<t<T < x)
[Oka‘ly(t)L:O =b,, k=1,...,,n, (3.2)

where

Th o X g g1 g,
oD% = D D1 DM

or—~1 __ ag -1 ey

oDPF T = DT Dy L DY
k

okzz:aj, (k=1,2,...,n);
=1

0<ao; <1, (1=1,2,...,n),
and f(t) € L1(0, T), i.e.

r

/ F(0)|dt < oc.

0

For simplicity of notation, in the following we assume f(¢) =0 for ¢t > 7'
As the first step, let us consider the case of px(£) =0, (k=1, ..., n).

THEOREM 3.1 o If f(t) € L1(0, T), then the equation
oD y(t) = (1) (3.3)

has the unique solution y(t) € L1(0, T), which satisfies the initial condi-
tions (3.2) e
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Proof. Let us construct a solution of the considered problem. Appli-
cation of the Laplace transform formula of a sequential fractional deriva-
tive (2.259) to equation (3.3) gives

n—1

S (ORD SR E LA 0]

k=0

= Fs), (3.4)

where Y (s) and F(s) denote the Laplace transforms of y(¢) and f (t).
Using the initial conditions (3.2), we can write

n—1

Y(s) =s"""F(s) + > by_gs 7"k, (3.5)
k=0

and the inverse Laplace transform gives

n—1

t
Wt = = [e= (rar+ 3 et
0

busk o1 (36)

1(7) F( On— k) ,

or, putting ¢ = n — k,

t

y(f) — = (];- (t_T)U,L—lf(T)(lT+§%.tU,~1_ (37)

n 2 (71)
Using the rule for the Riemann -Liouville fractional differentiation of
the power function (2.117), and taking into account that

1
= m=20,1,2
T(m) 0, m
we easily obtain that
$01 0k 1 (k )
gl m—): <1
DIk = ' k 3.8
(1227 (F(O’Z)) ( )
0, (k=)
( t(‘ll' Tl ]
<1
I'(1+4 0, — o) (k<)
foz"l
oDyE = , 3.
(I‘(m)) 1 (k=) 59
\ 0, (k > L)
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where k=1,2,...,n,andi=1,2,...,n

It follows from (3.7) that y(t) € L1(0, T'). Using (3.8) and (3.9), the
direct substitution of the function y(t) defined by the expression (3.7) in
the equation (3.3) and initial conditions (3.2) shows that y(t) satisfies
them, and therefore, the existence of the solution is proved.

The uniquencss follows from the linearity of fractional differentiation
and the properties of the Laplace transform. Indeed, if there exist two
solutions, y;(t) and y2(t), of the considered problem, then the function
z(#) = y1(t) — yo(t) must satisfy the equation ¢Dy"z(t) = 0 and the zcro
initial conditions. Then the Laplace transform of z(¢) is Z(s) = 0, and
therefore z(t) = 0 alimost everywhere in the considered interval, which
proves that the solution in Li(0, T') is unique.

Now we can prove the cxistence and uniqueness of the solution of the
problem (3.1)-(3.2).

THEOREM 3.2 o If f(t) € L1(0, T), and p,(t) (j =1, ..., n) are contin-
uous functions in the closed interval [0, T, then the mz,tzal~'1;a1uc problem
(3.1)-(3.2) has a unique solution y(t) € L1(0,T) o

Proof. The method of proof of this theorem uses the basic idea found
in the paper by M. M. Dzhrbashyan and A. B. Nersesyan [50].
Let us assume that the problem (3.1)-(3.2) has a solution y(t), and
denote
oD y(t) = (1) (3.10)
Using Theorem 3.1 we can write

L o, —1

)7 o(t) dt + Zb, . (3.11)

7

072 0 i=1

Substituting (3.11) into equation (3.1) written in the form

re—1

oD7y(t) + D puk(t) 0D y(L) + pu(t)y(t) = F(1),
k=1

and using (3.8), we obtain the Volterra integral equation of the second
kind for the function o(t):

t
ot + [ Kt ) olr)dt = (o) (3.12)
4]
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where
_ —1 S|
(t — T)Un 1 n (t — T)(Tn Ok
Kit,7)=p,(t)——————+ ) ppp(l)——F———
n(t) I(on) AZ::I " ) (o, —ox)
n—1 40—k~ 1
g(t) = pn Z bl Z Prn-—k 7‘) Z bl
=1 k1 oy Tloi=ow)
Since the functions p,(¢) (j = 1, ..., n) are continuous in [0, T]. then

the keruel K (t,7) can be written in the form of a weakly singular kernel

K*(t, 1) ‘
Kitr)= ——"—, 3.13
(t.7) = T (3.13)
where K*(f,7) is contimous for 0 <t <T, 0<7<T, and
po=min{on,, 0n — Oyt On = T2y .. 0y — 01, } = min{o,, ay}.
Similarly, g(t) can be written in the form
g*(t) .
9lt) = S (3.14)

where ¢g*(t) is continuous in [0, T, and

v=min{oy, ..., 0p; G2 — 01, ..., Oy — Ot
O3 — 02, ooy Ty — 025 -} Op— Op1}
=min{oy, ..., opiqa, ..., Gn} =min{ar, oo, .., anl.

Obviously, 0 < g < 1, 0 < v < L. 1t is known (for example, [220})
that the equation (3.12) with the weakly singular kernel (3.13) and the
right-hand side g(t) € L1(0, T) has a unique solution ¢(t) € L1(0, T').
Then, according to Theorem 3.1, the unique solution y(t) € L1(0, T') of
the problem (3.10), (3.2), which is at the same time the solution of the

ends the proof of Theorem 3.2.

In many applied problems, which are considered in this book, the zero
initial conditions on the function y(¢) and its integer-order derivatives
are used. There are three main reasons for this:

e our physical interpretation of fractional derivatives (sce Section
2.6), from which it follows that zero initial conditions mean the
absolute beginning of the process represented by the function y(t),
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e difficulties with numerical approximation of initial conditions of
the type (3.2),

e the coincidence of the Riemann-Liouville, Griinwald-Letnikov, Ca-
puto, and Miller-Ross derivative in the case of a proper number
of zero initial conditions on the function y(t) and its integer-order
derivatives; this coincidence prevents misinterpretation of the prob-
lem formulation and solution.

Because of this, we consider this particular case of Theorem 3.2 sep-
arately.
Let us suppose that m — 1 < o, < m, and that

y9(0) =0, G=0,1,...,m—1). (3.15)

In such a case, using the composition rule for the Riemann-Liouville
derivatives (see Section 2.3.6), we can replace all sequential fractional
derivatives in equation (3.1) by the Riemann-Liouville fractional deriv-
atives of the same order oy, which gives:

n—1
oD y(t) + Y pi(8) oDy y(t) + pal(t)y(t) = f(2). (3.16)
j=1

Recalling Section 2.3.7, we note that it follows from the zero initial
conditions (3.15) that all the conditions (3.2) are zero, i.e., b = 0,
k=1,2,...,n. Moreover, f(t) can be taken to be continuous, and the
following statement holds:

THEOREM 3.3 o If f(t) and p;(t) (j =1, ..., n) are continuous func-
tions in the closed interval [0, T, then the initial-value problem (3.16),
(3.15), where m — 1 < g, <m, 0y > 0p_1 > Op_2 > ... > 09 > 01 > (),
has a unique solution y(t), which is continuous in [0, T] e

3.2 Fractional Differential Equation
of a General Form

Besides linear fractional differential equations, non-linear equations also
appear in applications. Because of this, in this section we discuss the
existence and uniqueness of a solution of an initial-value problem for
the fractional differential equation of a general form in terms of the
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Miller-Ross sequential fractional derivatives. Due to the link between

the Caputo fractional derivatives, the results given below can be used
for all these mutations of fractional differentiation.
Let us consider the initial-value problem

oDy y(t) = f(ty), (3.17)

[Py _ = k=1.m, (3.18)

f==
where, as in the previous section,
Tk — e73 QX —1 Qai,
D = oDy LDy DY

or—1 ap—1 Op oy,
aDt = aDt aDt PR aDt )

k
Uk=204;, (k=1,2,...,n);
1=1

0<ao; <1, (J=12,...,n).

Let us suppose that f(t,y) is defined in a domain G of a plane (t,y),
and define a region R(h,K) C G as a set of points (t,y) € G, which
satisfy the following inequalities:

n 71—

0<t<h, 0yt — ) b
y(t) — > (o)

i=1

<K, (3.19)

where h and K are constant.

THEOREM 3.4 o Let f(t,y) be a real-valued continuous function, defined
in the domain G, satisfying in G the Lipschitz condition with respect to
Y, t.e.,

Lf(ty) = f(t oyl < Al — g2l

such that
Ift, )] <M< for all (t.y) € G.
Let also "
Mha'n_al
K>
— I'(1+on)

Then there exists in the region R(h, K) a unique and continuous so-
lution y(t) of the problem (3.17)-(3.18) ®
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Proof. The method of proof of this theorem is based on the ideas due
to E. Pitcher and W. E. Sewell [188] and M. A. Al-Bassam [4].

First, let us reduce the problem (3.17)-(3.18) to an equivalent frac-
tional integral equation.

Using the formula (3.7), or performing subsequently the fractional
integration of order o, ®n—1, ..., a1 with the help of the composition
rule (2.108), we obtain

— )7 y(7)) dT (3.20)

We sce that if y(¢) satisfies (3.17)-(3.18), then it also satisfies the
equation (3.20).

On the other hand, if y(t) is a solution of (3.20), then applying to
(3.20) the sequential fractional derivative operator ¢D{" and the for-
mula (3.8) we obtain for y(t) the fractional differential equation (3.17).
The use of (3.9) shows that if y(t) satisfies (3.20), then it satisfies the
conditions (3.18). Therefore, the equation (3.20) is equivalent to the
initial-value problem (3.17)-(3.18).

Now let us define the sequence of functions yo(t), yi(t), y2(t), ..., by
the following relationships:

n
1 (J' w1 Q¢
: 21
Zrm (3:21)
1==1
T b 1 t.
n(t) = L (- / t— 7)ol Y1 (T dr, (3.22
() = 3 st gy [ DT () dr (322
1=l 0
m=123,...

We will show that rr%Lu;C ym () exists and gives the required solution
y(t) of the equation (3.20).

First, it can be shown by induction that for 0 < t < h we have
Y (t) € R(h, K) for all m. Indeed,
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to'z -0t i

O-TI

tl - t
/t—T”" lf(‘r Ym—1(7))dT
0

Mpon=n+l A fpon=ait]
< < K, 3.23
ST xey = T4a) = (3.23)

and for the same rcasons we have the same inequality for y;(1):
} n t(Tl -0y

}tl—ﬂlyl(t) - Zbl o)

=1

MAhon=01 +1
|7 T(l+o0n)

Further, it can be shown by induction that for all m

MA™T ltma,.

mA\l) — Ym— = T N 3.2
o (®) =101 < T (3:21)
Indeed, using (3.23), we have for m = 1:
Mo
t) — 1 —_— 0<t<h). 3.25
B~ 0l < frys 0<t<h) (3.26)
Let us suppose that
M AT 2f m—1)on
m—1{t) — Ym- 0<t<h). 3.2
Ym—1(t) = ym-2(t)] < T T (m = 1j0,)’ i ( ) (3.26)

Then, using (3.22) and (3.26), and recalling the Riemann-Liouville
fractional derivative of the power function (2.117), we have

t
) = ()] € 35 ! (¢ =7 g1 () ~ ()l

t

/(f . T)on—lT(m—J)andT

0

MA™! 1
~ 1+ (m-1)o,) T'(o,)

’\/]Am_l .
_ i ’ (]D;a,lt(m— oy
(1 + (m - 1)ay,)

B MA™ 1 (1 + (m — 1)o,)ttm-Dowton
T4 (m—1Da,) T+ (m—1)o, + o)
A AT 1tmnn

_ _ 3.27
F(l -+ moy,) ( )
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This means that (3.24) holds for all m.
Now let us consider the series

v = lm (ua® - 00(0) = () -5 (®). (3.25)

m—
J=1

According to the estimate (3.24), for 0 < ¢ < h the absolute value of
its terms is less than the corresponding terms of the convergent numeric
series

MAJ 1hlf’n M .
WS A M) e

where E) ,(z) is the Mittag-Leffler function (see Section 1.2). This means
that the series (3.28) converges uniformly. Obviously, each term (yj (t)—

yj_l(t)) of the series (3.28) is a continuous function of ¢ for 0 < t < h.

Therefore, the sum of the series (3.28), y*(¢), is a continuous function
for 0 <t < h, and

u(t) = lim_ym(t) = wo(t) +y7(0)

is a continuous function for 0 < t < h.

The uniform convergence of the sequence of y,,(t) allows us to take
m — oc in the relationship (3.22). This gives the equation (3.20), show-
ing that y(t), the limit function of the process defined by (3.21) and
(3.22), is the solution of (3.20).

Finally, let us prove the uniqueness of the solution. Let us suppose
that §(t) is another solution of the equation (3.20), which is continuous
in the interval 0 < £ < h. Then it follows from (3.20) that the function
z(t) = y(t) — g(t) satisfies the equation

2(t) = an) / (t — 7)1 f (7, 2(r))dr, (3.30)

from which it follows that 2(0) = 0. Therefore, 2(t) is continuous for
0 <t < h. Then |2(t)] < B for 0 <t < h, where B is constant, and we
obtain from the equation (3.30) that

ABto
< - —,
201 € 5y

(0 <t <h). (3.31)
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Repeating this estimates j times, we obtain

A7 BtIon
2(t)| £ ————, i=12 ... 3.32
201 < Try (3:32)
In the right-hand side we recognize — up to the constant multi-

plier B -— the general term of the series for the Mittag-Lefler function
E,.1(At?), and therefore for all ¢

. tion
1111 =
i=—oo ['(on)

Taking the limit of (3.32) as j — oo, we conclude that 2(¢) = 0, and
g(t) = y(t) for 0 <t < h. This ends the proof of Theorem 3.4.

3.3 Existence and Uniqueness Theorem
as a Method of Solution

In some cases, Theorem 3.4 can be used directly as a method for the
solution of fractional differential equations. We will illustrate this below
on two examples.

Example 3.1. Let us consider the initial-value problem in terms of
sequential fractional derivatives (the notation is the same as in Theorem
3.4):

oD y(t) = Ay(t) (3.33)

[DD?k—ly(t)]t,_O =b, k=1,...,,n (3.34)

In this case we have f(t,y) = A\y. In accordance with the proof of
Theorem 3.4, let us take

n e ~1

yo(t) = ) b o)’ (3.35)

t
Ym(t) = yo(t) + F(:\Tn) /(t - T)an_lym—l('r) dr
0

=yo(t) + A oDy " Ym-1(t), (3.36)

m=1,23,...
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Using (3.35) and (3.36), and applying the formula for the fractional
differentiation of the power function (2.117), we obtain:

-}
ni(t) =yo(t) + A oDy 7 {Zb' ;(Uz’)}

t(7u+(71_1

= I/()(f)-%*/\Zb; 1 _4—_5‘——).

Y2(t) = yolt) + A oDy Ty (1)
(,"n+0',—-1
=yo(t) + A oD {?/0 +Asz T }

On + U?)
{ontao—1 9 tonte 1
=ty + A b AL e
J’U( )+ Z + g’) + [Z:] F(2¢7n + (TZ)

)\k tkan +o,—1

Dok

= i Dlkon +0i)

and it can be shown by induction that

e /\A t}\Un +o,—1
, =1,2.3, ... 3.37
Jm Zb Z T AO’,I n 0_1) m . ( )

Taking the limit of (3.37) as m — oc. we obtain the solution of the
problem (3.33) (3.34):

y(t) = Zbl Z

i=1 k=0

)\A 1k(7n a1 n

=Y b0 t" Ty g, (M), (3.38)

(k071+01) =1

where E, 3(2) is the Mittag-Leffler function (see Section 1.2). In this par-
ticular example, the solution (3.38) can also be obtained by the Laplace
transforin method.

If n =1 and oy = 1, then the initial-value problem (3.33)-(3.34)
takes on the form

y'(t) = Ay(t), y(0) = by, (3.39)

and, taking into account the relationship (1.57). the formula (3.38) gives
the classical solution of the problem (3.39):

y(t) = b Eyg(At) = eM
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Example 3.2. [4] Let us consider the following initial-valuc problem
in terms of the Riemann-Liouville fractional derivatives:
() =y, [oDi 0] =0, (8.40)
where 0 < o < 1.
In this case f(t,y) = t*y. In accordance with the proof of Theorem
3.4, let us take

t(x—l
Yol(t)=1b i)’ (3.41)
a1 A
ym(l) = (o) F(a /(f — )" Ty () dT (3.42)
m:l;2, 3. ...

Using (3.35) and (3.36), and applying the formula for the fractional
differentiation of the power function (2.117), it can be shown by induction
that

2T Z(Y (dav) - - T(2ka) .
. t [ fa(2k+l )— 1
ym () = (x) + Z a) - -T(2ka+ )

m=1,23, ...

and taking the limit as m — oc gives the solution:

jam o 'UIF(Qja) ‘
+bY -——-————~Aﬂ - pr(Zh1)-1 (3.43)

3.4 Dependence of a Solution
on Initial Conditions

In this section we consider the changes in the solution which are caused
by small changes in initial conditions.
Let us introduce small changes in the initial conditions (3.18):

[OD;?;; 1;1/(1‘) = by + &y, k=1,....n, (3.44)

where d; (k= 1, ..., n) are arbitrary constants.
The following theorem is a generalization of Al-Bassam’s result [4].
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THEOREM 3.5 o Let the assumptions of Theorem 3.4 hold. If y(t) is a
solution of the equation (3.17) satisfying the initial conditions (3.18),
and §(t) is a solution of the same equations satisfying the initial condi-
tions (3.44), then for 0 <t < h the following holds:

ly(t) = (0] < D 16:1 177 B, 0, (AL]), (3.45)

i=1

where E,, 3(z) is the Mittag-Leffler function. e
Proof. In accordance with Theorem 3.4 we have:

y(t) = lim yn(t),

n to"._l
bi 3.46
Z )’ (3.46)
;!
ynl®) = w®) + s [ =7 () (347
I'(on) J
m=1,2,...,
and
g(t) = lim_gm(1),
n o1
Jot) = S (b + 6 ., 3.48)
in(®) = Do) + / (= 1) Gea ()T, (349)
m=1,2, ...
From (3.46) and (3.48) it directly follows that
f01~1
lyo(t) — 9o(t)| < Z (o) (3.50)

Using subsequently the relationships (3.47) and (3.49), the Lipschitz
condition for the function f(t,y), the inequality (3.50), and the rule for
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the Riemann-Liouville fractional differentiation of the power function
(2.117), we obtain:

1 101

20 m Gy

=1

1 (t) — 1 (t)| =

~

¥ Tlon) / (t = 1) {f(r,p0(7)) = F(r.d0(7))} dr

t

|
Z' 'Ll t( t) (A )/(t~T)UYL~1Iy()(T) “?)U(T)IdT

n tg,_l n TU,-I

<Y 10 Foy + 1 )/(f—T)""“‘ {Zxa,-,tm—)}dv
i=1 z n i—1 i
n o, —1 o,—1

<3161ty >+A°D%{Z‘5';( n}

i=1
i tm-l tan-ﬂn—l

=2 bl )+AZWF( P

1 Al\ tkan

Gl Ty
; [0 Z ¢« T(kon + a;)
Similarly, we have

0L~1 ?
ot T 0/ (t =) () — 1 (1)l dr

[y2(£) — ga(t) |<Zlél

t(ﬂ—l

< ZI 8l fr
o -1 Z<<7n~i—r1,~1
+A gD; " {Zmr( )+AZ|5|———WF( "+01)}
t(r,—l
Zl &l &
a,l+0', ~ f2¢7n+cr,~l
+AZM| +A221o|

2

Ak tka,,
— o, 1
DILITEn

(koy + 01)

oy + UL)
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and by induction

m Ak tkO'n

CRACIES WULD SR N L)

m=1,2,...
Taking the limit of (3.51) as m — oo, we obtain

oC Ak t’(dn

iy(t)—g<t>i<zialt“f12 Flhon Lo

- Z 0.t E,, 5 (A7),

i=1

which ends the proof of Theorem 3.5.

It follows from this theorem that for every € between 0 and h small
changes in initial conditions (3.18) cause only small changes of the solu-
tion in the closed interval [e, h] (which does not contain zero).

On the other hand, the solution may change significantly in [0, ¢]. In-
deed, if the non-disturbed initial conditions (3.18) are zero (i.e., b = 0,
k = 1,2,...,n), than the non-disturbed solution y(t) is continuous in
[0,¢], and thereforc bounded. However, the solution §(t), correspond-
ing to the disturbed initial conditions, may contain terms of the form
§;t771/T'(0;), which for o; < 1 will make the disturbed solution un-
bounded at t = 0.



Chapter 4

The Laplace Transform
Method

Differential equations of fractional order appear more and more fre-
quently in various research areas and engineering applications. An effec-
tive and easy-to-use method for solving such equatiouns is needed.

However, known methods have certain disadvantages. Methods, de-
scribed in detail in [179, 153, 13] for fractional differential equations of
rational order, do not work in the case of arbitrary real order. On the
other hand, there is an iteration method described in [232], which allows
solution of fractional differential equations of arbitrary real order but it
works eflectively only for relatively simple equations, as well as the series
method [179, 70]. Other authors (e.g. [13, 29]) used in their investiga-
tions the one-parameter Mittag-Leffler function E,(2) = Y 570, 1—(75—:—}—1—)
Still other authors (235, 80! prefer the Fox H-function [69], which seems
to be too general to be frequently used in applications.

Instead of this variety of different methods, we introduce here a
method which is free of these disadvantages and suitable for a wide
class of initial value problems for fractional differential equations. The
method uses the Laplace transform technique and is based on the formula
of the Laplace transform of the Mittag-LefHler function in two parame-
ters F, s(z). We hope that this method could be useful for obtaining
solutions of different applied problems appearing in physics, chemistry,
electrochemistry, engineering, cte.

This chapter deals with the solution of fractional linear differential
equations with constant coefficients.

In Section 4.1 we give solutions to some initial-value problems for

137
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“standard” fractional differential equations. Some of them were solved by
other authors earlier by other methods, and the comparison in such cases
just underlines the simplicity and the power of the Laplace transform
method.

In Section 4.2 we extend the proposed method for the case of so-called
“sequential” fractional differential equations, i.e. equations in terms of
the Miller-Ross sequential derivatives). For this purpose, we use the
Laplace transform for the Miller-Ross sequential fractional derivative
given by formula (2.259). The “sequential” analogues of the problems
solved in Section 4.1 are considered. Naturally, we arrive at solutions
which are different from those obtained in the Section 4.1.

The operational calculus, which can be applied to the fractional dif-
ferential equations considered in this chapter, has been developed in the
papers by Yu. F. Luchko and H. M. Srivastava [128], and by S. B. Hadid
and Yu. Luchko [100]. R. Gorenflo and Yu. Luchko also developed an
operational method for solving generalized Abel integral equations of the
second kind [86).

4.1 Standard Fractional Differential Equations

The following examples illustrate the use of (1.80) for solving fractional-
order differential equations with constant coeflicients. In this chapter
we use the classical formula for the Laplace transform of the fractional
derivative, as given, e.g., in {179, p. 134] or [153, p. 123]:

n—1

/ T GDEF(t) db = 57 F(s) = 3 8% [oDf F (1)) (4.1)
0

t=0"
k=0

(n—1<a<n).

4.1.1 Ordinary Linear Fractional Differential Equations

In this section we give some examples of the solution of ordinary linear
differential equations of fractional order.

Example 4.1. A slight generalization of an eguation solved in [179,
p. 157}

oD f0) +af) =0, (>0 [oD/"Prw)] =€ @2
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Applying the Laplace transform we obtain

C

F(S) = ————————31/2 n a’

C = [oD7 "1 (1)]

t=0

and the inverse transform with the help of (1.81) gives the solution of
(4.2):
f() = Ct7V2Ey 1 (~aV), (4.3)

Using the series expansion (1.56) of E, 5(t), it is casy to check that for
a = 1 the solution (4.3) is identical to the solution

ft) = C(\/% — elerfe(Vt)),

obtained in [179] in a more complex way.

Example 4.2. Let us consider the following equation:
oD f(8) + oD £ (1) = h(1), (44)

which “encounters very great difficulties except when the difference ¢—Q
is integer or half-integer” (179, p.156].

Suppose that 0 < ¢ < @ < 1. The Laplace transform of equation
(4.4) leads to

(s9 + s)F(s) = C + H(s), (4.5)
C=[oDI"' f0) + oDZ ' F ()] _
and then
) _C+H(s)_ C+ H(s) _ =4 X
FO) = e = si(0asl) (c+ H(s))SQ‘q - (46)

After inversion with the help of (1.80) for @ = Q — ¢ and 8 = Q, we
obtain the solution:

t
ft)=CGHt) + / G(t — )h(r)dr, (4.7)
0

C = [oDI F(t) + o DR 1 (1)] G(t) = 197 Eg_y o(—197).

=0



140 4. THE LAPLACE TRANSFORM METHOD

The case 0 < ¢ < Q < n (for example, the equation obtained in
[184]) can be solved similarly.

Example 4.3. Let us consider the following initial value problem for a
non-homogeneous fractional differential equation under non-zcro initial
conditions:
oDfy(t) — Ay(t) = h(t), (t > 0); (4.8)
[QD?'ky(t)]kO =be, (k=1,2,....n), (4.9)
where n — 1 < a < n. The problem (4.8) was solved in [232] by the iter-
ation method. With the help of the Laplace transform and the formula
(1.80) we obtain the same solution directly and easily.
Indeed, taking into account the initial conditions (4.9), the Laplace
transform of equation (4.8) yields

§%Y (s) — AY (s) = H(s) + Zbksk !
k=1
from which el
H(s) " s
Y(s) = b~ 4.1
6=y by (4.10)

and the inverse Laplace transform using (1.80) gives the solution:

t

y(t) = 5: bit® F B qmir1(AEY) + /(t = 7)° 7 B (At = 7))h(7)dT.
k=1 {
0 (4.11)

4.1.2 Partial Linear Fractional Differential Equations

The proposed approach can be successfully used for solving partial linear
differential equations of fractional order.

Example 4.4. Nigmatullin’s fractional diffusion equation
Let us consider the following initial boundary value problem for the
fractional diffusion equation in one space dimension:

)\2() wu(z,t)

oD u(x, t) = B (t >0, —oo <x<o0); (4.12)
,Erf% u(x,t) =0 {)D" Yu(z, t ] o = = p(x). (4.13)
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We assume here 0 < v < 1. An equation of the type (4.12) was deduced
by Nigmatullin [164] and by Westerlund [253] and studied by Mainardi
[131]). We will give a simple solution of problem (4.12) demonstrating
once again the advantage of using the Mittag-LefHler function in two
parameters (1.56).

Taking into account the boundary conditions (4.13), the Fourier
transform with respect to variable x gives:

oDPT(B,t) + N2 F%u(3,1) = 0 (4.14)
LoD "l 1)] = (), (4.15)

where 3 is the Fourier transform parameter. Applying the Laplace trans-
form to (4.14) and using the initial condition (4.15) we obtain

— w3 .
T(8,s) = s_% (4.16)

The inverse Laplace transform of (4.16) using (1.80) gives
U(3.t) = (B Baa(—A25%"), (4.17)

and then the inverse Fourier transforin produces the solution of the
initial-value problem (4.12)-(4.13):

20

u(z, 1) = / Gla — €. 1)p(E)dE, (4.18)
—OC
Gx.t) = ! / t T E, o (= N25%7) cos fad. (4.19)
.
0

Let us evaluate integral (4.19). The Laplace transform of (4.19) and
formula 1.2(11) from [62] produce

>0 PR g ;
1 [ cos(Br)ds Ls a/2, ,[.,17{)\-1&/2’

rs) = — [ Coswrmdn 1 4.20
9(@, ) w.) A% 4 5o 27 (4.20)
0
and the inverse Laplace transform gives
1 P .
G(r,t) = i /e“"s“ﬁ exp(—|z]A 1522 ds. (4.21)

Br
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Performing the substitutions ¢ = st and z = |z]A7'¢77 (p = a/2)
and transforming the Bromwich contour Br to the Hankel contour Ha
(see Fig. 2.2), as was done in a similar case by Mainardi [131], we obtain

tl——p 1 de' 1 - . |$|
G ,t:———~———,/z"'m~—ﬂ=-t"lw-z—, . =1
@t =550 ) ¢ o?  2A (=z=pp) 2=

Ha
(4.22)
where W (z, A, 1) is the Wright function (1.156). We would like to note
that, in fact, we have just evaluated the Fourier cosine-transform of the
function u;(8) = t""’Ea!a(~/\2/32t”‘).
It is casy to check that for a = 1 (the traditional diffusion equation)
the fractional Green function (4.22) reduces to the classical expression

1 ( r? )
ex - .
o/t PR

Gz, t) = (4.23)

Example 4.5. The Schneider—Wyss fractional diffusion equa-
tion

The following example shows that the proposed method can be ef-
fectively applied also to fractional integral equations. Let us consider
the Schneider-Wyss type formulation of the diffusion equation [235] (for
simplicity and comparison with the previous example — in one spatial
dimension):

O?u(z,
u(z,t) = o(z) + \? DD["%Q, (-0 <z <00, t>0) (4.24)
lim wu(z,t) =0, wu(z,0)= (). (4.25)

T—too

Applying the Fourier transform with respect to the spatial variable
z and the Laplace transform with respect to time t, we obtain:

p(B)s !

U(B,s) = 5+ G2

(4.26)
where U (83, p) is the Fourier-Laplace transform of u(z, t), 3 is the Fourier
transfrom parameter and p is the Laplace transform parameter.

Inverting Laplace and Fourier transforms as was done in the previous
Example 4.4, we obtain the solution of problem (4.24):

u(z,t) = / Gz — &, t)p(&)dE, (4.27)
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Glat) = % / F 1 (= X252 cos Bz dg. (4.28)
0

Let us evaluate integral (4.28). The Laplace transform of (4.28) and
formula 1.2(11) from [62] produce
0

s*V 7 cos(fr)ds 1 o 1 oar
_/ gt i_ /\gfj; - Q_A-Sg 1exp(-—}1:|)\ IS'/z), (429)

g(z,8) =

™
0

and the inverse Laplace transform gives:

G(z,t) = /e“"ts%‘l exp(—lz| A "1s%?)ds. (4.30)

DBr

4

Performing the substitutions o = st and z = |z[A" 1 7? (p = «/2)
and transforming the Bromwich contour Br to the Hankel contour Ha
(see Fig. 2.2), as was done in a similar case by Mainardi [131], we obtain

t=f 1 _.» do 1 T

Gz, t)= 5 8 / e? %7 iy Q—Xt PM(z,p). z= ,l\_tl (4.31)
Ha

where M(z,p) = W(—z, —p,1 — p) is the Mainardi function (1.160).

The last expression is identical to the expression which was obtained
by Mainardi [131] in another way.

We would like to note at this point, as in the previous example,
that we have just evaluated the Fourier cosine-transform of the function
u'z(ﬁ) = E”J‘l(—/\ijQtﬂ).

For o = 1 the fractional Green's function (4.31) also reduces to the
classical expression (4.23). The case of an arbitrary number of space
dimensions can be solved similarly.

For ¢ = 1 both generalizations (Nigmatullin’s as well as that by
Schneider and Wyss) of the diffusion problem give the standard diffu-
sion problem, and the solutions reduce to the classical solution. However,
it is obvious that the asymptotic behaviour of (4.18) and (4.27) for t — 0,
and t — oc is different (see also the discussion in [80] on two different
generalizations of the standard relaxation equation and the discussion
in [72] on two fractional models — one based on fractional derivatives
and the other based on fractional integrals ~ for mechanical stress re-
laxation).

This difference was caused by initial conditions of different types.
The class of solutions is determined by the number and the type of
initial conditions.
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4.2 Sequential Fractional Differential
Equations

Let us consider initial value problems of the form:

oLey(t) = f(1); oDy* 1y( )It 0 ke (k=1,...,n), (4.32)

n--1
oLey(t) = D7 y(t) + Zm D Fy(t) + pult)y(t), (4.33)

where the following notation is used for the Miller-Ross sequential deriva-
tives:
Ck e Qg g1 «q,
(IDt = QD D . aDt 3

-1 i
aD?k = D(xk (LD(Yk -1 D(n
k
ak=ch], (k=1,2,...,n);
J=1

O0<a, <1, (j=12,...,n).

The fractional differential equation (4.32) is a sequential fractional
differential equation, according to the terminology used by Miller and
Ross [153]. To extend the Laplace transform method using the advan-
tages of (1.80) for such equations with constant coefficients, the formula
(2.259) can be used.

4.2.1 Ordinary Linear Fractional Differential
Equations

In this section we give solutions of the “sequential” analogues of “stan-
dard” linear ordinary fractional differential equations with constant co-
efficients. Of course, we must take appropriate initial conditions. also in
terms of sequential fractional derivatives.

Example 4.6. Let us consider the sequential analogue of Example 4.1:
oy ,:3 ‘
oD ((oD]y(t)) + ay(t) =0 (4.34)

Lovp  (o/y®)] =t oD/ ly®)]_ =t (435)

where 0 << 1,0< 3 <, a+3=1/2
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The formula (2.259) of the Laplace transform of the sequential frac-

tional derivative allows us to utilize the initial conditions (4.35). To

use (2.259), we take o = 3, as = «, and m = 2. Therefore, o7 = 3,

o9 = a+ /3. Then the Laplace transform (2.259) of cquation (4.34) gives:
(5“7 + Q)Y (s) = s%ba + b1, (4.36)
from which it {ollows that

5% 1

Su—i«d +a + bl gt + (1.’

and after the Laplace inversion with the help of (1.80) we find the solution
to the problem (4.34)-(4.35):

y(t) = bot? T E g 5(—atP) 4 0yt P E L g 0 g(—at®P). (4.38)

For 8 =0 and « = 1/2 (and assuming, of course, by = 0), we can obtain
from (4.38) the solution of Example 4.1.

Example 4.7. Let us now consider the following sequential analogue
for the equation considered in Example 4.2:

00§ (oDy(1)) + oDiy(t) = h(2), (1.39)

where 0 < o< 1,0<8<,0<g<l,a+3=0Q >q.
The Laplace transform (2.259) of equation (4.39) gives:

(s + s1Y (s) = H(s) + by + by, (4.40)
by = [UDEFI ( ()ny(t)>]tzo + [()Dg_l!/(t)]

by = [()va]y(f)]

Writing Y (s) in the form

t==0

t=0"

sT1H(s) sty 574

gatB8—q +1 + b2 §x+3-q +1 + bl gotB—q 41

Y(s) = (4.41)

and finding the inverse Laplace transform with the help of (1.80), we
obtain the solution:

’(/(f) = thﬁV lb‘(l+/i—q..‘j(—ta irﬁjvq) + b] t(lrkﬁquu# 3- (1,&4;3(—tu+/3—q)

t
+ /(t - T)(kuhjr 1E{1+H—~q.n+;3 ("(t - T)a,#g,,.q) h(T)dT. (442)
Q
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It is easy to see that this solution contains the solution of Example
4.2 as a special case.

Example 4.8. Let us consider the following initial value problem for
the sequential fractional differential equation:

0D (0D y(t)) — Ay(t) = h(t); (4.43)

[OD?”“I(ODE"y(t))] = b, [nD?l‘ly(t)L:O:bz. (4.44)

Let us consider 0 < a3 < 1, 0 < ag < 1. The Laplace transform
(2.259) of equation (4.43) gives

=0

(5172 — N)Y (s) = 5%2by + by,
and after inversion using (1.80) we obtain the solution:

y(t) = bt M E, o (At®) + b1t E, o (M%)
14
+ / (t = 1) Eg o (Mt — 7)®)h(7)dr, (4.45)
0
(a = a1 + a2).

Let us take o the same as in Example 4.3. Using (1.56), (1.82) and
(2.213), it is easy to verify that (4.45) is the solution of (4.43). It is also
worthwhile to note that if by # 0, by # 0, then (4.45) is not a solution of
the equation oDfy(t) — Ay(t) = h(t) from Example 4.3; also (4.11) is not
a solution of equation (4.43). On the other hand, equations (4.8) and
(4.43) are very close to one another: the fractional Green's function in
both cases is G(t) = (£)* 1 E4 o (AtY). We will return to this observation
in Chapter 5.

4.2.2 Partial Linear Fractional Differential
Equations

Example 4.9. Let us consider Mainardi’s {131] initial value problem
for the fractional diffusion—wave equation:

2§2u(x, t)
oz

u(z,0) = f(x), (Jz] < o) (4.47)

oDifu(z,t) = A (Jz] < oo, t > 0) (4.46)
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lim w(z,t) =0, (t > 0) (4.48)

xrroc
where 0 < o < 1.

The type of the initial condition (4.47) suggests that the fractional
derivative in equation (4.46) must be interpreted as a properly chosen se-
quential fractional derivative oD = oDy ¢ D;"'. The Laplace transform
formula (2.259) for e = @ — 1, a; = 1, and k = 2 (this gives Caputo’s
formula [24]), i.e.,

L{ oDiy(t): s} = s*Y (s) — s* 1y(0), (4.49)

applied to the problem (4.46)-(4.48), yields:

s*(z, 8) — s 1 f(x) = /\2?—2(;2—2, (lz] < o) (4.50)
yhrcr)lo u(z,s) =0, (t > 0). (4.51)

Applying now the Fourier exponential transform to equation (4.50)
and utilizing the boundary conditions (4.51), we obtain:

P

U(B,s) = ——=F(1), 4.52
(d ) S% )\2[)72 (/‘ ) ( )
where U(3,p) and F'(3) are the Fourier transforms of u(z, s) and f(z).

The inverse Laplace transform of the fraction s*7!/(s* 4+ A28?%) is
Ean(—X23%*) (where E, ,(z) is the Mittag-LefHer function in two pa-
rameters). Therefore, the inversion of the Fourier and the Laplace trans-

form gives the solution in the following form:

u(z,t) = / Gz — &,£) f(€)de, (4.53)

Gz, 1) / Eu1(=A2826%) cos(fz)dg

1

—tPW (~z,—p, 1 — 4.8
=55t W=z, —p,1 = p), (4.54)

where W (z, A, 1) is the Wright function (1.156). This solution is identical
to the solution of the Schneider- Wyss fractional (integro-differential)
diffusion equation (4.27).
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Chapter 5

Fractional Green’s
Function

There is something common in solutions of the corresponding “standard”
and “sequential” fractional differential equations considered in Chapter
4: they both have the same fractional Green’s function.

It secms that the notion of Green’s function of a fractional differential
equation appeared for the first time in the book by S. I. Meshkov {149},
namely for the equation of the form (5.19), which is considered below.

The definition of fractional Green’s function suggested and used by
K. S. Miller and B. Ross [153, Chapter V] applies to fractional differential
cquations containing only derivatives of order ka, where k is integer.

In this chapter, which is based on the papers [201, 208], we give a
more general definition of the fractional Green’s function and discuss
some of its propertics, necessary for constructing solutions of initial-
value problems for fractional linear differential equations with constant
coefficients.

We give the solution of the initial-value problem for the ordinary frac-
tional linear differential equation with constant coefficients using only its
Green's function. Due to this result, the solution of such initial value
problems reduces to finding the fractional Green'’s functions. We ob-
tained explicit expressions for the fractional Green’s function for some
special cases (one- , two- , three- and four-term equations).

The explicit expression for an arbitrary fractional linear ordinary
differential equation with constant coefficients ends this chapter.
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5.1 Definition and Some Properties

We consider here equation (4.32) under homogeneous initial conditions
by =0, (k=1,...,n), ie.

oLey(t) = f(1); [ODZ”“"y(t)L:O =0, (k=1....n) (51)

n—1

Loy(t) = oD y() + Y pelt) oD y(t) + pulty(t),
k=1

JDUF = DY DI DM DI = D&Y D D
k
or=3Y a; (k=12....n); 0<q<l, (j=12,..,n).
7=1

The following definition is a “fractionalization” of the definition given
in {160].

5.1.1 Definition

The function G(t, 7) satisfying the following conditions
a) LiG(t,7) = 0 for every T € (0,1);
b) limy o o(+ DI 'G(t, 7)) = bpne k=0,1,....n,
(0 18 Kronecker’s delta);
¢) lim o (DG, 7)) =0, k=0,1,...,n—1
T<t
is called the Green’s function of equation (5.1).

5.1.2 Properties

1. Using (2.211), it can be shown that y(t) = [i G(t,7)f(T)dr is the
solution of problem (5.1).

Let us outline the proof of this statement. Evaluating
(I'Dyﬁr1 y(t)v [)ngy(t): s OD?ny(t)

using the rule (2.211) and condition (b) of the definition of the Green’s
function, we obtain:

t
Py = oD [ Gt f(r)dr
0
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DFG(t,7)f(r)dr + lim DTG, T) f(7)

r—t—0

fl i
— O

DG, T) f(T)dr (5.2)

t
oDPy(t) = oD (oD y(t)) = OD?Q/TDZ“GU,T)f(T)dT
0

¢

= /TD” DELG(E, 7)) f(r)dr
a
+

im DT Yo DMG(t, 7)) f(7)

_ / DGt 7) f(r)dr (5.3)
4]

t
D" y(t) = oDy (oD y(t)) = oD I/TDSH_ZG(t,T)f(T)dT
0

t

_ / TD;XW 1 ( TD?"‘2G({;’ T))f(’/")d’r
Q
+ lil}io Tl)t"””l*l( DG, 1)) f(T)

t
- [ DGt 54
0

t
oD7y(t) = oD (oD My(t) = (,D?"/ DGt T) f(T)dT
0

i
~ / D (DG, 7)) f(7)dr
8
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+ limo TD,?"VI( DG, T f(T)

T s} =
t
_ / CDOG(L, TV (r)dT + f(t). (5.5)
0

Multiplying these equations by the corresponding coefficients and
summarizing, we obtain

t
0Ley(t) = / LGt 7) f(T)dT + f(t) = f(1), (5.6)
0

which completes the proof.

2. For fractional differential equations with constant coeflicients we
have

G(t,7) = G(t — 7).

This is obvious because in such a case the Green’s function can be oh-
tained by the Laplace transform method.

The type (standard or scquential) of the equation is not important
for determining the Green’s function, because due to condition (b) in the
Green’s function definition all non-integral addends vanish.

3. Appropriate derivatives of the Green’s function G(t, 7) form a set
of linearly independent solutions of a homogeneous (f(t) = 0) equation
(4.32) (for a simple illustration, see Examples 4.3 and 4.8).

Let us demonstrate this for the case of the linear fractional differential
equations with constant coeflicients, which are the main subject for study
in this work and for which we have G(t,7) = G(t — 7).

Let us take 0 < A < g,. First, the function

ya(t) = oDPG(t) (5.7)
is a solution of the corresponding homogeneous equation. Indeed,
oLeya(t) = oL 0DYG(8) = oD} (0 LiG (1)) = 0. (5.8)

We used here the fact that gL OD;\ = UD,;\ oL:, which follows from
condition (c) in the definition of the fractional Green's function.
Second,
oDP M (o) = L (5.9)
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In fact,

[ODE”"A”?/A(”LZO - [OD?”'A%("DE\G(”)L:U
_ [ODZ’""IG(U} =1. (5.10)

t=0

Here we used the relationship
oDy G DG = oD I G ), (5.11)

which follows from condition (c) of the definition of the Green’s function,
and then condition (b).

We see that having the fractional Green’s function of equation (5.1),
we can determine particular solutions of the corresponding homogeneous
cquation, which are necessary for satisfying inhomogeneous initial con-
ditions.

Therefore, the solution of linear fractional differential equations with
constant coefficients reduces to finding the fractional Green’s function.
After that, we can immediately write the solution of the inhomogeneous
equation satisfving given inhomogeneous initial conditions.

This solution has the form

y(t) = 3 ben(t) + /.G(t — (), (5.12)
k=1 O

be = [oD7*y(t)] (5.13)

t=0
U(t) = oDFTRG(),  oDPr TR = WD DT DY
(5.14)
Because of this, in the following sections we find some explicit expres-
sions for fractional Green's functions, including a general linear fractional
differential equation.

5.2 One-term Equation

The fractional Green's function G (t) for the one-term fractional-order
differential equation with constant, coefficients

a o Dy(t) = £(1), (5.15)
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where the derivative can be either “classical” (i.e., considered in the book
by Oldham and Spanier) or “sequential” (Miller and Ross), is found by
the inverse Laplace transform of the following expression:

1

a(p) = e (5.16)

The inverse Laplace transform then gives

(5.17)

The solution of equation (5.15) under homogeneous initial conditions
is
f(r)dr
al’(«) / (t — 1)l

y(t) = =~ oD (1), (5.18)

Using [188, lemma 3.3], we can easily verify that expression (5.18)
gives the solution of equation (5.15), if f(z) is continuous in [0, oc).

5.3 Two-term Equation

The fractional Green’s function Ga(t) for the two-term fractional-order
differential equation with constant coeflicients

a oDify(t) + by(t) = f(1), (5.19)

where the derivative can be either “classical” (i.e., considered in the book
by Oldham and Spanier) or “sequential” (Miller and Ross), is found by
the inverse Laplace transform of the following expression:

1

1 1
92p)=—5 =" ——5 (5.20)
ap®+b  a p*+ 2
which leads to ) ;
Golt) = gt‘*"lEr,,a(~—)t“). (5.21)
A a

For instance, the function Gs(t) plays a key role in the solution of Ex-
ample 4.1 and 4.3.

Taking in (5.21) b = 0 and using the definition of the Mittag-LefHer
function (1.56), we obtain the Green’s function G;(t) for the one-term
equation.
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5.4 Three-term Equation

The fractional Green’s function G3(t) for the three-term fractional-order
differential equation with constant coefficients

a oDYy(t) + b oDPy(t) + ¢ y(t) = f(1), (5.22)

where the derivatives can be either “classical” (i.e., considered in the
book by Oldham and Spanier) or “sequential” (Miller and Ross), is found
by the inverse Laplace transform of the following expression:

1
: = — 5.23
gd(p> apﬂ + b[)() + c ( )
Assuming 8 > «a, we can write g3(p) in the form
() 1 cp™@ 1
g3\p) = - B—a —
c apP~r+b 1 cp
+ ap’"* + b
1 20 e k41 p—akwa
= =2 (- (5) AR (5.24)
" k=0 (pﬂ“a + 5)

The term-by-term inversion, based on the general expansion theorem for
the Laplace transform given in [42, §22], using (1.80) produces

L3S (51F eN® stk b s c ox
G:x(t):EI;)T(a) (I 11;;2)(!!““(—## ), (5.25)

where Ey ,(z) is the Mittag-LefHler function in two parameters,

. d* X 4Ry {
Eg\k;)t(y) = _TE/\-,lt(y) = Z] (J ) (k=0.,1.2, )
=0

dy PD(A] + Mk + p)
(5.26)
We assume in this solution that a # 0, because otherwise we have
the two-term equation (5.19). We can also assume ¢ # 0, because for
c=10
R SR
93([)) - apﬁ + bp® = a,pﬁ”" T
and the Laplace inversion can be done in the same way as in the casc of
the two-term equation.
Two special cases of equation (5.22) were considered by Bagley and
Torvik [16] (for 3 = 2 and @ = 3/2) and by Caputo [24] (for = 2 and
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0 < a < 1). It is casy to show that our solution (5.25) contains Caputo’s
solution as a particular case.
Indeed, substituting (5.26) into (5.25) and changing the order of suin-

mation, we obtain:

x e\ Ftl > b j (}+k)’ $B30+k)+8-1-0y

Z___: (5> P 0 <E> KGR0 +k+ 1) — aj)
oK

Gy(t) =

1
¢

1 > k+1 ( + k)l fd(j-rk)%d 1~y
= e ( ) Z l)k ( ) k’ ' F( 3 k' ‘5
¢ 7=0 k=0 a (] + '+' — (X
(5.28)
(5.29)

For 4 = 2 this expression is identical with the expression obtained by
Caputo [24, formula (2.27)].

5.5 Four-term Equation

The fractional Green’s function G4(t) for the four-term fractional-order
differential equation with constant coeflicients

a oD{y(t) + b oD)y(t) + ¢ oD{y(t) + d y(t) = f(2), (5.30)

where the derivatives can be, as in the previous section, either “classical”
or “sequential”, is found by the inverse Laplace transform of the following
expression:

1

oy = : . 5.31
94 (,p) ap” + bpﬁ + ep® + d () )

Assuming v > J > a, we can write g(p) in the form

1 1
94(p) = 3 u
ap¥ +bp? 4 4L P 1+d /
ap” + bp'
a"‘lp“" 1

pY P rath 14+ a tept=Bialdp?
p”*‘"ﬂ +a b

i )" a'p”” Cpa-8 4 d -s\"
pf\,w-;i + a~|b)m+1 ap a[

m=0

o< -1, m k pn- k
Z )m a °p Z (771’) c"d puk—--ﬁm
~—3 —~15ym+1 s
(P77 +a1b) o\ )
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1 o0 d\™ m m ¢ k pa k—3m—3
_ = RN B - ! (5.32
S0 (05 ()0 e o

m=() k=0

o |
|

The term-by-term inversion, based on the general expansion theorem
for the Laplace transform given in [42, §22], using (1.80) gives the final
expression for the fractional Green’s function for equation (5.30):

o= 3w ()5 () G

rre=0 k=0
« iﬂ,‘(-m—f—l)-ak ﬂlE(m) (_Qtﬂ/—ﬁ) (5 33)
=3y +Pdm—-ak a : :

We assuined in this solution that a # 0, because in the opposite case
we have the three-term equation (5.22). We can also assume d # 0,
because in the case of d = 0, after writing

0

P
ap’—« 4 bpf-o 4 ¢

g1(p) = (5.34)
the Laplace inversion can be done in the same way as in the case of the
three-term equation.

5.6 General Case: n-term Equation

The above results can be essentially generalized.
The fractional Green’s function G, (t) for the n-termn fractional-order
differential cquation with constant coefficients

an D y(t) + an ) D iy(t) + .+ ap DPy(t) + ag DPy(t) = (),
(5.35)
where the derivatives D = (Dj* can be, as in the previous sections,
cither “classical 7 or “sequential”, is found by the inverse Laplace trans-
form of the following expression:
1
AP + U1 PPt 4 P4 agp’

gn(p) =

Let us assume 3, > 3,1 > ... > @) > fy and write g,(p) in the
form:

(p) 1 1
VY 7 3 )
anp.‘ n g -1 m 8,
> agp™
1+ " "3” 1

i /
A" + ap_yp
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a“1p~6rL—1 1

n-2
—1 =0 B
a;, 'p Z agp’t

Z)Afn ﬁn]_{,_anl

ap

S - n—2 m
_ i (~1)"ag'p o ’Z (%)pﬁkﬁn_l
' an

m-+1
m=0 (pﬂn "ﬁnwl + %;l) v k=0
= (<1)atp

= ,::‘0 (pﬁn ~fu1 4 G- 1)m+1

71

Z (mi ko, ks .. ”H( ) (=80 1,

k0+k1+> *fk —g=m
ko220t by 320

- Z 3 (miko ki, .. kn-2)

T =0 kogtki+...+kp p=m

1+

n—2

_ﬁ'n -1+ Z (,Hz “ﬁn-—l )kz

n—2 Nk =0
H(&) A (5.37)

m-+1
=0 Un (pﬂn“ﬁn—l + %L;l;l)

where (m; ko, k1, ... ,kn—2) are the multinomial coefficients [2].

The term-by-term inversion, based on the general expansion theorem
for the Laplace transform given in [42, §22], using (1.80) gives the final
expression for the fractional Green’s function for equation (5.35):

'f n

Gfb(t) = Z (ma kOaklv"' 1ku~2)

ko tkyt. +kn_2rrn
k205 . kp 020

QI""

n—2

I:I ( ) ljn“ﬁn l)"H'/}n‘*"Z =0 (Bn—1— /‘57)1‘7 -1

E™ » (—“———"“ltﬁ"“ﬂw) 5.38
Hn_ﬁnmlr‘{‘ﬂn“*'EJ 02</3n 1 ﬁ_l) 7 a-n ( )



Chapter 6

Other Methods
for Solution of Fractional
Order Equations

In this chapter some further analytical methods for solving fractional-
order integral and differential equations are described, namely the Mellin
transform method, the power series method, and Yu. 1. Babenko’s sym-
bolic method. We also include the method of orthogonal polynomials for
the solution of integral equations of fractional order, and give a collec-
tion of so-called spectral relationships for various types of kernels. All
the methods described in this chapter are also illustrated by examples.

6.1 The Mellin Transform Method

In some cases, solutions of fractional differential equations can be ob-
tained using the Mellin transform (see Sections 2.10.1-2.10.5).

Example 6.1. Let us consider the equation
t I patly(r) 4 12 D%(t) = f(t). (6.1)
If we suppose that
y(0)=y'(0) =0,  y(oo) =y'(c0) =0, (6.2)

then D% can mean the Riemann-Liouville, or the Caputo, or the Miller-
Ross fractional derivative.

159
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Applying the Mellin transform to equation (6.1), and using the for-
mula (2.299), we obtain

'l-s-a)

Y =P s om s —a) =

F(s)G(1 — s), (6.3)

I'(s—a) T(s—a+1)
L(s)(s—a) T(s)(s—a)?
If the inverse Mellin transform g(¢) of the function G(s) is known,
then the solution of equation (6.1) is the Mellin convolution (2.278) of
the functions f(t) and g(t):

G(s) = (6.4)

ut) = [ fer)g(ryar. (65)
0

It can be shown that g(¢) = 0 for £ > 1. Indeed, its Mellin transform
G(s) can be written as

G(s) = G1(s)Ga(s), (6.6)

The inverse Mellin transforms of the functions G(s) and Ga(s) can
be found using formulas 7.3(20) and 7.1(3) from tables [62]:

t= (1 — ) o 0<t <1,
Q(t) = T'(a) O<t<t, go(t) =
0, t>1, 0, t>1,
(6.7)
and using the formula 6.1(14) from the same tables, we have the inverse
transform of G(s):

o0 = [0/ galr) . (63
0

It follows from the expressions (6.7) for the functions gy (t) and go(t)
that g(t) = 0 for t > 1, and that for 0 <¢ < 1

1
o) = [onte/m) in) < (69)
t
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An explicit expression for the function g(¢) for 0 < ¢t < 1 can be
obtained by evaluating the integral (6.9) or by inverting G(s) given by
(6.4). In the second case, we can use the residuc theorem.

The function G(s) has a double pole at s = « and ordinary poles
at s = —n+a-1(n=01,2,...), all lying in the left half-plane.
Therefore, using the residue theorem gives

o

= /G(s) t°ds
Br
= Z[ G(s)t~ ’] + Z [Res G(s) t‘s}
n=0

(wn+WM~ﬁ

( 1)ntn—a+1
(n+1DCn+2)T(-n+a-1)

Sy s=—n-+ta—1

Q

+

(6.10)

n (]

where v = 0.577215. .. is the Euler constant, and ¢(2) = I'"(2)/I'(2) is
the logarithmic derivative of the gamma function [63, Section 1.7].
Therefore, the solution of cquation (6.1), which vanishes at t = 0 and
t=oc, is
1;
oo = [ Femg(rr, (6.1
0
where the function g(¢) is given by the expression (6.10), in which the
power series converges for |#] < 1.

A fractional differential equation of the form
n i
> apt™ DY Ry(t) = f(t)
k=t

can be solved similarly with the help of formula (2.298).

6.2 Power Series Method

The power series method is the most transparent method of solution of
fractional differential and integral equations. The idea of this method is
to look for the solution in the form of a power series; the coeflicients of
the series must be determined.
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Sometimes it is possible to find the general expression for the cocf-
ficients, at other times it is only possible to find the recurrence relation
for the coefficients. In both cases, the solution can be computed approx-
imately as partial sum of the series. This explains why the power series
method is frequently used for solving applied problems.

The considerable disadvantage of the power series method is that it
requires the power series expansions for all known (given) functions and
non-constant coefficients appearing in the fractional-order equation; in
real problems, however, known functions and non-constant coefficients
are often the results of measurements and in such cases their power series
expansions are unavailable.

On the other hand, there are important problems leading to non-
linear fractional differential and integral equations or to fractional-order
equations with non-constant coefficients, which could be solved at present
only with the help of the power series method.

Let us consider several examples of the use of the power series
method.

6.2.1 One-term Equation

The first example is the equation which we call the one-term equation,
because there is only one term in its left-hand side:

(]D?y(t) = f(t)v (t > O) (612)

where we suppose 0 < a < 1.
a) Let us first take the initial condition

y(0) =0, (6.13)

and assume that the function f(¢) can be expanded in the Taylor series
converging for 0 <t < R, where R is the radius of convergence:

f=>3 [T,@t". (6.14)
n={)

Recalling the rule for the Riemann-Liouville fractional differentiation
of the power function (2.117) we can write

r'1+v)

DYtV = ——
0 Fl+v-—a)

e (6.15)
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Taking into account the formula (6.15) we note that we can look for
the solution of the equation (6.12) in the form of the following power
series:

0o 00
?/(t) = t* Z yntn = Z ertn+a- (6'16)
n=0

n=0

Substituting the expressions (6.16) and (6.14) into the equation (6.12)
and using (6.15) we obtain:

1+n+a) f
n t"h = f(t) = 1
ZO” r(n x| o W= Z al (6.17)
n= n=0

and comparison of the coefficients of both series gives

(n) _
Yn = f-(lf——}—?’ELﬁ)-a—)—’ (Tl = ,OO). (618)

Therefore, under the above assumptions the solution of the equation
(6.12) is

=t }O:O: (i r)ﬁz a)t", (0<t<R). (6.19)

In the case of the simple equation (6.12) we can easily transform the
expression (6.19):

= f(n) (O) F(n + 1) tn+a

y(t) = n! F(l +n+a)

n=0

(n
— Z f Dt—atn

(o

ZODIQ{Z f ”'( ) }
n=0

=D f(2). (6.20)

Of course, since we looked for the solution y(t) satisfying the zero
initial condition (6.13) we could directly apply a-th-order fractional in-
tegration to both sides of the equation (6.12) and an application of the
composition law for the Riemann-Liouville fractional derivatives (see
Section 2.3.6) would give the expression (6.20). However, the use of the
inverse operator is often impossible.
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This approach can also be used if the right-hand side of the equation
(6.12) has the form

fy=t'g(t), (3> -1), (6.21)
X (n)
gty =3 = 7,,(0)”'-
n=0 "

In such a case we can look for the solution satisfying the initial con-
dition (6.13) in the following form:

>0 [o.8)
y(t) = 977Nyt = 3yttt (6.22)
= n=>0

and determine the coefficients 3, in the same manner as above. The

result is
(14 n+73) g™ (0) —

? ‘:11‘ . f‘
Frl+n+a+3)F(n+1) (n 00) (6.23)

Yn =

b) If we have to solve the equation (6.12) under the non-zero initial

condition
y(0)=A, (A#0), (6.24)

then the solution exists only if (see Section 2.7.5)
N

Ate

t) ~ =——— t—0).
Let us suppose that
Af’” >
t) = fat" 4, .26

where the coeflicients f,, are known.
Then we can look for the solution in the form

3
y(t) = X ynt™. (6.27)
n=0
Substituting (6.27) and (6.26) into equation (6.12) we obtain

ad r(1+n) 4
F , . tll—() — t "i?l (l '2
gmm;;35 f(t) +Zf (6.28)

n=1
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and therefore

'l+n—-a)

yo=A; Yo =

c) Finally, let us consider the following initial condition for the equa-
tion (6.12):

oD 1q<1)[t " (6.30)
where B is constant.
In this case we can look for the solution in the form
o0 oc
) =t gt =)yttt (6.31)

n=>{ n=0

Let us assume that f(t) can be expanded in the Taylor series (6.14).
Substituting (6.31) and (6.14) into equation (6.12), using the derivative
of the power function (6.15) and recalling that 1/I'(0) = 0 (see Section
1.1.2) we obtain after the obvious change of summation index

X

I'(n+a +
. _ - 6.32
Zy’H”l I'(n ZF7T+1 ’ (6.32)

n=0

and the comparison of the coefficients gives

7 (0) —

Yni1 = m (” = 0, OO) (633)

The coefficient yg must be determined from the initial condition
(6.30). Using the formula (6.15) we have:

o
0[)? ly(t) — Z Un OD;h—lth\--H

= ()
(n+ a)
= Z /n (6.34)
— (n+ 1)
and taking t — 0 we obtain
B
Yo = ——~. 6.35
W= ri) (6.35)

These examples show that even the simplest fractional-order equa-
tion, such as (6.12), requires special attention to the formulation of the
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initial condition. The initial condition and the right-hand side of this
equation determine the class of solutions. We can get an idea about the
possible form of the solution only after the analysis of the initial condi-
tion, the right-hand side and the determination of the class of solutions.
In thinking about the form of the series representing the solution the
key role belongs to the rule for the differentiation of the power function
(2.117) or (6.15).

6.2.2 Equation with Non-constant Coefficients
Let us consider the following initial value problem for the {ractional dif-
ferential equation:

C—(fg(f(t) W)+ 1) +AoDPy(t) =0,  (0<t<1) (6.36)

y(0) =0, (6.37)

where the function f(¢) is a given function. For certain particular types of
f(t) the problem (6.36)-(6.37) allows us to obtain an analytical solution
by the power series method. For example, let us assume that

fFOy =3 fut™? fo=1 (6.38)

n=0

Then we can look for the solution y(t) in the form of a similar frac-
tional power series:

0
y(t) =) yat™?. (6.39)
n=1

The substitution of (6.39) and (6.38) into equation (6.36) and com-
parison of the coefficients of the resulting power series lead to the fol-
lowing recurrence relationships:

n r(2+1
n = -fi, Zymrl‘kfk + Ayn (2 ) = —fn+1- (6.40)

Due to the construction of the solution (6.39), the initial condition
(6.37) is satisfied automatically.
1If we take, for example,

flt)y=1- A4, (6.41)
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then from (6.40) it follows that

n = l)
o I’(3/2))
Y2 = W (1 A r2) )
F("+2)
Yn+l1 =  UYn 1“/\-';_?“ . (6.42)
r(4?)

For an arbitrary A the series (6.39) converges in the interval 0 <t < 1.
If
(44
/\ —

“r ()

then the solution y(t) is given by a finite sum, for example,

L%

e 2 .
A= m = NG y(t) = \ﬂ (6.43)
_(5/2) 3w o 3 .
A= R y(t)——\flﬂ—(l—g)t. (6.44)
If we take f(t) in the form [11]
1~ t"+%
) = —Fr—vr (6.45)
14 Szl

then the solution is given by

r (n + %) t"

ylh) w2 6.46
Y = ST 1) (6.46)

The physical problem leading to the fractional differential equation
(6.36) and the numerical solution of the initial-value problem (6.36)-

(6.37) are considered in Section 8.3.3.

6.2.3 Two-term Non-linear Equation

Let us consider the following initial-value problem for the two-term non-
linear fractional differential equation:

oD, Py(t) — A(y(t) - yo)'2 =0, (t>0), (6.47)
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y(0) =0, (6.48)

where A and yg are given constants,

In this case we can look for the solution in the form of the fractional
power series

y(t) =Y ynt"?, (6.49)

based on the observation that both oDil / 2y(t) and (y — A)? produce
series of the same form. Obviously, the solution (6.49) satisfies the initial
condition (6.48) automatically.

Substituting (6.49) into equation (6.47), using the formula (6.15) and
comparing the coefficients in the fractional power series, we obtain the
following recurrence relations for the coeflicients y,:

I'(1)
Y1 = Ay
(%)
yv2 = 2dyoyr =5 (%
' re)’
. I'(2
ys = AW +2y0u) w(r,)
r'(3)’
n—1 n+l
(%)
Yn = /\Zykyn'kfl T niz .
k=0 (T)

Finding the convergence interval for the series (6.49), where the coef-
ficients ¥, are defined by the above recurrence relationships, is difficult.
However, computations show that this series can be used for computing
the solution for small 2.

6.3 Babenko’s Symbolic Calculus Method

In this section we describe the method used by Yu. I. Babenko in his
book [11] for solving various types of fractional integral and differential
equations. The method itself is close to the Laplace transform method.
It can be used in more cases than, for example, the Laplace transform
method, but it is always necessary to check for the validity of the formal
solutions. In the general case, such checking is not a stiaple task.
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6.3.1 The Idea of the Method

We will explain the idea of Babenko’s method on the following example.
Let us consider the Abel integral equation of the second kind:

¢
A _ a—1 _ 5
() !(t ) y(r)dr = f(t), (t>0) (6.50)

where we suppose « > 0, A is constant. Denoting

1

t
D *y(t) = oD “y(t) = o) /(t — 1) y(r)dr, (6.51)
0

we can write equation (6.50) in the form
(1+AD™)y(t) = f(0). (6.52)
and the solution can be immediately written in the symbolic form
y(t) = (1 + AD™*) 71 f(t), (6.53)

where (1 + AD~?)~! denotes the left inverse operator to the operator
(1+AD™).

The expression (6.53) is concise, but not suitable for practical pur-
poses and computation. Using the binomial expansion of (1 +AD~*)~},
we can write (6.53) as

oG

y(t) = 3 (~1)"A"D £ (1), (6.54)

n=0

Since for many functions f(¢) all the fractional integrals in the right-
hand side of the expression (6.54) can be evaluated explicitly, the formula
(6.54) gives in those cases the formal solutions in the form of a series,
the sum of which can sometimes be evaluated.

For example, let us take f(tg) = t. An appplication of the formula
(2.117) for the Riemann-Liouville fractional differentiation of the power
function then gives

o v F(Q)ta‘rH-l pan+l1
D wn t — D"(‘Y"vt — — A
F(t) Man+2) Dlan+2)
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and substituting this expression into (6.54) we obtain the solution:

> nynpan+l a\n

S e s ey |
W= 2 Tans2) E  Eaa(=MY). (655
U( ) n=0 F(().'Tl -+ 2) ]"(a” + 2 :2( ) ( ) ))

where E,, 5(t) is the Mittag-LefHler function defined by (1.56). The so-
lution (6.55) can also be obtained by the Laplace transform method
described in Chapter 4 with the use of formula (1.82) for the arbitrary-
order differentiation and integration of the Mittag-Leffler function.

Moreover, the expression (6.54) can also be used for obtaining the
closed-form solition of the equation (6.50). For example, using the def-
inition of the Riemann Liouville fractional integral (2.88) and the defi-
nition of the Mittag-LefHler function (1.56) we can write

y(t) — Z(_l)n/\nD—rmf(t)
n=0
- n n / (xn— 1
= ;}( ar) / f(r)dr

f

t
nAn 1 d ' an -
Z( 2 T(an+ 1) dt /(t -

n=0
. d g (,)\)71(# _ 7')””
) ‘ﬁ/{z“ﬁ—iﬁ“} Jrdr

d [‘ |
Td J Ea (‘A(” - T"))ﬂT)dT- (6.56)

The solution obtained in this manner is formal; the interchange of
summation and integration requires justification or the same final result
must be obtained by some other method. For example, in the considered
case the expression (6.56) can also be obtained with the help of the
Laplace transform method described in Chapter 4.

6.3.2 Application in Heat and Mass Transfer

As the following example shows, Babenko's method can also be used for
solviug certain problems related to partial differential equations ol heat
and mass transfer theory.
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Let us consider the foliowing sample heat transfer problem for the
half-plane:

((% - 5()—:5 + A,')T(:z:,t) =0; (t>0; 0<ux<ox), (6.57)
T(0,1) = T, (1), (6.58)

T(0,t) =0, (6.59)

T(x,0) =0, (6.60)

where the constant v and the function T(t) are given. Let us look for
the heat flux at the boundary, i.e. for

qs(t) 01 ]r:()'

The first step is to suppose that equation (6.57) can be written in
the form

(L - ;)(‘)’;) (L + 5‘)~) T(x,t) =0, (6.61)

where the operator L is defined by the following symbolic expression:

[o 0
L=y5+v=vDin  (D=4). (6.62)
ot ot '
Then we can utilize the boundary condition (6.59) for noticing that
all decaying solutions of the original equation (6.57) are also the solutions
of the equation which correspond to the second operator in (6.61):

d s
(r.+ %>T(£, 1) = 0. (6.63)
Putting = 0 in (6.63) we obtain the required heat flux at the

boundary:
—v' D+~ T(t). (6.64)

For computations we must have an interpretation of the operator in
(6.64). The first way is to use the formal binomial expansion:

@)= VDTt —~D”2\/17%/73-7mn
/2y .
_Z ( / ) APDETUTL(). (6.65)
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The second way suggested by Yu. I. Babenko is based on the identity

L*=\/D+~VD+~v=D+1, (6.66)

which in some cases allows us to write the operator L in the form

L=+vD+~=e"DV2%", (6.67)

Indeed, if f(0) = f/(0) = 0 (this is a necessary condition; see Section
2.3.6), then

L2 f(t) = (e D2e) (e D26 f(1)
=e DM f(t) = e"”t{(f’th(t) + “,'cf’tf(t)}
= Df(t) + 7f(t) = (D +7) F(0) (6.68)

Therefore, if the given surface temperature T,(¢) satisties the condi-
tions
T,(0) = T;(0) = 0,

then the heat flux (6.64) can be written in the form
qs(t) = —e DY 2T (1), (6.69)

where D2 denotes the half-order Riemann- Liouville fractional deriva-
tive.

In general, the justification of Babenko’s approach is not known, and
therefore it is necessary to look for such justification for each particular
problem. However, it is a powerful tool for determining the possible form
of the solution. Numerous examples of the application of this symbolic
method for solving integer- and fractional-order differential equations ap-
pearing in heat and mass transfer problems are given by Yu. I. Babenko
in his book [11].

6.3.3 Link to the Laplace Transform Method

There is a certain link between Babenko’s method and the Laplace trans-
form method.

Let us consider the heat conduction problem (6.57)-(6.60) for a half-
plane for v = 0. In such a case we have

L=DY?= D, (6.70)
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and the solution for the heat flux at the boundary takes on the form

gs(t) = — oD 2Ty (t). (6.71)

This result can be obtained by the Laplace transform method as
described below in Section 7.7.3.

6.4 Method of Orthogonal Polynomials

It is well known that the solution of the integral equation of the first kind
is an ill-posed problem [248]. For example, in the case of the classical
Abel’s integral equation (0 < a < 1)

¢
F(la) / o _f’(TT))MdT =f(t), (0<t<1) (6.72)
0

the main difficulty is the differentiation which appears in the explicit for-
mulas for the solution of the equation (6.72). In many applied problems
the function f(t) is known from measurements (or computed approxi-
mately), and differentiation leads to magnification of noise in measured
data and to wrong numerical results. Attempts to circumvent this dif-
ficulty are described, for example, in [67], [154], and [82]. It is clear
that the form of solution which does not require differentiation will be
more useful for today’s mumerous applications in physics, engineering
and other fields. The method of orthogonal polynomials developed by
G. Ya. Popov [211] and described in detail in his monograph [213] pro-
vides a tool for the numerical solution of certain classes of integral equa-
tions of the first kind in the presense of noise in f(t). A similar approach
was suggested also by R. Gorenflo and Y. Kovetz for the solution of
Abel’s integral equation [85].

In this section we deal with the application of the method of orthog-
onal polynomials to the solution of fractional integral equations, We
bricfly describe the method, present a collection of spectral relationships
and give two examples. The special function notation is in accordance
with [2].

The following notation is used below:

ay as ... «a . . .
»Ey Lo P } z | is the hypergeometric function:
b] bg . bq l v -

I'(z) is the Euler gamma function;
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B(x.y) is the Euler beta fuction;
P,,Oj 3(t) is the Jacobi polynomial;

Qi (t) = (1= (1 + )7 P(t),

6.4.1 The 1dea of the Method

Let us introduce the idea of the method of orthogonal polynomials on an
example of the solution of the so-called characteristic Cauchy singular
integral equation of the first kind

1
l/”(”d" = (1), (~1<t<1), (6.73)
-1 ’

where the function f(t) is given and y(f) is unknown.

Equation (6.73) plays an important role in the theory of elasticity,
in fracture mechanics, in fluid mechanics, in the theory of electricity, in
acoustics and in other applied sciences.

To obtain the solution of equation (6.73) we will use the following
three relationships:

- Un.~1(t): (071)

!
1/1>,,—’ i) 1-7 i
—_ (]T - _Ph 272 (t) (() 70)
— 1 1+
’/'i'_l (7‘ ) V T
-l<t<l, (n=0,1,2,...),
1 [ U (VT =72
— T°UT
;;/ d Tﬁf = T (t), (6.76)
—1

—l<t<l, (n=0,1,2,...),

where T}, (t) is the Chebyshev polynomial of the first kind, U, () is the
Chebyshev polynomial of the second kind and P2(t) is the Jacobi poly-
nomial.

Relationships (6.74) -(6.76) are called the spectral relationships.
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The nature of the applied problem. which was reduced to the Cauchy
singular integral equation (6.73). determines the class of solutions. In the
classical theory of the Cauchy singular integral equations the following
three cases are considered:

a) solution unbounded at t = +1;

b) solution unbounded at t = —1 and bounded at ¢ = 1 (or, what is
equivalent, bounded at t = —1 and unbounded at t = 1);

¢) solution bounded at ¢ = +1.

The method of orthogonal polynomials allows us to obtain a solution
in all three cases.

a) Solution Unbounded at ¢ = +1

Let us suppose that we look for the solution unbounded at both ends
t = £1. Then, comparing equation (6.73) and the spectral relationship
(6.74), we see that it is possible to look for the solution y(t) in the form
of a series of Chebyshev polynomials of the first kind:

1 =
Yt} = ———— ndn(l), 6.77
!/( ) \/TTT—Z ”;] Y ( ) ( ) )

where the coefficients y, must be found.
Substituting (6.77) into equation (6.73), using the spectral relation-
ship (6.74) and the known integral

|
T

L
R
|
::(Sr
]
J_L

we obtain:

S wlaa(t) = f8), (~1<1<1). (6.78)

n=1

To determine y,,. we multiply both sides of the equation (6.78) by
Unp—1(t) and integrate from { = —1 to ¢t = 1. Taking into account the
orthogonality of the Chebyshev polynomials of the second kind

1 is L
: o 5., ) 9. k=m
/ U k(”(/nz(")\'fl t2dt { 0. k # m

g
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we obtain:

1

" :%/f(t)Un‘l(t)\/l “Bdt, (n=1,2,...). (6.79)

-1

The constant yg can be found from the additional condition providing
the uniqueness of the solution. For example, if the additional condition
is

I
/y(t)dt = A, (A= const), (6.80)
1
then
h X PTUndt & [ Tt To(t)dt
n\l)@ n 0 ] ' o
/ Z 111/ 1o t2 = Z Yn /“‘:‘t—z'*— = TYQ, (()81)
21 n=0 7 n=0 7,
and therefore
A .
Yo = —. (6.82)
T

The formulas (6.77), (6.79) and (6.82) give the solution of the equa-
tion (6.73) in the class of unbounded functions.

b) Solution Unbounded at ¢t = —1 and Bounded at ¢t =1

Let us now suppose that we look for the solution which is unbounded
at t = —1 and bounded at ¢ = 1. In this case, comparing the equation
(6.73) and the spectral relationship (6.74), we see that it is possible to
look for the solution y(t) in the form of a series of Jacobi polynomials

LA
P2 (t)
> 1
7/(’) = Z yYnd 7;2 : t (683)
k =)

where the coefficients y,, must be determined.
Substituting (6.83) into equation (6.73) and applying the spectral
relationship (6.75) we obtain:

1
).,,. 3
E ynd

n=0

mi»—

= f(t), (~l<t<1). (6.84)
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-1

To determine y,,, we multiply both sides of equation (6.84) by P, ' (t)

and integrate from £ = —1 to £ = L. Tdkmg into account the orthogo-

11
nality of the Jacobi polynomials P, 2'2(t)

1 2
11 11 14+¢ Mmt+s)
/Pk ()P tE(t) jﬁdt - ) F m
1 -t 0, k #m
—1 ;
we obtain:
1
1‘2(n+1 ;% 1+¢ ( .
Yn = ft)p, 22 t)v 1~_—tdt, n=0,1,2,... (6.85)
-1

The formulas (6.83) and (6.85) give the solution of the equation (6.73)
in terms of the class of functions unbounded at t = —1 and bounded at
t = 1. In contrast with the case of an unbounded solution, we do not
need any additional condition for determining the unique solution of the
equation (6.73), because the selected class of solutions is narrower.

¢) Solution Bounded at t = *£1

Finally, let us suppose that we look for the solution which is bounded at
both ends t = £1. Then, comparing the equation (6.73) and the spectral
relationship (6.76), we sce that it is possible to look for the solution y(t)
in the form of a series of Chebyshev polynomials of the second kind:

>
. S o
y(t) = V1—12) " yUn(t), (6.86)
n==0
where the coefficients y,, must be determined.
Substituting (6.86) into equation (6.73) and utilizing the spectral
relationship (6.76) we obtain:

o
- Z YnTort (t) = f(t)» (_1 <t < 1) (()87)
n=:0
To determine 1,,, we multiply both sides of equation (6.87) by ;41 (¢),
(n=0,1,2,...), and integrate from t = —1to ¢ = 1. Taking into account
the orthogonality of the Chebyshev polynomials of the first kind

1 7, k=m=0

_ ) L.
/ 1_f2 t = 5 k=m#0
~1 0, k#m
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we obtain:

1
2 [ 1),

Yp = — t, (n=0,1,2,...). 6.88
Yn \/T—:{—Q ’ ( ) ( )

=

Multiplying (6.87) by Tu(t) and integrating from ¢ = —~1 to t = 1 we
obtain the condition for the existence of the solution of equation (6.73)
in terms of the class of functions bounded at t = +1:

L
©f(t)dt X
RAN e a—Y 6.89
b= (6:59)
If the right-hand side of the Cauchy singular integral equation (6.73)
satisfies the condition (6.89), then the solution y(t) is given by formulas
(6.86) and (6.88); otherwise the solution does not exist.

It is worth noting that the spectral relationships (6.74) (6.76) allow
us also to obtain a solution of the characteristic Canchy singular integral
equation of the second kind

1
ylt) — 5/“””7 ), (~1<t<1), (6.90)
w 4 T

and of the so-called complete equations corresponding to the character-
istic ones (6.73) and (6.90), namely

1
-71; / (;{7 + 1{(7‘,,7)) y(r)dr = f(t), (-1<t<1), (6.91)

T, Tt
-1

1
y(t) — A / ( ! + K(f.r)) y(r)dr = f(t), (=l1<t<l1), (6.92)

where the kernel K (¢, 7) does not contain singularities. The correspond-
ing integral equation is reduced to an infinite system of linear algebraic
equations, whose approximate solution can be found by the method of
reduction. The details and the justification of such a solution procedure
can be found in [213].
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6.4.2 General Scheme of the Method

Now let us briefly describe the general scheme of the method following
[213].

Let us consider the integral equation of the first kind

b
/K(t, Nyl = f(8), (a<t<b) (6.93)

Suppose there is a spectral relationship for the integral operator with
the kernel K (¢, 7). This means that there are two families of orthogonal
polynomials, {p; (t)}o, and {p,, (t)};<,, and non-zero numbers {7, }°<
such that

b
/ K(t, ")pr(n)ps (7)dr = 0n9+ (1)p, (1). (a<t<b, n=0,0).

(6.94)
Let us suppose that the polynomials p;f (¢) and p;, (t) are orthonormal
in (a, b), i.e.
b N "
/ P ()pss (t)dt

= dnm, U:';l = pj;(t){]';(t)._ (()‘)3)
w4 (1)

where d,,, is the Kronecker delta.
Then we can look for the solution of the equation (6.93) in the form
of the series

o

y(T) =pe(7) D ymph(1), (a<t<b), (6.96)

ez}
where the coefficients y, must be determined.
Substituting (6.96) into the equation (6.93) and using the spectral
relationship (6.94) we obtain

g+ (1) Z Um.llmp;t([’) = ]‘(f) ((l <t < b) (697)

=0

Multiplying both sides of (6.97) by p_(t)p, (f) and integrating from
@ to b with the use of the orthonormality condition (6.95) gives

b
nOn = fm fn= / .f(f)p~ (f)pn (t)dte (698>
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from which we find y,. Therefore, the solution of the equation (6.93)
can be written in the explicit form

o ot
y(t) =pi(t) D Ir_ﬁ%@ (6.99)

m=0 m
In the case of the equation of the first kind

]
/ R(t, T)y(r)dr = f(1), (a<t<b), (6.100)
a
with the kernel R(t,7) for which the spectral relationship is unknown, it
may often be possible to write it in the form

b
/{K(t,T) + (6 by(rydr = f(1), (@<t <b). (6.101)

a

where D(1, 7) is a regular kernel. Then substitution of (6.96) into (6.101),
the use of the spectral relationship (6.94) and the orthonormality condi-
tion (6.95) lead to the infinite system of linear algebraic equations:

o
Tnln + Z dnmym = fm (” = (), OO), (6102)

m==0)

b b
dpm = / / D(t.7)p—(t)ps (7)) (T)p;, (t)dtdT,

a a
where f, is the same as above.

The infinite system (6.102) can be solved approximately by the reduc-
tion method. It is worth noting that the solution of the integral equation
of the first kind (6.101) is reduced to the solution of the infinite linear
algebraic system of the second kind (6.102), which is an advantage from
the point of view of approximate numerical solutions. The conditions of
convergence of the reduction method for the system (6.102) are given in
[112], [111], and [213].

For some kernels K (t, 7) more than one spectral relationship may be
known. For example, in the case of the Cauchy singular kernel (¢ — T)"]
we have three spectral relationships for classical Jacobi polynomials (see
(63, formulas 10.12(47) and 10.12.(48)] and [213, formula A-12.4, p. 304]),
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and an infinite number of them for generalized Jacobi polynomials [192]
(note also the spectral relationships (6.114), (6.113), and (6.117) below).
In such a case, the definite choice of the spectral relationship depends on
the character of the problem resulting in the considered integral equa-
tion; the character of the problem determines the class of solution. The
spectral relationship must be selected after choosing the class of solu-
tions and is accomplished, if necessary, with additional conditions for
determining additional constants (i.e. finding the unique solution) or
with the conditions (usually for the right-hand side) of solvability (sec,
for example, [192] and [193}).

The availability of a suitable spectral relationship is a necessary con-
dition for the application of the method of orthogonal polynomials. A
wide collection of spectral relationships for various integral operators of
the first and the second kinds is given in [213], but it does not contain
the relationships given in this paper.

In the subsections following below we present a collection of spectral
relationships for the three types of fractional differential operators:

-

e the Riesz fractional integrals with the kernel R(t,7) = |t — 7|

e the left Riemann-Liouville fractional integrals
DS / (t — ) Vf(r)dr, (6.103)

e the right fractional Ricmann- Liouville integrals (sometimes also
called the Weyl fractional integrals)

b
DO / 0oL f(r)dr, (6.104)
t

6.4.3 Riesz Fractional Potential

We will start by obtaining the spectral relationships for the integral
operator with the kernel |z — t| 7" called the Riesz potential operator

[232).
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THEOREM 6.1 o If a > -1, 3> —1,0< v <1 and v is an arbitrary
real number, then for —1 < x < 1 the following hold

i

: )
/ (slgn x —t)+ dn(w”) Q7 )Jt
e

tan & |x — t|¥

B sinz(y — %)J’l(g) + sinm(y + Y 3)Py(x) .
['(v)sin 5 cosym : =0.1,2,...,
(6.105)

where

I'im+ao+DI(m+ )13 —v+1D(-1)7
o(ey - )T + )T )(=1)

-8t (m+a+ 3 — v+ 2)m!

m+tv, v—-m-u—73~1|1+=zx
X o F) ( ’ P —‘) (6.106)
—J + v ' 2

Tim+ 3+ DIy —3—1)(=1)"+!

(I)g(.’l:) = 2—(1(1 + 1.)1/713*1
m+8+1, -m-a l+zx )
x o F) ( B-vi2| 3 ) ) (6.107)

Proof. To prove this statement, let us consider the following integral
1.
J(z) = / o — 0QU (dt,  |a < 1 (6.108)
i
Re(a, 8) > —1, m=0,1,2,...

where the function k(z) is defined by
k(z) = ™ /sv"lcuws, 0<v<l, (6.109)
0

Substituting (6.109) into equation (6.108), interchanging the order
of integration, using the Rodrigue formula for Jacobi polynomials and
integrating by parts we obtain:

J(r) = (=) B(m + 8+ 1,m + a + 1)emamrordtlg,n-1

2 -
mtv—1 i 14)s m+ 3+ 1
X /S e ( 2m+ o+ 3+ 2

- 2’is> ds. (6.110)

0



6.4. METHOD OF ORTHOGONAL POLYNOMIALS 183

Evaluating integral (6.110) with the help of [62, formula 6.9(9))] and
then using [63, formula 2.10(2)], we find

J(z) = ™8P (2) + O TN by (1), (6.111)

where @) (z) and ®3(x) are given by (6.106) and (6.107).
On the other hand, with the help of [62, formulas 6.5(1) and 6.5(21)],
integral (6.109) can be expressed in the form

k(z) =T(w)lz| " exp {m (’y + gsign(z))} : (6.112)

Substituting (6.112) into (6.108), taking into account the equation
(6.111), and separating the imaginary part, we obtain (6.105), which
ends the proof of Theorem 6.1. (Consideration of the real part after
replacing v with ~ + % leads to the same final expression.)

THEOREM 6.2 o If a> =1, 3> —1 and 0<v <1, then for —1 <
ax < 1 the following hold

1

/ QA (t)dt _cos Oy (x) +cosw (5 — 3) @a(x)
J e =t I'(v) cos &7 '
m=0,1,2,...,

where ®(x) and Po(x) are the same as in Theorem 6.1 o
Proof. This is a particular case of Theorem 6.1 for 4 = 1.

THEOREM 6.3 o If a> —1, 3> —1 and 0<v <1, then for —1 <
x < 1 the following hold

1 . ' 1% sy . -y
/. 251gn(.[: —t) Q0 (1)l = —sin %@1(;1:2 + hl%l ﬁﬂg% - 3) ‘1’2(1)
lx — t|v I'(v)sin &7

m=20,1,2,...,

where ®(x) and $o(x) are the same as in Theorem 6.1 o

Proof. This is a particular case of Theorem 6.1 for v = 0.
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THEOREM 6.4 o If 0<wv <1, v isan a7bzfmry real number and r and
k are integer numbers such tha,t r>-1+v-5,k>~-1—-~—%, then
for =1 < < 1 the following hold

1 e By By ke
/ i Il ) ) + t'dIl(T’y) m'% CRANAS (t)dt
& tan 4 | — t]¥
<1
(= 1) k+1s1nﬂ'( — V)2r+k+1F(m+1/) yHE—r—l, ~,+%_.kd,]($)
T m!T(v) sin &5 reos(ym)sinw(—y + 5 — k) meAr k] ’

(6.113)
m+r+k+12>0. .

Proof. Indeed, taking in (6.105) 3 = v+ § +k (in this case the second
term in (6.105) disappears) and « = —y+ 5 +7 (duc to this choice ®;(x)
becomes a polynomial), we obtain (6.113), which completes the proof of
Theorem 6.4.

Theorem 6.4 is a generalization of Popov’s formula [213, formula A-
6.3, p. 298].

THEOREM 6.5 (Spectral relationship for the classical Riesz potential)

olf 0 <v <1 andr andk are integer numbers such that r > *"”QH,
k> — ”' 3 then for —1 <z <1 the following hold
,u+1 k
/ Qm It B (t)dt m(— 1)’2r+’”+lf(m+z/)1 == rTm;.( )
= x
le —t]» m!I'(v) cos 4F bk
~1
(6.114)

m+r+k+1>0 °

Proof. This is a particular case of Theorem 6.4 for v = %

In the general case, the Jacobi polynomials in the right-hand side
of equations (6.113) and (6.114) are the Jacobi polynomials orthogonal
with non-integrable weight function [192].

In order to consider classical Jacobi polynomials, we must have, in
addition to the conditions of Theorem 6.5,

v—1 v—3 ,
v=1_ .. 1 k> -l 5115
. r> 1, 5 > (6.115)

There is only one pair of values for + and k which simultaneously satisfies
the conditions of Theorem 6.5 and (6.115): » = 0, &k = —1. In this case,
equation (6.114) takes the following simple form:
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THEOREM 6.6 o If 0 < v <1, then for —1 <x <1 the following hold

1 v—1 v=-1
Qi 2 (f) 7TF(772+I/) v=1 v-1
dt = Pz ‘ 11
ICE - f'” T’L!F(V) cos '_/57[ n (.'L") (6 1 6)

m=20,1,2,... .

THEOREM 6.7 o If 0 < v < 1 and r and k are integer numbers such
that r > =1 — 3, k> —1— %, then for —1 <z <1 the following hold
1
sign(x —t)  2irtik m(—=1)T(m+v) 1,5 k-1
t)dt = b3 ;
/ jx —tv Qm (t) Q—r—k- 1m‘F(1/)bm kL (@),

~1
(6.117)
m+r+k-+12>0. .

Proof. This is a particular case of Theorem 6.4 for v = 0.

There are four particular cases of Theorem 6.7 for classical Jacobi
polynomials, namely

i)r=k=-1,;

(iyr=-1Lk=0;

(i) r=0,k=—-1;

(iv) r =k =0,
but only three of them are different, because (ii) and (iii) lead to the
same formula. We have:

THEOREM 6.8 o If 0 < v < 1, then for =1 < x < 1 the following
formulas are valid:

| . ?
/%L(:Z:L)Qi‘l*%*‘(t)dtz— TRt Y) pite. (6118)

P vt m—1
E |z — | 2m!T(v)sin %
m=1,23,...;
1
—t)y v 27T (: 5- -1
/%lgn(ﬂ JoiF ar = 2T Y) pi il (6 110)

lx — ¢}V ~ m!T(v)sin ¥

m=20,1,2,...;
1

sign(z kol rl'(m4+v) %21 L
= e 7) s 6.120
./ Qm (t)d ~m!T(v) sin e8 " () ( )

~1
m=0,1,2,... .
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Taking in (6.118)-(6.119) v — 1, we obtain the well-known formu-
las of the Hilbert transform of weighted Chebyshev polynomials of the
first and the second kinds [63, formulas 10.12(47) and 10.12.(48)] and

11

weighted Jacobi polynomials P, 22 (z) [213, formula A-12.4, p.304].

6.4.4 Left Riemann—Liouville Fractional Integrals
and Derivatives

THEOREM 6.9 o If 0 < v < 1, and r and k are integer numbers such
thatr > v —1, k > —~1 —v, then for —1 < x <1 the following hold

[ Q) e (=)D 4 v) ey, ke

f ). 121
(z — ) m!T(v) sin(vn) miriken (@) (6121)

m=10,1,2,... )

Proof. This is a particular case of Theorem 6.4 for v = v/2.
The relationship (6.121) can be written also using the symbol of
fractional differentiation:

o v m(—1)HHD () e ke
ani i) = T ),
(6.122)

(Jtj<1, O<v<l, r>v-1 k>-1-v, rk=0cx)

n!T'(v) sin{vr)

In the general case, the Jacobi polynomials in the right-hand side
of equation (6.121) are the Jacobi polynomials orthogonal with non-
integrable weight function [192].

To consider classical Jacobi polynomnials, we must have, in addition
to the conditions of Theorem 6.9,

v—r—1>-1, —k—1>—l. (6.123)

There is only one pair of values for r and k which simultancously satisfies
the conditions of Theorem 6.9 and (6.123): r = 0, k = —1. In this case,
equation (6.121) becomes

THEOREM 6.10 o If 0 < v < 1, then for —1 < x < 1 the following hold

xr

Ov-1(t) 7l (m+ v)
m M= VT pr=l0g, 6.124
/ (x —t)” ‘ m!l(v)sin(pvr) ™ (), ( )

m=0,1,2,... °
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Putting v = 1 — A (0 < A < 1) and performing obvious substitutions
of variables, we obtain

y
/‘ O=A(2r 1)d'r _ al{m —A+1) A0

S 2y — 1), 5.125
(y — )12 22 m!IT(1 — X)sin(Am)" 7" y—1). (6125

O<y<l1; m=0,1,2,...

The integral in the left-hand side of (6.125) is a multiple of the
Riemann-Liouville fractional integral of order A, which is defined by
(e.g., (179, 232])

)

D) = g [= e (612

[¢2
Using this notation, we can write equation (6.125) as
THEOREM 6.11 o If 0 < A< 1, then for 0 <t <1 the following hold

Cim—X+1)
-A _
oD M2t - 1) = By S e

m=0,1,2,... )

P02t - 1), (6.127)

THEOREM 6.12 o If 0 < A< 1, then for 0 <t <1 the following holds

2% m)

A A0 0,—~A

DM P, P 1) = 2t — 1), 1

0 m 2 ) (m A+ 1)Qm ( ) (6 28)
m=20,1,2,... .

Proof. Applying the operator of Riemann-Liouville fractional differ-
entiation to both sides of equation (6.127) and using the well-known
property (e.g, (179, 232])

oD} (oD7 f(1) = £(1),

we obtain equation (6.128).

THEOREM 6.13 o If 0 < n—1<p < n,nisinteger, then for 0 <t <1
the following holds

F(TU, +p+ ]) ViR
[)Df Q(,]npn(Qt _ 1) — WR” T,(Qt - 1), ('H’L > 7?,)
0, (m < n).

(6.129)
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Proof. Differentiating both sides of equation (6.127) n times with
respect to ¢ and using [63, formula 10.8(17)], we obtain

n Dim+n—A+1) gn-an

d Mo

— oD Qn M 2t 1) = ol men (2E=1) (mzn)

dt 0, (m < n).
(6.130)

In the left-hand side of this relationship we recognize the Riemann-
Liouville fractional derivative (e.g., [179, 232]) of order p = n — A. This
allows us to write equation (6.130) as (6.129).

THEOREM 6.14 o If a > —1, 3> -1 and A >0, then for 0 <t < 1
the following holds

(‘1)T'lF(A)F(m + ;[3 + ]>2a+ﬂ
(8 + A+ 2)m!

oD7QE (2t - 1) =

CnadA BN [ T a+[)’+m+)\+1| .
X (1 t) t 2 Fy ( A4Aa+1 ‘t (()]31)

m=0,1,2,... )
Proof. Putting in (6.105) v = £ we obtain

sinw(v — )

() sin(ro) T2 (6.132)

[@-0am i -
g

Substituting now (6.106) into (6.132), setting » = 1 — A and using
(63, formula 2.9(2)] we obtain (6.131).

6.4.5 Other Spectral Relationships For the Left
Riemann—Liouville Fractional Integrals

The following spectral relationships for the Chebyshev and Legendre
polynomials were obtained by 1. Podlubny with the help of the properties
of the finite Fourier transforms [191]; the formula (6.135) can also be
found in (2, formula 22.13.10]

D { \;r(i‘)?} = VI (Paf1) = Pua(D). (6.133)

(P.y=0, |t|<1, n=0x)
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_4Dfﬂ{UMUvTI7}=-(Rﬂﬂ+fkuﬁo, (6.134)

(t| <1, n=0,0)

— 2:4/7 T, (t Tt
71Dt 1/2{Pn(t)} = \/; ’ "‘( )+ = l( )1
2n+1 V1t

(Itf <1, n=0,00)

(6.135)

There is a spectral relationship relating the Gegenbauer polynomials
and the Jacobi polynomials (sec [216, formula 2.21.2(9)], [91]):

_1D;(1{(1 + t)B_I/QC',(l'B)(t)} = 0_3‘13(1 1 t)(”’g‘"l/zl’;‘f‘ w12 3ran /2,
(6.136)
ad _ 23 +n)I(B8+35)
"TTEA Tt Bt L)

] 1
(<1, a>0, g> 2

R. Askey obtained another spectral relationship for the Jacobi poly-
nomials [8]:

n = 0, 00).

_ P Min+4+4+1) o
1t B pa,3 _ / x—p, 3+ .
1D {(l TR (t)} S Pn+3+p+ 1)P" (1), (6.137)

(tl<1l, a>-1, Bg>-1, u>0).

The following formula for the Laguerre polynomials was probably first
obtained by E. Kogbetliantz (see [247, Task 20, p. 383 of the Russian
edition], where a reference to the Kogbetliantz’s paper is given):

B +n+1)

a+3 o+ g
I‘((x -+ 13 +n+ ])t Ln (t)‘ (6-138)

()Dcﬁﬂ{tdm{‘i)(t)} =
(t>0, 3>-1, a>0 n=0x).

6.4.6 Spectral Relationships For the Right
Riemann-Liouville Fractional Integrals

The following spectral relationsips for the Chebyshev and Legendre poly-
nomials were obtained by I. Podlubny with the help of the properties of
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the finite Fourier transforms [191]; the formula (6.141) can also be found
in (2, formula 22.13.11]

t[)—l/z{m} f(P,,(HP,, (1)), (6.139)

J1=1 2
(P.1=0, Jtj<1l, n=0,)
DU (VT =1} = g(&(t) ~ Pani(t)). (6.140)
(Jt} < 1. n=10,00)
—1/2 } . Qﬁ Tn(t) - Tn—H(t) v 1410
D P} = o1 (6.141)

(1l < 1. n=0,00).

R. Gorenflo and Vu Kim Tuan obtained the spectral relationship for
the Gegenbaucr polynomials [91]:

—k/2 [ (k)2 n!I'(k/2) k—1)/2 (k)2 :
\D; { ”(t)} = +A)(]—t)( 20kID (1), (6.142)

(It <1, n=0,00, k=0,00),

where the functions

cos((n + %) arccos t)

Y’(k/Q) ) =
S =7
are orthogonal on (=1, —1) with the weight w(t) = V1 — t*:

/Y(k/z (t)Y(‘/z) t)ﬁz(ll = =0pm

-1

and can be expressed in terms of the Chebyshev polynomials (U_;(t) =0):

Yn(k/z)m = (1- t2)~1/27’n+%(t) for even k | (6.143)

v, /2 ()= ((1—t2)'1/27'fr,+%(t)—(1—tz)l/zUm_%(t)), for odd k.

(6.144)

Sl
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The following spectral relationship for the Jacobi polynomials was
obtained by R. Askey [8]:

_ Tln+a+l) POtEA=Ig) (6.145)

DRI - epef )l =
e {( VP (>} Mn+a+p+1) "

(tj<1, a>-1, g>-1, p>0).

The spectral relationship for the Laguerre polynomials was given by
G. Ya. Popov [213, formula B-7.2, p.307]:

tD;F*{c—tL,(;‘ﬂ(t)} = e LI (1), (6.146)
(a>0, B>a-1 n=000).

6.4.7 Solution of Arutyunyan’s Equation
in Creep Theory

As the first simple example of the use of the method of orthogonal poly-
nomials we will consider the equation deduced by N.Kh.Arutyunyan [7]
for the plane contact problem of linear creep theory, which can be re-
duced to the solution of the equation with the Riesz kernel:

1
l)(—Tldi% = f(t), (jt] <1). (6.147)
I, it — 7|
Let us obtain the solution to equation (6.147) using the method of
orthogonal polynomials.
The spectral relationship (6.116) suggests the following form of the
solution:

o

et a-1 a-}
p(r) =3 pu@n® % (7). (6.148)
n=0
Substitution of (6.148) into equation (6.147) and the subsequent use

of the spectral relationship (6.116) gives:

x 7rI‘(‘n -+ (y) o=l a-l ‘
Drzm“_*f{;\:'Ph 272 ({) == I (f) (1” < l)’ (6149)
ngo n!T (cx) cos 5

and using the orthogonality of the Jacobi polynomials we find the coef-
ficients p, (n =0, co):
(2n+ a)T?(n + o)l («a) cos &F
po = fu )T (n 5 )_(l) 2 (6.150)
w20T2(n + %5°)
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1
a=1 a-1
fn= /f(t)(l-t2)<<r1>/?Pn2 T (tydt, (n=0,0c).  (6.151)
Y

The formulas (6.148). (6.150), and (6.151) give the explicit solution
of the equation (6.147). For the numerical computation of the solution
G. Ya. Popov’s quadrature formulas [213, pp. 37-39] can be used. Those
quadrature formulas do not require knowledge of the roots of the Ja-
cobi polynomials and take into account the oscillations of the integrated
function.

6.4.8 Solution of Abel’s Equation

As the second example let us consider the classical integral equation
(6.72) of H.N.Abel.

Let us suppose that the right-hand side f(t) is bounded at ¢ = 0. In
this case, it is known that y(¢) ~ const - 7%, (f — 0). Therefore, we
can usc the spectral relationship (6.127) and look for the solution in the

form

y(r) =172y Py %2 = 1). (6.152)
n==()

The usual procedure of the determination of y,, leads to the following
result:

2n—a+ HI'(n+1)
AM(n—a+1)

Yn =

L - / FIOP02t — 1)(1 - =t

(6.153)
(n=0,0c).

The formulas (6.152) and (6.153) give the explicit solution of the
equation (6.72). For the nwmerical computation of the solution the
above-mentioned Popov quadrature formulas can be used.

6.4.9 Finite-part Integrals

In the above sections we give some spectral relationships for the Jacobi
polynomials orthogonal with non-integrable weight function. The devel-
opment of the theory of such generalized polynomials has just started
recently, so in this section and in the subsequent one we give ouly very
basic information, which is necessary for applications.
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Because of the non-integrability of the weight function, the main
instrument is the notion of the finite part of a divergent integral.

The definition of the finite part of a divergent integral was given by
Hadamard [99], when he was considering the integral

b
IN) = | fz)(x - a) Mz, A< -1 (6.154)
a

He obtained and used the first regularization formulas for divergent
integrals with non-integrable weight function like (6.154).

In the paper [192] a class of Jacobi polynomials which are orthogonal
with non-integrable weight is studied. Among other results, the following
regularization formula for the finite-part integrals was obtained: if f(z)
is continuously differentiable in [~1,1], then

1 f(z)dx _ a— (a+ B)x
/ (1 — z)o+l(1 4 )+l _4ad/ 1~£I‘)"‘<l+i)ﬁf( z)da

(a+ Na+3-1) / .I‘)d.T
40[)‘ (1—-2x)

gl (6.155)

where « and 8 must satisfy the following COHdltl()IlS:
a<l, g<l, a#0, 3#0, a+3#0;1

If both integrals in the right-hand side of (6.155) exist in the usual
sense, then the value of the right-hand side gives the finite value of the
integral in the left-hand side. Mathematically, we use here analytical
continuation with respect to « and 3.

One of many particular cases of the regularization formula (6.155),
which will be used below, is for o = 3 = L.

2
1 ) 1 ]
ydx -
/ 2 / 1/2 (6.156)
2y .

We can also mention the following two particular cases of the formula
(6.155):

/ £)dz / O<a<l)
-_— a hd
(1 ~$“*1(1 +z)l=0 T 2a (1—T 1+r) o’

(6.157)
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f(z)dz _ 1 ; (2a = 1 —z) f'(x)dx
J (1-x)oti(1 4+ 2)2~¢  4a(l ~ cv)vl (1—-z)*(1+ax)l-a’

(6.158)

0<a<l).

Using (6.156), we can easily evaluate, for instance, the following
finite-part integrals:

1
dx
Io = / T = 0 (6.159)
/ (1— x2)3/2
[k [ 22
r4dx z2dr
L= ] a—un= / = - 6.160
? _/1 (1 — 22)3/2 J (1-z2)1/2 g ( )
/ ztdr / 4rtdx 37
Iy = /“*“‘*" = / =~ 6.161
! Jo1- 22)3/2 J =% (1 —z01/2 9 ( )
1
2+l g ; 2n+1
" da (2n+ V" tdx ‘
m = _./ (1 _ 562)1/2 =0, (TL > 0) (6162)
-1

In the case of equalities the rules applicable to integrals in the classical
sense can be used also for the manipulation with finite-part integrals. For

example, it holds that
b ¢ b
[=]+/
a n 4

and so on. However, manipulation with inequalities requires some care.
For example, knowing that f(t) is positive in [a, ], we can say nothing
about the sign of the finite-part integral of the type (6.154) or (6.156).
Indeed, it may also be zero (6.159) or negative (6.160).

Estimates for finite-part integrals can be obtained using the regular-
ization formulas.

It is interesting to note that the Riemann-—-Liouville fractional deriva-
tive can be written in the form of a finite-part integral

DY f(t) = —— / F)E— 7)1 (6.163)

which can also be considered as a convolution of two generalized func-
tions: ®_,(t) = ¢t *1/I'(-a) and f(t). Thercfore, the finite-part in-
tegral form of the fractional derivative is equivalent to the generalized
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functions approach described in Section 2.4.2. However, it seems to us
that the finite-part integral approach can be in a certain sense more
transparent.

6.4.10 Jacobi Polynomials Orthogonal
with Non-integrable Weight Function

The authors of the Bateman Manuscript Project [64] noticed that the
majority of the relationships for the classical Jacobi polynomials P{;}"/ 3(1‘,)
can be (formally) used even if @« < —1, or 4 < —1, or both a < -1 and
g < —1. That remark opened a way to the generalization of the Jacobi
polynomials cousidering unrestricted values of the parameters « and 3.

The first real application for such generalized Jacobi polynomials was
found by G. Ya. Popov and O. V. Onishchuk [181]. They reduced the
problem for a plate with a rigid inclusion to an integral equation with
a so-called smooth kernel, for which the Jacobi polynomials P®9(t), as
they proved, are the cigenfunctions. This allowed them to obtain the
solution of the integral equation in the form of a Fourier- Jacobi series.

In this section we use some parts of the theory presented in [192].

For the application of Jacobi polynomials orthogonal with non-integr-
able weight, function to the solution of fractional integral and differential
equations we first of all need a tool for the evaluation of the Fourier-
Jacobi coefficients of the function f(t). The following formula provides
such a tool:

! ~x—1,~F- l P
/ fOPo b8 gyde _ /f P A(t)dt (n = T.50).
(1 =)ot (1 + 1) *’“ 2n L—-t)*(1+t)7
(6.164)

under the assumption that f(t) is continuously differentiable in the closed
interval (~1,1],0< a, <1, a#0,3#0,and a + 3 # 0: 1.

The formula (6.164) allows easy evaluation of the squared norms of
the considered Jacobi polynomials for n > 1:

=1

1
g , 2 )
le:a—l.—dwlnz - /(Pr—lvavl,fﬂ l(f)) (1 - t)~n—l(1 + t)—-,,#—ldt
1

o /l (Pret o) PP

2n . (1—t)e (1+8)?
-1
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n—a—F-1 e, — (3|1
_nma= 8- ey 3.165
rre Ll (6:165)
2-0:'11“1 I“(n - (x) [‘(n — ﬁ)
_ . ).166
Cn—a-g-1)nl'n-a-3-1) (6150

From the formal point of view, the expression (6.166) is the same
as the formula 10.8(4) from [64]. Howcver, in our casc the expression
(6.166) represents the regularized value of the finite-part integral.

It follows from (6.166) that for n > 1 we have

>0, for n>a+G+1
|P7e b 8-120 =0, for n=a+3+1 (6.167)
<0, for n<ao+3+1,

which means that squared norms of the considered Jacobi polynomials
are not always positive, but can also be negative or zero, depending on
a combination «, 3 and n. Such a norm is called an indefinite norm
[10]. The convergence of Fourier series in such orthogonal polynomials
should be investigated in indefinite metric spaces. Moreover, since we
have only a finite number of polynomials with negative squared norm,
those indefinite metric spaces are Pontryagin spaces (definitions can be
found in [10]). We give below only a very brief overview of some results
which can be useful for proper application of the considered generalized
Jacobi polynomials.

@-metrics and (J-orthogonality

Let F be a linear space of continuously differentiable functions in the
closed interval [—1, 1]. Let us consider the real linear form

1
(£ 9} = [ f0a -0 0+ 7 de
-1

The following properties of this form are obvious:

L {f, 9} =19 f}
2. {Aufi + Aafa, g} = Ad i, g} + X {fe. g}

3. {f, f} can be positive, negative or zero.
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Indeed, it follows from (6.159), (6.160), and (6.161) that for & = 0.5 and
A = 0.5 we have

{1,1} =0,

{t, t} =

{1-t2,1-1%} =n/2.
The linear form {f, g} is an indefinite metric (@-metric) in F' [10].

It is said that f(t) is Q-positive, Q-negative, or Q-neutral, if {f, f} > 0,
{f. f} <0,0r {f, f} =0, respectively.

If {f, g} =0, then the functions f(t) and g(t) are called Q-orthogonal,
which we denote as f{L}g.

For example, f(t) = t is Q-negative, g(t) = 1 is Q-neutral, h(t) =
1 — % is Q-positive, and f{L}g, because {t, 1} = 0.
Similarly to the classical Jacobi polynomials we have:

THEOREM 6.15 o Py L=8-1(t) is Q-orthogonal to all polynomials of
lower order 11,,(t):

{P«n_—a_l’_’jvl, I,} =0, (m<n). e
We also have the Buniakowski inequality:

THEOREM 6.16 o If f(t) € F and g(t) € F are not Q-negative functions,
then

2
( /1 F(D)g(t)dt )
. (1 — t)“‘f1 (1 + t)ﬂ+1

.}
1
< | /G
(] _ t)0+1 1 +f A+1 _ cx+l(1 + t)/i+l
-1 -1

A system of functions S = {s,(t)},.;, where [ is an arbitrary set of
indices, is called a Q-orthogonal system, if

{317 SJ}ZJL(S'ijv Ui#os iEIa JEI

(&,; is the Kronecker delta).

THEOREM 6.17 o The system So 5= {P a-1,-f- 1} 18 a QQ-orthogonal
system. o
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A Q-orthogonal system S C F is called a Q-closed system, if there is
no function h(t) € F such that A(t) € S and h(t) # 0 and A{L}S.

THEOREM 6.18 o S, 5 s a Q-closed system. o

Let us divide S in two subsystems, s and S7, consisting of the Q-
positive and Q-negative functions respectively. The number of functions
in a smaller subsystem is called the range of indefiniteness of the system
S, and denoted r(S).

THEOREM 6.19 o For the system S, g we have

(Soy) = [+ B8+1], for a+8+1>0,
o) =1 o, for a+p3+1<0.

The range of indefiniteness of the system of the classical Jacobi poly-
nomials is equal to 0, and the Q-orthogonality becomes the usual orthog-
onality.

The Fourier—Jacobi Series

Let us suppose, as above, that 0 < a < 1, 0 < <1, a+ 3 #0; 1, and
recall that F is a linear space of continuously differentiable functions in
the closed interval [—1, 1}.

The considered generalized Jacobi polynomials, which are orthogo-
nal with non-integrable weight function, allow formal development of
functions in Fourier—Jacobi series, and such series have the uniqueness
property:

THEOREM 6.20 o If for f1(t) € F' and fo(t) € F their Fourier series in
Jacobi polynomials P~ 1=871(t) are identical, then fi(t) = fa(t). e

And these series converge for functions from F:
THEOREM 6.21 o For the function f(t) its Fourier series in Jacobi poly-
nomials P,y 8-1(1) uniformly converges to f(t) in the closed interval

[=1+¢, 1 — €], where ¢ is an arbitrary constant between 0 and 1.

For the evaluation of the Fourier-Jacobi coefficients of such series the
formulas (6.164) and (6.166) must be used.



Chapter 7

Numerical Evaluation
of Fractional Derivatives

In this chapter we describe a simple but effective method for the eval-
nation of fractional-order derivatives. This approach is based on the
fact that for a wide class of functions, which appear in real physical
and engineering applications, two definitions - Riemann Liouville and
Griinwald-Letnikov - are equivalent. This allows us to use an approxi-
mation arising from the Griinwald-Letnikov definition for the evaluation
of fractional derivatives of both types.

We also formulate the principle of “short memory”, which reduces
the amount of computation, and give two examples of its intermediate
usage: computation of heat fluxes in a blast furnace wall and numerical
evaluation of finite-part integrals.

7.1 Riemann—Liouville and Griinwald—
Letnikov Definitions of the Fractional-
order Derivative

The Riemann—Liouville Definition

Recalling Section 2.3, the Riemann-Liouville definition of the fractional-
order derivative is

¢
w1 AN f(r)dr ) |
R e (‘“dm) !———-————u LT -l<as<n). ()

199
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The Griinwald—Letnikov Definition

Let us also recall the Griinwald-Letnikov definition (see Section 2.2):

t—a
,1 )
WD f(t) = Jim S g ) 3 -1y ( ; ) (¢~ 3h)

(7.2)
where [z] means the integer part of x.

For a wide class of functions, important for applications, both def-
initions are equivalent (see Section 2.3.7). This allows one to use the
Riemann- Liouville definition during problem formulation, and then turn
to the Griinwald-Letnikov definition for obtaining the numerical solu-
tion.

7.2 Approximation of Fractional Derivatives

7.2.1 Fractional Difference Approach

We use the following approximation, arising from the Griilnwald-Letnik-
ov definition:

DPf(E) = AR f(R). (7.3)

In Figs 7.1-7.4 (see page 201) fractional derivatives of order a (0 <
a < 1) of the Heaviside function, sine, cosine and logarithmic function
are given. Computations were performed using approximation (7.3).

We sce the transition from o = 0 to a = 1, for which we obtained
conventional first-order derivatives. Derivatives of the Heaviside function
and the cosine function are unbounded at ¢ = 0. This is in agreement
with the well-known asymptotics of the Riemann-Liouville fractional
derivative of a function which is non-zero (but bounded) at the initial
point t = 0 [153, 179, 232].

Since log(t) and its derivatives are infinite at £ = 0, values for a small
neighbourhood of t = 0 arc not depicted in Fig. 7.4,

7.2.2 The Use of Quadrature Formulas

Another type of approximation can be obtained from the Riemann
Liouville definition by n-times integration by parts and subsequent ap-
proximation of the integral containing f()(7) (see also [179]). In this
work we prefer to systematically use approximation (7.3).
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Figure 7.1: Practional derivatives of order 0 < o < 1 of the Heavisiude
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Figure 7.2: Fractional derivatives of order 0 < e <1 of sin(t)
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Fractional derivatives of function y=cos{i}
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Figure 7.3: Fractional derivatives of order 0 < o <1 of cos(t).
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Figure 7.4: Fractional derivatives of order 0 < o < 1 of log(t).



7.2. THE “SHORT-MEMORY” PRINCIPLE 203

7.3 The “Short-Memory” Principle

For t > a the number of addends in the fractional-derivative approxima-
tion (7.3) and, therefore, in formulas (8.4), (8.25) and (8.55) (sec Chapter
8) becomes enormously large. However, it follows from the expression for
the coeflicients in the Griinwald- Letnikov definition (7.2) that for large
t the role of the “history” of the behaviour of the function f(¢) near
the lower terminal (the “starting point”) ¢t = a can be neglected under
certain assumptions. Those observations lead us to the formulation of
the “short-memory” principle, which means taking into account the be-
haviour of f(f) only in the “recent past”, i.c. in the interval [t — L,¢],
where L is the “memory length”:

«DEF(E) = DY f(2), (t>a+L). (7.4)

In other words, according to the short-memory principle (7.4), the
fractional derivative with the lower limit a is approximated by the frac-
tional derivative with moving lower limit ¢ — L. Due to this approxima-
tion, the number of addends in approximation (7.3) is alway no greater
than [L/h)].

Of course, for this simplification we pay a penalty in the form of
some inaccuracy. If f(t) < M for a <t < b, which usually takes place in
applications, then, using (7.64), we easily establish the following estimate
for the error introduced by the short-memory principle:

ML

A(t) = 1D F(t) = DR | < 5o

{a+L<t<bh)

(7.5)
This inequality can be used for determining the “memory length” L
providing the required accuracy e

) /o
Alt)<e, (a+L<t<b), i LZ(E\F—(KT)QI . (16)

To finish this section, we would like to mention that the formulated
“short-memory” principle (7.4) along with the error estimation (7.5)
completes, in a certain sense, the answer to Love's question formulated
in [182] (the relationship for the fractional integrals with different lower
limits was established in [232]).

From the historical point of view, the appearance of a similar idea
(“limited after-effect” assumption) in Volterra's work [252, chapter 1V],
must be mentioned.
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We use the short-memory principle below for computing changes in
the thermal loading of blast furnace walls by means of the fractional
derivative.

7.4 Order of Approximation

Let us first recall some basic facts on the approximation of integer-order
derivatives.

It is well known that backward finite differences can be used for
approximating integer-order derivatives. For example, for a fixed ¢ and
a small step A we can approximate the first-order derivative by the two-
point backward difference:

y(0) =y = Y-l &

which is obtained from the classical definition of the first-order derivative
by omitting the operation lim. Due to this, there is an inaccuracy in

h—(

the relationship (7.7), which depends on h, and which can be estimated
under the assumption that we have the exact values of y(¢) and y(t — h).
Writing y(¢ — k) in the form of the Taylor series, we have:

— . . "
ylt) = 2Oy 0y o),
which means that .
y(t) —y'(t) = O(h); (7.8)

in other words, the two-point backward difference formula gives the first-
order approximation of y/(t).

Let us show that formula (7.3) gives the first-order approximation for
the a-th derivative. For simplicity, it is convenient to assume that a = 0,
and that the discretization step i and the number of nodes n are related
by t = nh, where f is the point at which the derivative is evaluated. In
this case, we can write the approximation of the a-th derivative as

oDEf(E) = AT Y (=1 (j)f(t - jh) (7.9)

=0

ey (1 o 1) fE-gh.  (110)

=0
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To introduce the idea of the considerations which will follow, let us
take the simplest function fo(t) = 1 (¢ > 0). We already know that ils
exact a-th derivative is

tva

oDf fo(t) = Fi<a)

On the other hand, the approximation (7.10) gives the approximate
value
— o fi—a—1
oD folt) = ™Y ( ) )
)=0 I

Using the known summation formula for the binomial coefficients

> (-7' e 1) - ( ‘) (7.11)
b 7 n

and the asymptotic formula [63, formula 1.18(4)]

zb—a F(Z + (L)

— 31 ‘
Ty =1+06E™, (7.12)

we have for fixed ¢

oD fo(t) = h@ (n - (x)

n

7Y n"Tn—a+1)
Il —a) F(n+1)

—x

- I(:—_”) (1+0m), (7.13)
and thercfore for fo(t) =1 (¢ > 0)
0Df fo(t) — oDf folt) = O(h).
which is similar to the relationship (7.8).

Let us now consider fn,(¢) = ¢, m =1, 2, ... . In this case, the
exact a-th derivative is
[(1+m)

oD fon(t) = m) gmee
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and the approximation (7.10) of the exact derivative becomes

0D fn(t) = 7, “Z (j e 1) (-1 o

J

or, after expanding the binomial,
— = m o fi—a—1
()D?fm(t) — gm-a Z(_l)r<r)na-rz < )]r (7'15)
r=0 ,
The sum
N fi—a~-1Y,
s=% (J ], )j’ (7.16)

can be transformed to a more convenient form involving the Stirling
numbers of the second kind o( ™) , which are defined as coefficients of the
expansion of z™ in a sum of fa(,torial polynomials 2z [2, Chapter 24]:

"= Z oWl (7.17)
i=0
- [(z+1)
bl = 2(z — 1)(x - 2 —i41) = ol :
T lz—1)(z-2)...(z—i+1) = Tz —it1) (7.18)
Using (7.17) and (7.18), and substituting z = j, we obtain:
, d TG+1)
T (_-JT1) ¢

and therefore

. o fima-1Y & o TU+D
5 = Z( ' )Z"" TG-i+1)

]U J i=1

; I'(j —«)
- Z"()Zr (G —i+1)

n—1i 1(k+L—Q)

- XL e

i=1

r I'( k+i—a—
:Z“)F( Q)Z(+ 1).

i=1 k=0
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Now using the formula (7.11) we obtain
. I'i —a){n—a
B\ 7
5= ;(fr I'(—a) (n - z)
or finally

= [ima=1\ U Mn—-a+1)
. ( j )”‘Z"p(wa)r(w)r(n—' - 20

7=0 =1 1t 1)

Substituting (7.20) into (7.15) gives

tm o N o= (g T(n—a+1
0 D7 fm(t) Z( 1) ( )Za(). (natl) 7))

—~ " (i-a)l(n—i+1)

Using the asymptotics of the gamma function (7.12) we can write

n* "I'(n—a+1) e (naﬂ-F(n -+ l)> _ ni_r(l N O(n“l)).

I'n—1i+1) I'(n—i+1)
Then
. gm—o m m T _
: o = (1) T 1 O -1
DEfnlt) = Frogy L0 (r) o a) (1+0m™)

_ g fm O,(T) 1 n-l
I'(—a) 5;0( 2 (r) ’ (r—a)(1+0( )>

Taking into account that a(r) =1 for all 7, and using the summation
formula ([215, formula 4.2.2(43)])

Z ( Glrlfm ( ) _ (_l)mam—-l (TL :I— a) , (m < TL)a

k=0

we easily obtain

m 0( )
Z<~1>T(’f)(rj = Bl-a,m+1)

e «)
and therefore, since for a fixed t we have O(n™') = O(h),

I'(l1+m)

oDE fin(t) = Fitm=a)

gmTe ()(h),
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and L
[)D?fm(t) - ()D;xfm(t) = C)(h)

This means that if a function f(¢) can be written in the form of a
power series
o
f(t) = Z amt™,
m=0

then the fractional difference approximation (7.3) gives the first-order
approximation for the fractional derivative of order « at any point of the
convergence region of the power series.

The conditions on f(t) can also be weakened.

7.5 Computation of coefficients

For implementing the fractional difference method of the computation
of fractional derivatives it is necessary to compute the coefficients

u’!l(c(}) - (_I)A (a>a k = 07 13 21 R (722)

where « is the order of fractional differentiation.
Onc of the possible approaches is to use the recurrence relationships

. 1 N
wé”) =1; w;ca) = (1 - a_l: ) wl(c(_)l, k=1,23, ... (7.23)

This approach is suitable for a fixed value of a. It allows the creation
of an array of cocfficients which can be used for fractional differentiation
of various functions, and other similar repeated operations.

However, in some problems (e.g., in system identification) the most
appropriate value of o must be found; this means that various values of
a are considered, and for each particular value of « the coefficients w,(f)
must be computed separately. In such a case, the recurrence relationships
(7.23) are not very suitable. Instead, the fast Fourier transform method
[105] can be used.

The coeflicients w,(\_.(y) can be considered as the coefficients of the power
series for the function (1 — 2)®:

(1 —2)% = i(——l)k(;:) F = i w2k, (7.24)

k=0 k=0
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Substituting z = ¢™*¥ we have

(1 — e )" Z wi®e=e (7.25)
k=0

()

and the coefficients w,, "’ are expressed in terms of the Fourier transform:

wf = /fu Pdo,  falp) = (1—e7)~ (7.26)

Technically, the coeflicients w,EfO can be computed using any imple-

mentation of the fast Fourier transform. Since in this case we always
obtain only a finite number of the coefficients w( Y the fast Fourier
transform method should always be combined with thc “short-memory”
principle (see Section 7.3).

7.6 Higher-order approximations

We saw that the first-order fractional differcnce approximation (7.10) of
the a-th derivative can be written in the form

it/h]
oD flty=h"*>" wy® VF(t — kh), (7.27)
k=0
where the weights *w,(c") (k=0,1,2,...,n,n=[}]), assigned to the

values f(t — kh), are the first n + 1 coeflicients of the Taylor series
expansion of the function

(z) = (1= 2)7 = (wn(2)". (7.28)

The coefficients 1 and —1 in the function w) (z) = 1—z are at the same
time the coeflicients in the two-point backward difference approximation
of the first-order derivative (7.7).

We have already seen that the function wi(z) generates the coefli-
cients for the first-order approximation of the first-order derivative, and
its a-th power, the function wgrl)(z) = (wl(z))a, generates the coeffi-
cients of the first-order approximation of the a-th order derivative,

So, we may ask: The (p+ 1)-point backward difference gives the p-th
order approximation of the first-order derivative; will the a-th power of
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the (p + 1)-point backward difference approximation of the first-order
derivative give the p-th order approximation of the a-th derivative?

The answer to this question has been given by Ch. Lubich [127],
who obtained approximations of order 2, 3, 4, 5, and 6 in the form of
(7.27), where the coefficients w,(ca) are the coefficients of the Taylor series
expansions of the corresponding “generating” functions

o 3 1
W (z) = (5 - 22 520

2
() = (g =32+ 557 = 320"
(z)—(w*4z+?z iz +iz4)
wg“><z)=(%_5 + 5z ~139z +Zz4 =2)%
wﬁa)() (lﬁ%z—6z+§22——23£z3+%z4—gzs‘—%%)“.

In each case, the coefficients in parentheses in the right-hand side of
the expression for wl(,a) (z) are the coefficients of the p-th order (p + 1)-
point backward difference approximation of the first-order derivative.

The easiest and the most efficient method of computation of the
coefficients w( for the higher-order approximations of the form (7.27)
is the fast Fouuer transform method, and the procedure is the same as
described in Section 7.5.

7.7 Calculation of Heat Load Intensity
Change in Blast Furnace Walls

In this section the fractional-order derivative is used for the calculation
of changes in the heat flux intensity in a blast furnace wall. In contrast
to standard approaches which rely on temperature measurements at two
different points of the wall, the proposed method needs temperature
measurement at one point only. Results are given and analysed for the
described method and for a conventional finite-difference method. The
possibility for an extensive use of the described method in the solution
of similar tasks for materials with high thermal resistance (e.g., fireclay)
follows from the comparison.
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7.7.1 Introduction to the Problem

Erom the point of view of operation and technology, one of the important
monitored parameters of a blast furnace is the intensity of the thermal
flux in its walls. The standard methods solve the task of computing
the heat flux by measuring two temperatures in the wall, subsequent
simulation of the thermal field, and the computation of the heat flux at
some point from the temperature difference in the vicinity of this point.
These methods require the use of two temperature monitors at two points
with different depths within the furnace wall. It is necessary to take into
account their relatively high malfunction rate as a consequuce of higher
operation temperatures and the possibilities of mechanical damage after
wearing of the wall from within. The replacement of inlaid thermocouples
is complicated and sometimes there is no other way of doing this than
to temporarily shut the furnace down, which leads to losses. Therefore,
the method based on the measurement of two temperatures in the wall
often becomes unusable. We present here an attempt to solve the above
problerns.

We give a description of two methods which were implemented and
compared. The first one (denoted in the following as method A) is un-
conventional. It is based on the use of fractional-order derivatives and
makes it possible to cfficiently use the temperature measurement at one
point of the furnace wall only. It should be noted that the possibility
of the use of fractional-order derivatives for the computation of the heat
flux behaviour, based on the known behaviour of temperatures, was first
pointed out in [179]. A second method (henceforth denoted as method B)
is standard. It is based on the measurcment of the furnace wall temper-
ature at two points, and on a numerical solution of the heat conduction
equation. It was used for testing the first method. A mutual qualitative
and quantitative comparison of these two methods is given.

7.7.2 Fractional-order Differentiation
and Integration

Let us for convenience recall the Riemann-Liouville definition of a frac-
tional derivative and a fractional integral:
, ¢

1 d™ / flr)dr

( df" - T)“ 7 Na—n+l
a

oDy f(t) =

0<n—-l<a<n (7.29)

where n is an integer, ['(z) is the Gauss gamma-function, and ¢ > a.
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Closely related to fractional-order differentiation is fractional-order
integration:

D7Yf(t) = , > (. 7.30
0L/t f() I(()) (t-7‘)1 « (} ( )

It is necessary to keep in mind that
oD (oD F(1) = F(B), >0 (7.31)

which generalizes an analogous property of integer derivatives and inte-
grals.

Let us also recall (see Chapter 4) that the Laplace transform of frac-
tional derivatives and integrals is given by

-1

L(oDYf(t),s) = s"F(s) — > s oD} Ff()
k=0

7.32

o (7.32)
for arbitrary real o (F(s) is the Laplace transform of the function f(t)).
In the case of an integral of fractional order (o < 0), the sum in the
right-hand side will vanish. In the case of a fractional-order derivative n
is the same as in (7.29).

7.7.3 Calculation of the Heat Flux by Fractional
Order Derivatives — Method A
Derivation of the Basic Relation

Let us consider the following spatially one-dimensional heat conduction
problem for a semi-infinite body (Fig. 7.5):

0T (0T e
T(0.2) = Ty (7.34)

lim T(t,z)
X

&

< (7.36)

where
t is time [s],
x is the spatial coordinate in the direction of heat conduction [ml,
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Figure 7.5: Blast furnace wall.

¢ is the heat capacity [J kg™! K],

p is the mass density [kg m=3],

T'(t,z) - is the temperature [K],

A is the coefficient of heat conductivity [W m~1 K],
We introduce an auxiliary function

u(t,z) = T(t,z) — To, (7.37)

which is a solution of the problem

du L u
= = A, t>0, — ‘ 38
e ) (t>0 oo <z < 0) (7.38)
uw(0,2) =10 (7.39)
u(t, 0) = Toure(t) — Toy (7.40)

lim u(t,x)
I——02C

< 00, (7.41)

The Laplace transform of equation (7.38) yields

cd*U
ol (s, a) = ALY 2) (7.42)
dx?
The solution of equation (7.42), bounded for z — —, is
e
<03 (7.43)

U(s,x) =U(s,0)exp | x \/___
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whence we find

U, [eps éps |
- (s,z) =U(s,0) S exp (a‘ 3 ) . (7.44)

From the relations (7.43) and (7.44) we easily find

1 dU e N
7 dr( ,0) = \/;U(s,()) (7.45)

from which, after using the inverse Laplace transform, we obtain in view
of (7.32)
—1/20u '¢p 0
D72 (8,0 £,0 7.46
oD S0 = [T ult0) (7.16)

and after using the property (7.31) and the linearity of the fractional-
order differentiation operator we arrive at

du

B0 =\ ODW (t,0). (7.47)

We can now return to the function 7°(t, z) with the aid of relation
(7.37). Taking into account the condition (7.35), we obtain the basic
analytical relation for the calculation of the heat flux at the point x = 0:

aa(t) = Vepd oD Pg(t),  g(t) = Taure(t) — T (7.48)

where q4(t) = T(f 0) is the resulting heat flux.

The Numerical Method

The problem of determining the heat flux is now reduced to the cal-
culation of the derivative of order @« = 1/2 in the derived formula
(7.48). Since we are interested in simnulations for large time intervals,
the known relations (see [179] and [203]) for the calculation of fractional-
order derivatives are not suitable because of an enormous number of sum-
mands in these relations and because of the accumulation of the effects
of round-off errors. To reduce the computation cost and to eliminate, in
a certain sense, the round-off error acenmulation we apply the principle
of “short memory”, formulated in [203] (in this work, see section 7.3).
That is, we pit approximately

ga(t) = Galt) = Vépd q_1y D g(t) . (7.49)



7.7. CALCULATION OF HEAT LOAD INTENSITY 215

where L is the “memory length”. It follows from the estimations derived
in [203] (in this work, sce scction 7.3) that in our case the normed error
of this approximation is

5 = 1aal) —da)l _ 1

M SVITG) M = max lg(t)] (7.50)

whence we have the following constraint for the choice of the “memory
length” L:

L>— (7.51)

where dg is the maximum admissible normalized error.

For an approximate calculation of the derivative L)D: / 2g(t) we
therefore use the relation (see section 7.3)
N(t)
1/2 .
-0y Dig(t) =77 Y cglt —ir) . (7.52)
=0

=[] [} e (')

([z] is the integer part z).
For the calculation of the coeflicients ¢, it is advantageous to usc the
recursion 5
=1, ¢ = (1 - -) ¢y (7.53)
27

which follows from the properties of the binomial coeflicients.

7.7.4 Calculation of the Heat Flux Based on
the Simulation of the Thermal Field of the
Furnace Wall - Method B

For an experimental verification of the proposed method we have also
implemented the standard approach. With the goal of finding the true
limits of applicability of the method desribed above, we have assumed in
this part that the thermophysical properties of the material of the wall
depend on the temperature.

On the basis of an analysis of the thermal situation and dimensions
of the furnace walls from the viewpoint of the thermal load of the furnace
walls it is possible to make the simplifying assumption of one-dimensional
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heat conduction. Non-stationary heat conduction is described by the
Fourier equation:

o, . L0 oT (¢, x) .
DT (2) = - (DT (7.54)
where —H < x < 0, with the initial condition
T(0,2) = f(x) (7.55)

and with boundary conditions of the first kind

T(t= _H) =4 (t)
T(tv O) = g?(t)

where H is the thickness of the wall determined by both thermocouples
(see Fig. 7.5).

For a numerical calculation of the heat distribution T'(t,z) we first
make a spatial and temporal discretization.

In the space interval —H < 2 < 0 we choose n points

—H=n1<20< < Zpo<Th1 <zp,=0,

in which the temperatures will be determined at discrete time intervals
of length 7. The distance between the interior points z; and zr; (i =
2,3, ...n—=2)is

h=H/(n-2) (7.57)

and the distance between the exterior point z; (resp. z,) and the interior
point nearest to it, xs (resp. x,_1), is h/2.

After the discretization of equation (7.54) with an implicit method for
the whole inner region —H < z < 0, we obtain the following non-linear
system of algebraic equations:

2/\(1k;l) /\'(zk'jl) K c(”li(k+l)) (k41 /\;k:jl) k41

h h T h

oy (K1)
_ AT S+
T 2 h ]

(k+1) {k+1) (k+1) okt (k+1)
/\1—1‘1: T(kﬂ)___ ﬁjljji_ 4 ’\'i.'i+l T K ff([,( * )) T(km+ )‘i.vi—‘rl T(k:+1)
ho ot h h T ot h v+l
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k
__Ke) (7.58)

T )

k+1 k+1 k+1 K+
)‘“EL-Q,L—I, W(k+1) /\£L-2,1)~L-1 2A$L~1,7)1 K C(Tv(ljll)) (k+1)
—71'—]11,~2 - h + A + - T'n—l

- Sk h k+1
K (3(775_)1)T(k) 3)\§L—1,2;, (k+1)
- = n—1 " h 99

where

T® = T(kr,1,),
k R
g™ = g,(k7), (z: 1,2) "
1 1
/\(Ic—i—l) — ) (TL( i );THT )> ‘

i+l 77
K =hp

while from the initial condition (7.55) it follows that:
T = f(z), pre i=23,...,n— 1. (7.59)

The system (7.58) allows the calculation of the temperatures at the
points of a chosen spatial grid for the next time step based on known
temperatures at the same points of the preceding time step and known
boundary conditions (7.56).

For the solution of the non-linear system (7.58) we have used the
iteration method, while the arising linear algebraic systems were solved
via the Gauss elimination method.

After determining the temperatures for the time step (kK + 1) we
calculate the change of the heat flux intensity for the same time at the
spot of the interior measurement point (i.e. at z = 0) according to the
relation

ng-H) = Aq(k+l) — q(k'i 1) q(O) , (760)

v. T(k~+-l) _ T(k‘+l)
. ¢ k+ n n—
q(kJr D=2 /\51,111.,7)1 h ]

where ¢(¥) is the heat flux at the point x = 0 at time ¢ = 0.



218 7. NUMERICAL EVALUATION OF FRACT. DERIVATIVES

7.7.5 Comparison of the Methods

Fireclay SK-1, from which the wall of furnace no. 2 in VSZ Kosice,
Inc. is made, is a material with a very high heat resistance (low heat
conductivity). The thermophysical properties of this kind of fireclay are
the following [103]:

p(T) =1750, MT)=0.75+T-0.35-1073 | ¢(T) =870+ 0.14.T
(7.61)
where the temperature T = T — 273. These relations were used in the
compiter implementation of method B (i.e. of the test method). The
distance between the two points of temperature measurement (i.e. two
thermocouples) is H = 0.15 m.
For the numerical realization of the tested method A we chose

&ph = (T p(Tr )M T, (7.62)

where T, = 450 °C is the average technological temperature of the
furnace wall material. The allowable normed error was ég = 0.01. To
ensure this precision we must have L > 3184 (i.e. the minimum “memory
length” cannot be shorter than 3184 seconds). L = 3600 has been used
for the calculations. The step 7 in the formula (7.52) (which at the same
time is a time step for method B) was chosen to be 7 = 60, which corre-
sponds to a real one-minute time interval between two measurements of
the temperature.

The comparison of the results of calculations of the intensity change
of the thermal flux in the fireclay wall by means of method A and method
B for the boundary conditions of the form

gi(t) = T; + 20sin (27k7/120) , (i=1,2), (k=0,0c) (7.63)

(i.e. for different functions of measured temperatures ¢i(t) and go(t) =
Tourt(t)) was done [204].

It was observed that for the temperature difference 300 °C the results
of the computations according to method A match well with those ac-
cording to method B. The maximum relative error in this case is around
15%, which is still acceptable from the viewpoint of many engineering
applications.

The comparison leads to the conclusion that the method based on the
use of fractional-order derivatives and of the temperature measurement
in only one point can be used successfully for materials with low heat
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conductivity, since it correctly reflects the process both qualitatively and
quantitatively.

The reason for this success is that for these materials the approxima-
tion of the wall’s width by a semi-infinite body ensures very satisfactory
adequacy of the model.

Numerical experiments show that in the case of materials with large
heat conductivity, the proposed method is less successful; however, it can
still be used for a rough estimate of the changes of the heat flux intensity,
if for some reason (for instance, malfunction of one of the thermocouples)
only the temperature at one point of the furnace’s wall is known.

Not to be neglected is the fact that, compared with the classical
methods (finite-difference method, finite-clement method) the fractional
derivative based method requires fewer calculations and in contrast to
them allows the calculation of the heat flux at a given point without
calculating the distribution of temperatures along the entire width of
the wall.

From a general point of view, this chapter demonstrates that even
in classical problems such as heat conduction problem, fractional-order
derivatives make it possible to find new, effective non-conventional solu-
tions to important technological problems.

7.8 Finite-part Integrals and Fractional
Derivatives

Instead of the classical form of the Riemann-Liouville definition (7.1),
we may use the equivalent form of that definition (6.163), which leads
to integrals, which are divergent in the classical sense :

N | / f(r)dr .
DI = / e (#0120 (7.64)

Namely, for a > 0 the integral in (7.64) is a divergent integral. How-
ever, it is possible to define a so-called finite-value of a divergent integral,
which has real physical meaning [213].
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Table 7.1: Approzimate values of the finite-part integrals I,

1
= [ (—fi—zd)%‘i Iy I Iy
1
h=0.01 0.0075 | -3,1366 } -4.6807
h=0.001 0.0008 | -3.1411 -4.7092
h=0.0001 0.0001 -3.1415 | -4.7120
h=0.00005 0.0000 | -3.1416 | -4.7123

[ Exact value [ 0.0000 | —3.1416 | —4.7124 |

7.8.1 Evaluation of Finite-part Integrals Using
Fractional Derivatives

The finite-part integral (6.155) with the non-integrable Jacobi weight
can be expressed in terms of fractional derivatives:

1
/ (- t)(ﬁfz;ll DA L(=4) OD?fl(t)’t:l + I'(—a) oD?f2(t)it:1

’ (7.65)
At = FD+ 077, (0= O+
(CV <1, pB< 1)

When approximating fractional derivatives, we obtain formulas for
the numerical evaluation of the finite-part integral (7.65). When we
apply relationship (7.65) to the numerical evaluation of the integrals
(6.159)-(6.161) with the help of the first-order approximation (7.3), the
results were in agreement (Table 7.1).

7.8.2 Evaluation of Fractional Derivatives Using
Finite-part Integrals

Not only can fractional derivatives be used for the evalnation of the
regularized values of finite-part integrals, another side of the relationship
between these two objects is that if a numerical method for evaluation
of finite-part integrals is available, then it can be immediately used for
the numerical evaluation of fractional-order derivatives.
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K. Diethelm suggested [40] using for the numerical evaluation of frac-
tional derivatives quadrature formulas for finite-part integrals [41].

Let us consider the interval [0, 1], to which an arbitrary interval can
be easily transformed. For a given integer m, in which the value of the
fractional derivative (7.64) must be cvaluated, an equidistant grid with
nodes t; = j/m is introduced.

The discretization of the finite-part integral in (7.64) with this grid
gives

o B T)dT _ f(t;
OD j (J{)/ i __7- a+1 - Ol)/ £(1+l > (766)

and the use of Diethelm’s first-degree compound quadrature formula for
finite-part integrals [41] with equidistant nodes 0, 1/j, 2/4, ..., 1, leads
to the following approximate formula for the evaluation of a fractional-
order derivative:

0Dg f( r( Q)Z ,“f( ) (j=1,2,...,m) (7.67)

k=0

where the weights wy, (for j > 1) are given by the following expressions:

-1, for k=0,
o 2k — (k= 1)1 — (b + 1)1,
T f k=1,2,...,7—-1, 7.
Wy (y(l - ()z) or ) 4 s J ’ ( 68)
(a _ l)k.—a _ (/C _ I)Jﬂu + kl—“l)‘,
{ for k=3
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Chapter 8

Numerical Solution
of Fractional Differential
Equations

The numerical solution of differential equations of integer order has for a
long time been a standard topic in numerical and computational math-
ematics. However, in spite of a large number of recently formulated
applied problems, the state of the art is far less advanced for fractional-
order differential equations.

In this chapter we describe a method which was experimentally ver-
ified on a number of test problems.

8.1 Initial Conditions: Which Problem
to Solve?

We consider here the initial value problems only for homogeneous initial
conditions which correspond to the equilibrium state at the beginning of
a dynamical process:

f&0)=0, k=0,1,2,...,n—1 (8.1)

where n — 1 < a < n, and « is the order of the differential equation.
There are two main reasons for considering homogeneous initial con-
ditions. First, this provides the equivalence of solutions of initial value
problems for so-called sequential fractional-order differential equations
[153] and for corresponding standard fractional-order differential equa-
tions, even if the number of initial conditions is different (see Chapter 4;

223
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also [201]). Second, to this author’s knowledge, a satisfactory approxi-
mation of the fractional derivative at its lower limit is not known.

8.2 Numerical Solution

In this section we concentrate on describing the method without studying
the convergence of the method from the theoretical point of view.

The proposed numerical scheme is explicit. It was experimentally
verified on a number of examples, some of which are given below, by com-
paring it with analytical solutions. As the introduced examples show, the
proposed method works for different important cases, such as equations
with constant coeflicients, equations with non-constant coeflicients and
non-linear equations with different numbers of initial conditions. This
speaks favourably of its wide applicability.

It follows from [127] that the order of approximation of equations in
all examples is O(h).

8.3 Examples of Numerical Solutions

In this section we give some examples of numerical solution of fractional-
order differential equations of various type. We provide a comparison
with some known explicit or asymptotic solutions, which demonstrates
the useability of the proposed numerical approach.

8.3.1 Relaxation—oscillation Equation
Let us consider an initial value problem for one of the simplest fractional-
order differential equations appearing in applied problems (e.g., [184]):

oDFy(t) + Ay(t) = f(t), (> 0), (8:2)

yMO)=0,  (k=01,....n-1)

where n — 1 < o < n. For 0 < a £ 2 this equation is called the
relaxation -oscillation equation.
The first-order approximation of problem (8.2) is

m

h¢ Z wj('“)'!/rn—] + Ay = frs (Mm=1,2,..); wyo =0, (83)
§=0
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tm =mh, Ym =y(tm), fm = fltn), (Mm=0,1,2,..);

wl® = (1) ( ° ) L (i=0.12...)

Using approximation (8.3), we derive the following algorithm for ob-
taining the numerical solution:

yw=0,(k=1,2,...,n—1)

m

UYm — _Ah(yym----—l - Z wgﬂ)vaj + h'afm: (7’1 =n,n+ ]! - ) (84)
1=1

The results of our computations for different values of o (1 < ¢ < 2)
and f(t) = H(t), where H(t) is the Heaviside function, are shown in
Fig. 8.1. They are in perfect agreement with the analytical solutions,
obtained with the help of fractional Green’s function for a two-term frac-
tional differential equation with constant coefficients (see Section 5.3).
The analytical solution of the initial-value problem (8.2) is

(1) = /Gg(t—’r)f(T)dT, Galt) = 1 Ena(-At%).  (85)
0

8.3.2 Equation with Constant Coefficients: Motion
of an Immersed Plate

In this section we consider the initial value problem for the fractional
differential equation which was originally formulated by R. L. Bagley
and P. J. Torvik [16].

Mathematical model of the motion of a large thin plate in a
Newtonian fluid

First, a basic relationship in terms of fractional derivatives for a Newto-
nian viscous fluid will be obtained.

Let us consider the motion of a half-space Newtonian viscous fluid
induced by a prescribed transverse motion of a rigid plate on the surface
(Fig. 8.2). Our aim is to show that the resulting shear stress at any point
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Figure 8.2: A rigid plate in a Newtonian fluid.



8.3. EXAMPLES 227

in the fluid can be expressed directly in terms of a fractional-order time
derivative of the fluid velocity profile.
The equation of motion of the fluid is

v &
) = )
f Ot H 022

O<t<oe, —x<z<0) (8.6)

where p is the fluid density, p is the viscosity and v(t, z) is the transverse
velocity, which is a function of time ¢ and the distance z from the fluid-
plate contact boundary.

We assume that initially the fluid is in equilibrium, i.e

v(0, z) = 0, (—oo < z<0) (8.7)
and that the influence of the plate’s motion vanishes for z -— oc:
v(t, —o0) =0, (0 <t < o0). (8.8)
The fHuid’s velocity at z = 0 is equal to the given velocity of the plate:
v(t,0) = vp,(t) (8.9)

Applying the Laplace transform we obtain the following boundary-
value problem for an ordinary differential equation

psV (s, z) = uﬂ‘(g?—z—) (8.10)
V(s,0) = Vp(s), (8.11)
V(s,—o0) =0, (8.12)

where s is the Laplace transform parameter, V,,(s) is the Laplace trans-
form of the plate’s velocity and V (s, z) is the fluid’s velocity transform.
The solution of problem (8.10)-(8.12) can be ealily found to be

V(s,z) = Vp(s)exp (2 \/—p;) (8.13)

By differentiation of (8.13) we find that

d S
V(S’Z):\/@Vp(s)exp(z [P35y = [P2y (s, 2). (8.14)
dz 7 iz Z

Knowing the velocity profile v(t, z) in the fluid, one can obtain the

shear stress o(t, z) by
ou(t, z
o(t,z) = u——(g—z——). (8.15)
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Figure 8.3: An wmmersed plate in a Newtonian fluid.

In terms of the Laplace transform, relationship (8.15) takes the form:
dV (s, z)
Hd
2

where (s, z) denotes the Laplace transform of o(t, 2).
Comparing (8.16) and (1.80), we recognize the Laplace transform of

E(S,Z) = = \/,ﬁ—p‘;‘/(svz)e (816)

the fractional derivative thl / 2':1(.5',2) multiplied by /fp in the right-
hand side of (8.16). Therefore, after returning to the time domain, rela-
tionship (8.16) gives

a(t,z) = ,/upUDg/Z‘v(s,z). (8.17)

It must be mentioned that equation (8.17) is not a constitutive re-
lationship for a Newtonian fluid; the constitutive relationship is (8.15).
However, equation (8.17) describes the relationship between the stress
and velocity for the considered particular geometry (a semi-infinite fluid
domain) and loading (prescribed velocity at the boundary surface). It is
important in this case that the fractional derivative is used to describe
a real physical system, which was formulated in a conventional manner.

The physical interpretation of relationship (8.17) is that stress at a
given point at any time is dependent on the time history of the velocity
profile at that point.
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Let. us now consider a thin rigid plate of mass M and area S immersed
in a Newtonian fluid of infinite extent and connected by a rassless spring
of stiffness K to a fixed point (Fig. 8.3). A force f(t) is applied to the
plate. We assume that the spring does not disturb the fluid and that the
area of the plate is sufficiently large to produce in the fluid adjacent to
the plate the velosity ficld and stresses related by (8.17). Moreover, to
allow application of relationship (8.17), the plate fluid system must be
initially in an equilibrium state — displacements and velocities must be
initially zero.

Summing forces on the plate we find that the displacement y of the
plate is described by

My"(t) = f(t) — Ky(t) — 28a(t,0). (8.18)

Substituting the stress given by relationship (8.17) and taking into ac-
count that

vp(t,0) = y'(t),
we arrive at the following fractional-order differential equation:

AY"(8) + BoD¥2y(t) + Cy(t) = f(t)  (t > 0), (8.19)

A=M, B=25/up, C=K,

to which the intial conditions describing the equilibrium initial state of
the system must be attached:

y(0) =0, y'(0) = 0. (8.20)

Numerical solution of the Bagley—Torvik equation
Let us consider the following initial value problem for the inhomogeneous
Bagley-Torvik equation [16]:
Ayn(t) + BoD}y(t) + Cy(t) = f(1), (¢ > 0); (8.21)
y(0) =0, y(0) = 0. (8.22)

Let us take the time step h. The first-order approximation of the
problem (8.21)-(8.22) is

m
Ah_Q(ym -~ 2Ym—1+ ym—~2) + Bh'—g/z Z 71)_—5‘3/2)?/7”—] + Cym - .fm: (823)
J=0
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Figure 8.4: Numerical solution of the Bagley-Torvik equation.

Y1 — Y _ (8.24)

LANNE. L)

vo =0, 3

where yr, = y(mh), fimn = f(mh), (m=0,1,2,...).
Using approximation (8.23)-(8.24), we derive the following algorithm

for obtaining the numerical solution:

yo = 0, y =0,

hZ(fm - Cym—l) + A(2ym—l - ym--2) - B\/E Z w§3/2)y7n~]
J

3

(8.25)

(m=2,3,...).

The results of our computations according to algorithmn (8.25) are
in agreement with the analytical solution, obtained with the help of the
fractional Green’s function for a three-term fractional differential equa-
tion with constant coefficients (see Section 5.4). The analytical solution
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gas

Figure 8.5: Solution of a gas in a fluid: problem formulation

of the initial-value problem (8.21)-(8.22) is

t

y(t) = [ Galt — 1) f(r)ar. (5.26)
0
1 & (_1)k C\F 2k+1 (k) B
k=0 ’
k 00 . i
By @ (G + k) o
E = Tk /) = . . s = 1,2,...).

In Fig. 8.4 the results of computations are given for

f(t)=f*(t):{§: E?fffl) A=1, B=05C=0.5.

8.3.3 Equation with Non-constant Coeflicients:
Solution of a Gas in a Fluid

The following example illustrates the use of the proposed method for
fractional-order differential equations with non-constant coeflicients.
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Mathematical model of solution of a gas in a fluid

Yu. 1. Babenko [11] gives the following mathematical model of the process
of a solution of a gas in a fluid (Fig.8.5):
0 M ocC
= : —_ FD — y
o (Vor(7/8) - P(r0) ) = FD 7 (5.29)

r=()

-vp %

| = = oDYY(Cy(r) = Cp), (0<T<8) (8.29)

=0

C(0,z) =Cy, P0,z)=PFo=Ch/k, (0<z<0); (8.30)

where V is the initial gas volume; 8 is the time of the gas compression to
zero volume; f(t/6) is a function describing a change of the gas volume,
such as f(0) = 1 and f(1) = 0; M is the gas molar weight; R is the
universal gas constant; D is the coefficient of diffusion of the gas in the
fluid; F is the contact surface between the gas and the fluid; C(¢t, z) is
the gas concentration; and P(¢, z) is the unknown gas pressure. The gas
pressure near the contact surface P(t,0) is to be found. The Oz axis goes
down from the contact surface, for which x = 0. The gas temperature T'
is assumed to be constant. In other words, the gas compression is slow
enough. The depth of the fluid is infinite.

Equation (8.28) describes the change of the mass of the gas volume
due to diffusion through the contact surface. The mass change depends
on the change of the gas concentration near the contact surface, which is
given by equation (8.29). This makes consideration of the mass transfer
for » > 0 unnecessary.

The problem (8.28)- (8.29) can be written in dimensionless form as

dc

o,
5y C(B:0)f () = A 5E . 0<t<1) (8.31)
_ el py -
B |gop ~ 0P (et 0) 1) (8.32)
«(0,§) =1 (8.33)

P
p-——c:CE:})—, E=a2vVDO; t=71/0; X=~rRTVDO/(MV;
0 0
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Inserting (8.32) into (8.31) we obtain the following initial-value prob-
lem for determining the dimensionless gas pressure p(t) = p(t, 0) near the
contact surface:

L Op) + 1D PeH - D=0, ©<t<) (334

p(0) = 1. (8.35)

It is convenient to introduce the function

which allows consideration of problem (8.34)-(8.35) in the form

CrOwm ) +xeD Py =0, 0<t<l)  (836)

y(0) = 0. (8.37)

We arrived at the inhomogeneous (due to the presense of f(t)) linear
fractional differential equation with zero initial condition. This allows
us to develop a procedure of a numerical solution similar to the previous
example. However, this problem allows us to obtain analytical solutions
for some particular cases.

Analytical solutions for some particular cases

If the change of gas volume is described by the function expandable in
a fractional power series

OO
f(i) - Z bntn/za by = L, (838)
n=0

then the solution of problem (8.36)—(8.37) can also be found in the form
of a fractional power series (sce Section 6.2.2):

o
y(t) = > ant™? (8.39)

n=1

where the coeflicients a,, satisfy the following recurrence relationships:

i MNz+1
a; = —by, Z An+1-kbe + Aan (2 )

Ty e B0
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Figure 8.6: Solution of a gas in a fluid: numerical example.

Because of the construction of the solution (8.39), the initial condition
(8.37) is satisfied automatically.
If we take, for example,

ft)y=1-V4, (8.41)

and

r()

then the solution y(t) is given by a finite sum. For example, !

(%)

I'(2) 2

A= NEDNG y(t) = vVt (8.42)
A= %%%:%/j, y(t) = Vit + (1—%) t. (8.43)

"There is a mistake in Babenko’s book [11] on p. 107, where p(7) corresponding to
A = 34/7/4 is given: instead of the expression p{T) = 1 + /7 + (1 — /7/2)7, it should
be p(t) = 1 + /7 + (1 — 37 /8)r.
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Numerical solution

Let us consider the initial value problem (8.36)-(8.37).
To construct a numerical algorithm, we write the problem in the form

F(t)y (1) + G(t) oD 2y(t) +y(t) = -1,  (0<t<1);  (8.44)

y(0) =0,

where F(t) = f(t)/f'(t), G(t) = A/ f'(t). The first-order approximation
of problem (8.44) is

m
- — 1/2
(?,/m — Ym-1 )th ! +Gih 172 Z wj(' / )ymmj +Ym = —1, (7n =12,.. )
=0
(8.45)

y(J:O.

Using approximation (8.45), we derive the following algorithm for the
numerical solution of problem (8.44):

m
Ym— 'F;Zl (Gm\/g -+ h) yrn,~1“'F7:Ll}L+y111—l —-F;,,le\/Eng]/2)ym—j»
7=1

(8.46)
(m=1,2,...); yo = 0.

The results of our computations are in agreement with the analytical
solutions obtained in the previous section.
For instance, if f(t) = 1 — v/t and X\ = —-2\/;, then the analytical

solution to problem (8.44) is y(t) = v/t. Comparison of this analytical
solution and the numerical solution obtained by (8.46) for A = 0.001 is
given in Fig. 8.6.

8.3.4 Non-Linear Problem: Cooling of a Semi-infinite
Body by Radiation

In this section we demonstrate the applicability of the proposed numeri-
cal method to non-linear fractional differential equations. The obtained
numerical solution is compared with asymptotic solutions for small and
large values of the independent variable ¢.
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Problem formulation

Let us consider the following initial-boundary value problem describing
the process of cooling of a semi-infinite body by radiation:

0, 2
%—?z%, <z <oo; 0<t<oo) (8.47)
Qﬂtm:aﬁu) (8.48)
o , .
u(t,o0) = u(0, x) = ug. (8.49)

We are interested in finding the surface temperature u(0, t) for ¢ > 0.
In Section 7.7 we have obtained for %(t, 0) a representation via fractional
derivative of u(t, x) with respect to time ¢ (see formula (7.47)), which is
valid if u(t, 2) satisfies equation (8.47) and conditions (8.49).

For this problem, we have

Ju

“(t,0) = oD} (g — ult,0)),

Oz

and after the substitution of this relationship into boundary condition
(8.48) we obtain the following one-dimensional initial-value problem for

the non-linear fractional differential equation:
oD, *y(t) — afuy — y(1)* =0,  (¢>0) (8.50)
y(0) =0 (8.51)

where y(t) = up — u(0,¢), and u(0,t) is the surface temperature which
must be found. Therefore, we need to find y(¢).

We need this substitution of the unknown function to obtain zero
initial conditions for the construction of the numerical algorithm.

Asymptotic solution

Using the power series method, we obtained the following asymptotic
representations for y(t), which are in agreement with solutions given in
(11]:

20 1112

Mﬂ%~77—, (t<1) (8.52)
y(#) ~ o (1 — E"\l/";?) U8 (). (8.53)

We will use solutions (8.52) and (8.53) below for comparison with
the numerical solution.
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Figure 8.7: Cooling of a semi-infinite body by radiation (o = 1, ug = 0,

h =0.02).

Numerical solution

Let us take the time step h and denote, as usual, t,, = mh, y,, = y(tm),
(m=0,1,2,...). Approximating the fractional-order derivative in (8.50)
by (7.3), we obtain the following approximation for the problem (8.50)-

(8.51):
, e
yo = 0; ho1/2 Z(:jym_j —a(uy - ym)? =0, (m=1,2.3,...)
=0
(8.54)

where ¢, = (—1) (152).
Approximation (8.54) leads to the numerical solution algorithm de-

scribed by

m

yo=10; ym= h1/2 « (U,[) - ym~l)4 - Z C3Um—j3, (’ITL =1,2.3,.. )
j=1

(8.55)

The algorithm (8.55) allows step-by-step calculation of the values
Ym = y(mh). The results of computations for o« = 1, ug = 1, h = 0.02

are shown in Fig. 8.7.
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Figure 8.8: Solution of the problem (8.56) for f(t) =

1.03
1.025-
1.02
£1.015F
1.01F
= memory length L=5
= memory length L=10
1.005+ "y leng!
— absolute memory
S S . )
120 25 30 35 40 45 50
t, tme

Figure 8.9: Solution of the problem (8.56) for f(t) =1 (zoom).
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Figure 8.10: Solution of the problem (8.56) for f(t) = te™*.
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Figure 8.11: Solution of the problem (8.56) for f(t) = te™t (zo0m).
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Figure 8.12: Solution of the problem (8.56) for f(t) =t~ le” 1/t

0.06 T T T

00551
== memory length L=5

0.05 =  memory length L=10
—— absolute memory
0045
0041
=
00351
003
0025
0.02
i
i
1 . ; s :
00 %0 25 30 35 40 45 50
1, ime

Figure 8.13: Solution of the problem (8.56) for f(t) =t~ te~ 1/t (200m).
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8.4 The “Short-Memory” Principle in Initial
Value Problems for Fractional Differential
Equations

In all the examples given above, the use of the short-memory princi-
ple leads to the simple replacement of 3772, by Z}il, where M =
min { m, [ﬂ} and L is the memory length.

To illustrate the usefulness of the short-memory principle for the nu-
merical solution of initial-value problems for fractional differential equa-

tions, we give on Figs (8.8)—(8.15) numerical solutions of the problem
oDy Py(t) +u(t) = f(1),  (t>0) (8.56)

y(0) = y'(0) = 0

for the following particular cases of the right-hand side f(t):

—

. f(t) =1 (Figs 8.8 and 8.9);

b

. f(t) = te”* (Figs 8.10 and 8.11);

wo

. f(t) =t"'e Y/t (Figs 8.12 and 8.13);
4. f(t) = e tsin(0.2t) (Figs 8.14 and 8.15).

Numerical solutions were computed using the time step & = 0.1 for
the interval 0 < ¢ < 50. One can see that even taking the memory length
L =5 gives satisfactory accuracy.

We also found that using the short-memory principle leads in many
cases to suppression of the influence of accumulating rounding error dur-
ing long-time simulations — due to a smaller number of addends.



Chapter 9

Fractional-order Systems
and Controllers

At present, a growing number of works by many authors from various
fields of science and engineering deal with dynamical systems described
by fractional-order equations which means equations involving deriva-
tives and integrals of non-integer order.

These new models are more adequate than the previously used in-
teger-order models. This was demonstrated, for instance, in [24, 170, 70].
Important fundamental physical considerations in favour of the use of
fractional-derivative based models were given in {30, 254]. Fractional-
order derivatives and integrals provide a powerful instrument for the
description of memory and hereditary properties of different substances,
This is the most significant advantage of the fractional-order models in
comparison with integer-order models, in which, in fact, such effects are
neglected.

However, because of the absense of appropriate mathematical meth-
ods, fractional-order dynamical systems were studied only marginally in
the theory and practice of control systems. Some sucessful attempts were
undertaken in [13, 140, 9, 110, 184], but generally the study in the time
domain has been almost avoided.

In this chapter effective and easy-to-use tools for the time-domain
analysis of fractional-order dynamical systems, which are described in
the previous chapters, are used for solving problems of control theory.
The concept of a PI* D-controller, involving fractional-order integrator
and fractional-order differentiator, is introduced. An example is provided
to demonstrate the nccessity of such controllers for the more efficient

243
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Gn(s) G(S) .

W (s) +,® E(s) Ul(s) Y (s)

Figure 9.1: Sitmple unity-feedback control system.

control of fractional-order dynamical systems.

The idea of using fractional-order controllers for the control of dy-
namical systems belongs to A. Qustaloup, who developed the so-called
CRONE controller (CRONE is an abbreviation of Commande Robuste
d’Ordre Non Entier), which is described in a series of his books [183,
185, 186, 187] along with examples of applications in various fields.
A. Oustaluop demonstrated the advantage of the CRONE controller in
comparison with the PID-controller. The PI* D#-controller, considered
in this chapter, is a new type of fractional-order controller, which also
shows better performance when used for the control of fractional-order
systems than the classical PID-controller.

9.1 Fractional-order Systems and Fractional-
order Controllers

This chapter is a natural continuation of Chapter 4, which we recommend
to readers interested in the system response to an arbitrary input. How-
ever, here we turn from purely mathematical aspects of the fractional
calculus to application of the fractional calculus in control theory.

9.1.1 Fractional-order Control System

Let us consider the simple unity-feedback control system shown in
Fig. 9.1, where G(s) is the transfer function of the controlled system,
G.{S) is the transfer of the controller, W(s) is an input, F(s) is an error,
U(s) is the controller’s output, and Y (s) is the system’s output.
Contrary to the traditional approach, we will consider transfer func-
tions of arbitrary reol order. We call such systems fractional-order sys-
tems. They include, in particular, traditional integer-order systems. It is
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important to realize that the words “fractional-order system” mean just
“systems which are better described by fractional-order mathematical
models”.

9.1.2 Fractional-order Transfer Functions

Let us consider the fractional-order transfer function (FOTF) given by
the following expression:

1
ansPn + ap_18%-1 + . 4 a1s% + agsto’

Gn(s) = (9.1)
where g, (k =0,1,...,n) is an arbitrary real number,
Bn > fBn1> ... > B> o >0,
ag (k=0,1,...,n) is an arbitrary constant.
In the time domaln, the FOTF (9.1) corresponds to the n-term
fractional-order differential equation (FDE)

anDPry(t) + an D% 1y(t) + .+ a1 DPy(t) + agDPy(t) = u(t) (9.2)

where DY = Dy is Caputo’s fractional derivative of order y with respect
to the variable ¢t and with the starting point at ¢ = 0 [23, 24]:

t
" 1 (m+1) )d
oDyl = 5=y l/y (t_‘s')l T (9.3)

0

(y=m+4d meZ 0<4§<1).
If v < 0, then one has a fractional integral of order —~:

Ty(t) = oD{y(t) r(— /y m)dr (v < 0). (9.4)

t — )+
/ )

The Laplace transform of the fractional derivative defined by (9.3) is
2.253

(i3

/. et DYy(t)dt = s7Y (s Z s7R=1, (k). (9.5)
0

For v < 0 (i.e., for the case of a fractional integral) the sum on the
right-hand side must be omitted.

It is worth mentioning here that from the pure mathematical point
of view there are different ways to interpolate between integer-order
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multiple integrals and derivatives. The most widely known and pre-
cisely studied is the Riemann-Liouville definition of fractional deriva-
tives (c.g., [179, 232, 153]). The main advantage of Caputo’s definition
in comparison with the Riemann-Liouville definition is that it allows
consideration of easily interpreted conventional initial conditions such as
y(0) = yo,4y'(0) = y1, etc. Moreover, Caputo’s derivative of a constant
is bounded (namely, equal to 0), while the Riemann~Liouville derivative
of a constant is unbounded at ¢+ = 0. The only exception is if one takes
t = —oo as the starting point (lower limit) in the Riemann-Liouville
definition. In this case, the Riemann-Liouville fractional derivative of
a constant is also 0, and this was used in [174]. However, one inter-
ested in transient processes could not accept placement of the starting
point at —oc, and in such cases Caputo’s definition seems to be the most
appropriate compared to others.

Formula (9.5) is a particular case of a more general formula (2.259)
given in Section 2.8.5 for the Laplace transform of the so-called sequential
fractional derivative (2.170).

To find the unit-impulse and unit-step response of the fractional-
order system described by FDE (9.2), we need to evaluate the inverse
Laplace transform of the function G(s).

The problem of the Laplace inversion of (9.1), however, can appear
in any field of applied mathematics, physics, engineering, etc., where the
Laplace transform method is used. This fact along with the absense of
the necessary inversion formula in tables and handbooks on the Laplace
transform motivated us to give a general solution to this problem in the
following two sections.

9.1.3 New Function of the Mittag-Leffler Type

The so-called Mittag-LefHler function in two parameters E, g(z) was in-
troduced by Agarwal [3]. His definition was later modified by the authors
of [65] to be
o0 ]
Eq5(z) = e a>0, 3>0). 9.6
RN e 5>0.  (96)

Its k-th derivative is given by

X |+ k) 27
E®(2) = (J+ P = s ) .
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We find it convenient to introduce the function
Ex(t,ys e, B) = T ER ey (k=0,1,2,..). (9.8)
Its Laplace transform was (in other notation) evaluated in Chapter 4:

Kl s

g B>l 0.9

oC
/ e S E(L, £y o, Bdt =
0

Another convenient property of &(t,y; o, 3), which we use in this
chapter, is its simple fractional differentiation (see Section 1.2.3):

oDYE(t ys . B) = Ex(t g, B—=A), (A < B). (9.10)

Other properties of the function & (1, y; a, 3), such as special cases,
its asymptotic behaviour, etc., can be obtained from (9.6)-(9.8) and the
known properties [65] of the Mittag-Lefller function E, 5(z).

9.1.4 General Formula

Relationship (9.9) allows us to evaluate the inverse Laplace transform of
(9.1) as was done in Chapter 5.

Let 8, > 821 > ... > 1 > Bp > 0. Then using (9.9) gives the final
expression for the inverse Laplace transform of the function G, (s):

1 > (~1)m
gn(t) = — Z Z (?Tl;k‘(],k‘l,... ,kn_g)

an m!

m=0 kotki+. +kyog=m
ko200 ky g0
n-2 Nk P n—2
i n— . ; p P
X H (Z}’“) gm(L," a ;ﬂ7l-; n—l»ﬁn'i’ Z(.Un.—l _dj)kj)<91])
'n n

7=0

where (m; ko, k1, ..., kn.2) are the multinomial coefficients [2, chapter
24].

Further inverse Laplace transforms can be obtained by combining
(9.10) and (9.11). For instance, let us take

l\v’
F(s) =Y bis™Gu(s), (9.12)
i=1
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where o, < 3,, (i = 1,2,...,N). Then the inverse Laplace transform of
F(s) is
IV
F(t) =" 6D gu(t), (9.13)
i=1

where the fractional derivatives of g, (t) are evaluated with the help of
(9.10).

9.1.5 The Unit-impulse and Unit-step Response

The unit-impulse response of the fractional-order system with the trans-

fer function (9.1) is given by formula (9.11), i.e. Yimpuse(t) = gn(t).

To find the unit-step response ygep(t), one has to integrate (9.11)
with the help of (9.10). The result is:

1 o~ (=17
Ystep(t) = — Z , Z (m; ko, k1, .. kn—2)
n m=0 m: kgiky+. +ky _o=m
k20 . kp0>0
n—2 a k, a
X H (_1> gm(t’ _"n‘ilhgn — Bn-1,
i=0 ~n an
n—2
ﬁn +Z(ﬁn~ 1~ /d])k] + 1) (914)
=0

9.1.6 Some Special Cases

For illustration, we give the following three particular cases of (9.11) and

(9.14).
1)
s) =
Ca(s) as® +b’ (a>0)
yi,n'z,pulse(t) = QQ(t) 15 ¢ b 0

- = &l ——sa, 15

:’/sf,ffp(t) = ()Dt lgg(t) a 0( a G, 0+ 1 ) (9 ))
2)

1

Gals) = as® + bsx + ¢’

(B>a>0)
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yzmpulse(t) :1 gS(t)
ystep(t) = ODtW gB(t)

{
S
()8
o] |
Vo | —
T
TN
2ia

Nk
) Ek(t,-—%;3——a,ﬁ+ak+{ g }) (9.16)

3)
1
as¥ + bs? +csx +d’

?/impulse(ﬂ :g4(t) :1 o —i' (;d)m m m (£>k
ystf:p(t) - ODflg/l(t) a Z m! a Z k d

m=0 k=0

Ga(s) =

(y>03>a>0)

x Em(t, ~§)~;7 — B,y + Bm — ak + { (1] }) (9.17)
a

Integrating the unit-step response with the help of (3.10), we obtain
the unit-ramp response. Double integration of the unit-step response
gives the response for the parabolic input. All these standard test in-
put signals are frequently used in control theory, and the above formulas
provide explicit analytical expressions for the corresponding system re-
Sponses.

9.1.7 PI*D*-controller

As will be shown in an example below, a suitable way to the more cfficient
control of fractional-order systems is to use fractional-order controllers.
We propose a gencralization of the PID-controller, which can be called
the PI*D#-controller because it involves an integrator of order A and
differentiator of order p. The transfer function of such a controller has
the form:

G.(s) = (;;Ef; = Kp+ K157 + Kpst, (A, pu > 0). (9.18)

The equation for the PI* D#-controller’s output in the time domain

u(t) = Kpe(t) + KyD Me(t) + KpDte(t). (9.19)

Taking A = 1 and p = 1, we obtain a classical PID-controller. A =1
and g = 0 give a Pl-coutroller. A = 0 and p = 1 give a PD-controller.
A =0 and p = 0 give a gain.
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All these classical types of PID-controllers are the particular cases of
the fractional PI*D#*-controller (9.18). However, the PI* D*-controller
is more flexible and gives an opportunity to better adjust the dynamical
properties of a fractional-order control system.

9.1.8 Open-loop System Response

Let us delete the feedback in Fig. 9.1 and consider the obtained open
loop with the PI* D*-controller (9.18) and the fractional-order controlled
system with the transfer function G,,(s) given by expression (9.1).

In the time domain, this open-loop system is described by the frac-
tional-order differential equation

n
> axD%*y(t) = Kpuw(t) + KD w(t) + KpD'w(t). (9.20)
k=0

The transfer function of the considered open-loop system is
Gopen(s) = (Kp + Kis™ + Kps*) Gu(s). (9.21)

Since (9.21) has the same structurc as (9.12), the inverse Laplace
transform for Ggpen(s) can be found with the help of formula (9.13).
Therefore, the unit-step response of the considered fractional-order open-
loop system is

Gopen (t) = Kpgn(t) + K1 D 2, (t) + Kp D" g, (1), (9.22)

where g, (t) is given by (9.11).
To find the unit-step response, one should integrate (9.22) using for-
mula (9.10).

9.1.9 Closed-loop System Response

To obtain the unit-impulse and unit-step response for a closed-loop con-
trol system (Fig.9.1) with the PI* D¥-controller and the fractional-order
controlled system with the transfer function G,,(s) given by expression
(9.1), one needs, first, to replace w(t) with ¢(t) = w(t) — y(t) in equation
(9.20). This step results in

Y axD%y(t) + Kpy(t) + Ky D™ y(t) + KpD'y(t)
k=0

= Kpw(t) + K; D™ w(t) + KpDFuw(t). (9.23)
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From (9.23) onc obtains the following expression for the transfer func-
tion of the considered closed-loop system:

[X’])S’\ + Ky + k',l)s’hL’\

7. ) :
3 ak:.s"’c+’\ + Kps’\ + K+ K ]‘)S“Jr)‘
k=0

Gcl()sed(s) = (924)

The unit-impulse response g.osq(t) is then obtained by the Laplace
inversion of (9.24), which could be performed by rearranging in decreas-
ing order of differentiation the addends in the denominator of (9.24) and
applying after that relationships (9.11) and (9.13). To find the unit-step
response, one should integrate the obtained unit-impulse response with
the help of (9.10).

9.2 Example

In this section we give an example showing the usefulness of the PI* D#-
controllers in comparison with conventional PID-controllers. We con-
sider a fractional-order system, which plays the role of “reality”, and
its integer-order approximation, which plays the role of a “model”. We
emphasize that, at first glance, the model, obtained in the usual manner,
fits the data obtained from *reality” well.

However, the PD-controller, designed on the basis of the model, is
shown to be not so suitable for the control of “reality” as one should
expect.

A good way to improve the control is to use a controller of a similar
“nature” to “reality”, i.e. a fractional-order PD"-controller. At this
stage we assumce that the fractional-order transfer function has been
identified exactly.

It is important to realize that often, in fact, the structure of the
model is postulated (in our example, the second order differential equa-
tion model) and then the parameters of the model (in our case, the
coefficicnts of the differential equation) are determined to provide suit-
able fitting of data obtained from the real object. However, there are
numerous real systems which are better deseribed by fractional-order
differential cquations. For such systems classical integer-order models,
even of high order, will give less adequate results than fractional-order
models. From this point of view, the example demonstrates some of
the possible effects arising from the difference of the nature of “reality”
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and the “model”. Tt also indicates the necessity of the development of
methods for identification of parameters of fractional-order models, in-
cluding the most appropriate order of the model (not the order of the
real object).

9.2.1 Fractional-order Controlled System

Let us consider a fractional-order controlled system with the transfer
function

1
G(s) = — (9.25)
ass” + a1s® + ag

where we take ag = 0.8, a1 = 0.5, a9 =1, 8 =2.2, a = 0.9.
The fractional-order transfer function (9.25) corresponds in the time
domain to the three-term fractional-order differential equation

a2y (1) + ary @ (t) + aoy(t) = u(t) (9.26)

with zero initial conditions y(0) = 0, ¥'(0) = 0, ¥"(0) = 0.
The unit-step response is found by (9.16):
L& (=)
t) = —
vt =5 g;; k!

(g k (22 -
(—) Ek(t,—;;ﬁ—a,ﬁ+ak+l). (9.27)
2

az

9.2.2 Integer-order Approximation

For comparison purposes, let us approximate the considered fractional-
order system by a second-order system. Noticing that 3 = 2.2 and
o = 0.9 are close to 2 and 1, respectively, one may cxpect a good ap-
proximation. Using the least-squares method for the determination of
coefficients of the resulting equation, we obtained the following approx-
imating equation corresponding to (9.26):

azy” (t) + a1y (1) + aoy(t) = ult) (9.28)

with ap = 0.7414, @7 = 0.2313, ap = 1.

The comparison of the unit-step response of systems described by
(9.26) (original system) and (9.28) (approximating system) is shown in
Fig. 9.2. The agreement scems to be satisfactory enough to build up the
control strategy on the description of the original fractional-order system
by its approximatior.
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y(t)

08

06

04-

— fractional-order "reality”
02 = nleger-order "model”

Figure 9.2: Unit-step response of the fractional-order system (thin line)
and its approzimation (thick line).

9.2.3 Integer-order P D-controller

Since the above comparison of the unit-step responses shows good agree-
ment, one may try to control the original system (9.26) by a controller
designed for its approximation (9.28). This approach is, in fact, fre-
quently used in practice, when one controls the rcal object by a controller
designed for the model of that object.

The PD-controller with the transfer function

Go(s) = K + Tys (9.29)

was designed so that a unit step signal at the input of the closed-loop sys-
tem in Fig. 9.1 will induce at the output an oscillatory unit-step response
with stability measure St = 2 (this is equivalent to the requirement that
the system must settle within 5% of the unit step at the input in 2 sec-
onds: Ty <€ 2s) and damping ratio £ = 0.4. In this case, the coefficients
for (9.29) take on the values K = 20.5 and T = 2.7343.

For comparison purposes, we also computed the integral of the abso-
lute error (TAE)

t
I(t) = A le(f)|dt
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fort =5 s I(5) = 0.8522.

Let us now apply this controller, designed for the optimal control
of the approximating integer-order system (9.28), to the control of the
approximated fractional-order system (9.26).

The differential equation of the closed loop with the fractional-order
system defined by (9.25) and the integer-order controller defined by
(9.29) has the following form:

asy™ () + T/ (8) + ary'™ () + (a0 + K)y(t) = Kw(t) + Ty’ (£). (9.30)

This is a four-term fractional differential cquation, and the unit-step
response of this system is found with the help of (9.17):

l/(f) = i i (“1)"' (ao_}_R—)m

ay —, m! ao
i£23 m T
m a ~ T,
Z ( L ) Ké'.,,,,(t,w—d;ﬁ—— L3+m—ak+1)
b0 k ag + K 12

- Ty . ,
+LgEm(t,— =38~ 1,3+ m —ak)}. (9.31)
22
A comparison of the unit-step response of the closed-loop integer-
order (approximating) system and the closed-loop fractional-order (ap-
proximated) system with the same integer-order controller, optimally
designed for the approximating system, is shown in Fig. 9.3.

One can see that the dynamical properties of the closed loop with
the fractional-order controlled system and the integer-order controller,
which was designed for the integer-order approximation of the fractional-
order system, are considerably worse than the dynamic properties of the
closed loop with the approximating integer-order system. The system
stabilizes slower and has larger surplus oscillations. Computations show
that, in comparison with the integer-order “model”, in this case the IAE
within 5 s time interval is larger by 76%. Moreover, the closed loop
with the fractional-order controlled system is more sensitive to changes
in controller parameters. For example, under a change of Ty to the value
1, the closed loop with the fractional-order system (“reality”) is already
unstable, whereas the closed loop with the approximating integer-order
system (the “model™) still shows stability (Fig. 9.4).
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Figure 9.3: Unit-step response of the closed-loop integer-order (thick line)
and fractional-order (thin line) systems with the same integer-order con-
troller, designed for the approzimating integer-order system.
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Figure 9.4: Unit-step response of the closed-loop integer-order (thick line)
and fractional-order (thin line) systems with the samne integer-order con-
troller, designed for the integer-order system, for Ty = 1.
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9.2.4 Fractional-order Controller

We see that disregarding the fractional order or the original system
(9.26), replacing it with the approximating integer-order system (9.28)
and application of the controller, designed for the approximating system,
to the control of the original fractional-order system, is not generally ad-
equate.

An alternative and more successful approach in our example is to use
the fractional-order P D#-controller characterized by the fractional-order
transfer function

Ge(s) = K + Tysh. (9.32)

Let us take a < u < §. The differential equation of the closed-loop
control system with the fractional-order system transfer (9.25) and the
fractional-order controller transfer (9.32) can be written in the form:

agy' P () + Ty (1) + a19'Y (1) + (a0 + K)y(t) = Kw(t) + Tyw™(1).
(9.33)

We are interested in the unit-step response of this system.
Using (9.17). (9.13) and (9.10), the following solution to equation
(9.33) is obtained:

= LS (weayr
YL - —
Y a2 = ! as
LIRS ay k T,
K& ) t,———;j}__ A3 m— ak + 1
kz—;)(k> ((10+K> { m( ag i, 84+ pm —ak +1)

Ty . ,
+T4E,(t, ——Li; 3—u. 3+ pum—ak+1- /1,)} (9.34)
9

In Fig. 9.5, the comparison of the unit-step response of the closed
loop with the fractional-order system controlled by a fractional-order
PD#-controller with K = K, Ty = 3.7343 and g = 1.15 (the values
of the paramcters were found by computational experiments) and the
unit-step response of the closed loop with the same system controlled by
the integer-order £ D-controller, designed for the approximating integer-
order system, is givern.

One can see that the use of the fractional-order controller leads to
the improvement of the control of the fractional-order system.
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wm fractional-order "reality” with classic PD-controller
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Figure 9.5: Unit-step response of the closed-loop fractional-order system

with the conventional PD-controller, designed for the approrimating int-
eger-order system (thick line), and with the PD*-controller (thin line).

9.3 On Fractional-order System Identification

In this section we briefly discuss an approach to identification of param-
eters of fractional-order models of rcal dynamical systems. The method
is illustrated on the example of identification of parameters of fractional-
order models of a re-heating furnace.

A set of measured values i (4 = 0, M) was obtained for the transfer
function of a real experimental re-heating furnace. Then three models
were developed for this object.

The first model was obtained using classical integer-order derivatives.
Assuming that the system can be described by the second-order differ-
ential equation

azy” (t) + a1y’ () + aoy(t) = u(t), (9.35)

the following values were obtained for the coeflicients of the modelling
equation:

ay = 1.8675, aj = 5.5184, ap = 0.0063,
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which minimize the criterion ()

1 M

where y; is the output of the model at the point of the i-th measurement.
In this case, the minimal value of @ is

The second model was obtained under the assumption that the sys-
tem can be described by the three-term fractional differential equation
bay' (1) + bry P (2) + boy () = u(t). (9-36)
In this case, the following values for orders o and @ and for the coeflicients
by, by and by were obtained:
a = 2.5708, 3 =0.8372,
by = 0.7943, b = 5.2385, by = 1.55660

giving for the criterion the value of
Qs =1.3-1071,

Third, the considered object was also modelled by a two-term frac-
tional differential equation. In this case we must put as = 0 in equation
(9.36), so the term with the a-th derivative disappears. The remaining
parameters of the two-term fractional model

by P (t) + boy(t) = u(t) (9.37)

take on the values

#=1.0315, by =6.2868, by = 1.8508,
and the corresponding value of the criterion is
Qs =43 1074,

The result of fitting the unit-step response of the furnace using (9.37)
is presented in Fig. 9.6.

The comparison of thesc three models leads to interesting observa-
tions.
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Figure 9.6: Fractional-order model of a re-heating furnace.

Note that the integer-order model (9.35) is just a particular case
of the more general fractional-order model (9.36). If the integer-order
model is the best model among the models described by three-term equa-
tions, then the identification of the parameters of the fractional-order
model (9.36) should give a =2, 3 =1, and by = ax (k =0,1,2). How-
ever, this did not happen; this indicates that the integer-order model
(9.35) is less adequate than the fractional-order model (9.36).

The real explanation of this difference between the integer-order ap-
proach and the fractional-order model is not the larger number of pa-
rameters (we have five parameters in (9.36) against three parameters in
(9.35)), but the different “nature” of the models, which allows us to use
the same number of parameters for achieving higher adequacy of the
resulting model. This higher level of adequacy is demonstrated by the
third model (9.37), in which we also have three parameters, like in (9.35),
but get a lower value of the eriterion Q.

9.4 Conclusion

We have shown that the proposed concept of the fractional-order PTA D#-
controller is a good way for the adequate control of fractional-order dy-
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namical systems.

Of course, for the physical realization of the PI*D#-controller spe-
cific circuits are necessary: they must perform Caputo’s fractional-order
differentiation and integration. It should be mentioned that such frac-
tional integrators and differentiators have already been described in [179]
and [180].

All the results of computations were also verified by the numerical so-
lution of the initial-value problems for the corresponding fractional-order
differential equations by the numerical method described in Chapter 8.

The most important limitation of the method presented in this chap-
ter is that only linear systems with constant coefficients can be treated.
On the other hand, it allows consideration of a new class of dynamical
systems (systems of arbitrary real order) and new types of controllers.

Finally, the example of identification of parameters of fractional-
order models of real objects, considered in Section 9.3 shows that for
fruitful applications of fractional-order models of dynamical systems and
fractional-order controllers further development of effective methods for
identification of the structure of a fractional-order mathematical model
of a real object, as well as methods for identification of the maodel pa-
rameters, is necessary.



Chapter 10

Survey of Applications
of the Fractional Calculus

In this chapter a survey of applications of the fractional calculus in
various fields of science is given. It covers the widely known classical
fields, such as Abel’s integral equation and viscoelasticity. and also less
well-known fields, including analysis of feedback amplifiers; capacitor
theory, fractances, generalized voltage dividers, fractional-order Chua-
Hartley systems, electrode-electrolyte interface models, fractional multi-
poles, electric conductance of biological systems, fractional-order models
of neurons, fitting of experimental data, and others.

This survey cannot be considered as a complete one, but as a collec-
tion of sample applications, which can be used for further developments
using analogies in the mathematical description of real problems arising
in different fields of science. Moreover, in sone cases we also use partic-
ular applications for illustrating the methods described in the previous
chapters.

10.1 Abel’s Integral Equation

The Abel integral equation is well studied, and there exist many sources
devoted to its applications in different fields. Among many existing
books on various aspects of Abel integral equations the monographs [90]
and [84] must be mentioned, in which special attention is paid to appli-
cations.

Because of this, in this section we pay attention mainly to those
types of integral equations which appear in applications and which can

261
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be reduced to Abel’s integral equation.

10.1.1 General Remarks

The simplest and most well-known example of a fractional-order system
goes back to H. N. Abel [1]. The integral equation

1 / p(r)dr
[(a) / (t —7)l-«

= f(t). (t>0), (10.1)

where () < o < 1, is called Abel’s integral equation. Its solution is given
by the well-known formula

t

d 7)dT
‘ f — f
p(t) = 1»0{ do/ mrs (t > 0),

which we prefer to write in the reversed form as

14
1 d f(rydr _ ‘
Da—a)di ] (-5 = () >0) (10.2)

In terms of fractional-order derivatives, equations (10.1) and (10.2)
take on the form

oD %plt) = f(2), (t>0) (10.3)
and

oD f(t) = ¢(t), (t>0) (10.4)

respectively.
Transfer functions corresponding to equations (10.3) and (10.4) are

g1(s) = s (10.5)

and
ga2(s) = s (10.6)

Therefore, in the case of equation (10.1) or, which is the same, equa-
tion (10.3), we deal with the system of order —a. If the system’s be-
haviour is described by equation (10.2) or by its equivalent (10.4), then
we have a system of order «.
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10.1.2 Some Equations Reducible to Abel’s Equation

Solution of many applied problems lead to integral equations, which at
the first sight have nothing in common with Abel’s integral equation, and
due to this impression additional efforts are undertaken for the develop-
ment of analytical or numerical procedure for solving these equations.
However, their transformation to the form of Abel’s integral equation
may often be convenient for rapidly obtaining the solution; this is the
reason for giving some typical examples of equations which can be re-
duced to Abel's equation. Many types of such equations along with
solution formulas can be found in [245].

Equations with non-moving integration limits

a) Let us consider the equation

<. 22
J/ fﬁ;!i%fiijéfzds féz). (10.7)

Denoting
e(r) 2
= F(r°),
" — P,

we can rewrite the equation (10.7) as

/F(s2 +y*)ds = IQ—)
0 %

Substitution of variables z = y?, £ = s? gives

T ety e — JV/3)
!512FL+£M§— N

(10.8)

Then the further substitution 7 = 1/(z + £) leads to

Ve

1 » N~ v
[ Gr)rre(F) o=

t = 1, Y(r) =t32F (l> \

x T

and denoting
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we arrive at an equation of the type (10.1), with o = 1/2:

/ 1/22[) (r)dr = f (:}Z) ) (10.9)
0

The solution of equation (10.9) can be found with the help of formula
(10.4):

vy — L g1
HO = 55 0P f(\/i), (10.10)

and performing backward substitution we obtain the solution of the equa-
tion (10.7) in terms of fractional derivatives:

(- ore(l) o

b) With the help of the same chain of substitutions the equation

[elWVS T o, ()

10.12
Ve 2 (10.12)
can be reduced to Abel's integral equation of the form
/ 1
/(t — )Y2(r)dr = tf (———) . (10.13)
J Vi

In this case o = 3/2; using the formula (10.4) we obtain
W) = e (,D;’/z(tf(i)) -2 ‘/Z(tf( ), (10.14)
r(3) Vit Vi

and the return to o(r) can be done using the relationship

¢) The equation

o

120t + T)dr = f(t) (10.15)
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is similar to equation (10.8) and can be solved in the same way.

d) The equation of the type

[s o]

/e““TTI/QC,O(t +7)dr = f(t) (10.16)
0

can be reduced to the equation of the type (10.15), in which f(¢) must
be replaced with e f(¢), with the help of the obvious substitution
—t
y(t) = ().

e) Poisson’s integral equation

n/2

/ W(rcosw)sin® 1w dw = f(r) (10.17)

0
can also be reduced to Abel’s equation.

After the substitution x = r cosw we have

and denoting

we obtain the equation

1/\E
/ (1 — ya?) ()t = ply),

0
which can be written as
/7 . ,
/ (— — ;172) w(z)de =y "ply). (10.18)
. z
0

Performing in (10.18) the subsequent substitutions
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and denoting

9(6) = 2°p(-)

we arrive at Abel’s integral equation

t
/(t — )V e(r)dr = g(t) (10.19)
0
with the solution )
N = —— oDV o(h).

Equations with moving integration limits

a) In numerous applied problems an integral equation of the following

type appears:
Yy

/ @2—_1’33)5 P(z)dr = f(y). (10.20)

0

Performing the substitutions

and denoting

we arrive at Abel’s integral equation:

t
/GT]'T'}T?‘P(T)‘]T = 2f(Vt), (10.21)
(]
with the solution
o0 = g 0P VA,

and therefore the solution of the equation (10.20) is given by the formula

W(V1) = 7 2vit 5 oD} P (V). (10.22)
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b) In other cases therc appears an equation similar to (10.20), but
with moving lower integration limit:

/ (ryrdr
/(‘L:z?—)d = f(z). (10.23)

xr

Perforiming the substitutions
r=b -2 t =02 — 2?

and denoting
p(7) = $(Vb? =),

we arrive at Abel’s integral equation

t
d 1 :
/ *Qm L /oy (10.24)
(t—71) 2
0
with the solution
1 1 3
p(t) = fVY 1),
o(t) = ST B) oD, 7 f( )

which means that the solution of equation (10.23) is given by the follow-
ing formula:

PV —t) = L oD} P F(VB = 1), (10.25)

2I(1 - 53)
c¢) The equation
w/2 ( )1
plp)dy |
; = F(0). 10.26
/ (cos @ — cos p)? (0). ( )

2]
which also often appears in applications, can be reduced to Abel’s equa-
tion too.
Performing the substitutions

T = COS , t = cosd,
and then denoting

__ plarccos )

y(r) = S 1O

= F(arccost),
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we obtain Abel’s equation

t
/ (t”—lT)gy(T)dT = f(t), (10.27)
0

which has the solution

y(t) = ml:—ﬁ—) oD 7 f(1).

Therefore, the solution of equation (10.26) is given by the formula

V1—t2

1-3 :
————— “ F(arccost). 10.2
ri ) oD; " F(arccost) (10.28)

plarccost) =

10.2 Viscoelasticity

Viscoelasticity seems to be the field of the most extensive applications of
fractional differential and integral operators, and perhaps the only one
in which there have been published broad surveys (see. e.g.. [138, 136,
228]). The considerations discussed below show that the use of fractional
derivatives for the mathematical modelling of viscoelastic materials is
quite natural. It should be mentioned that the main reasons for the
theoretical development are mainly the wide use of polymers in various
fields of engineering.

We will consider a range of approaches to the linear theory of vis-
coclasticity from integer-order models to fractional calculus models.

10.2.1 Integer-order Models

Let us recall the well-known relationships between stress and strain for
solids (Hooke's law)

a(t) = Ee(t) (10.29)
and for Newtonian fluids
de(t)
t) = n—-= 10.30
o(t) =n—>, (10.30)

where E and 7 are constants.
Relationships (10.29) and (10.30) are not universal laws, they are
only mathematical models for an ideal solid material and for an ideal
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fluid, neither of which exist in the rcal world. In fact, real materials
combine properties of those two limit cases and lie somnewhere between
ideal solids and ideal fluids, if materials are sorted with respect to their
firmness.

The development of integer-order models of linear viscoclasticity is
depicted in Fig. 10.1. The Hooke elastic element is represented as a
spring, while the Newton viscous clement is shown as a dashpot. It is
common practice in rheology to manipulate with such representations
instead of corresponding equations.

At the first stage, Hooke's (elastic) and Newton’s (viscous) elements
were combined with the aim of combining the properties of both. There
are two possible combinations: parallel and serial. The serial connec-
tion of the two basic elements gives Maxwell’s model of viscoelasticity;
connecting them in parallel gives Voigt's model. However, both these
models have obvious disadvantages.

In the case of the Maxwell model, which is described by the relation-
ship

de ldo o
— = —— 4+ —, 10.31
dt E dt + N ( )
we have
de .
o =const = i const, (10.32)

which means that if stress is constant, then strain grows infinitely; this
does not correspond to experimental observations.
In the case of the Voigt model ¢ and € are related by

de
= Fe —_ 10.33
o €+ o (10.33)
from which it follows that
€ =const = o = const, (10.34)

and we sce that the Voigt model of viscoelasticity does not reflect the
experimentally observed stress relaxation.
At the second stage (or level), the above disadvantages of the Maxwell
and the Voigt model were subjects for enhancement.,
The serial connection of the Voigt viscoelastic element and the Hooke
clastic element gives Kelvin's model of viscoelasticity:
do

de
- =k | — ( ; 10.35
= + oo = By (dt +,Be> : (10.35)
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Figure 10.1: Development of linear models of viscoelasticity
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connecting the Maxwell viscoelastic element and the Hooke element gives
Zener’s model of viscoelasticity:

do
dt

where « and § for both models are given by
_ Ey + E_z . 3= @
] + .
n Ui
Both Kelvin’s and Zener’s models give good qualitative descriptions,
but are not considered as satisfactory from the quantitative point of
view [141, 246]. Because of this, there were also developed further, more
complex reological models of viscoelastic materials, consisting of sev-
eral Kelvin or Maxwell elements combined with Hooke’s elastic element.
These models result in more complex relationships relating stress and
strain, in which linear combinations of derivatives of stress and strain
appear (see, ¢.g., [246]). In the most general case in this way we arrive
at the model ()f the form

de
+ fo = anzf 3E1e, (10.36)

m

"
> ar—g = Z i tk’ (10.37)

k=0

and in each particular case the best adequacy was achieved for n = m
(this property starts from the Kelvin and the Zener models, for which
n=m=1).

Using (10.35), (10.36), or (10.37) as the basic laws of deformation of
viscoelastic materials leads to complicated differential equations of high
order, which causes difficulties in formulating and solving many applied
problems, in spite of the fact that the resulting differential equations are
linear (due to linearity of the basic laws of deformation).

However, there is a nice solution which preserves the linearity of
models and at the same time provides a higher level of adequacy.

10.2.2 Fractional-order Models

Noting that stress is proportional to the zeroth derivative of strain for
solids and to the first derivative of strain for fluids, it is natural to sup-
pose, as has been done by G. W. Scott Blair [236], that for “interme-
diate” matcrials stress may be proportional to the stress derivative of
“intermediate” (non-integer) order:

o(t) = E ¢D%e(t), (0<a<1), (10.38)
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where E and « are material-dependent constants. The shortest outline
of how this idea appeared can be found in the appendix to G. W. Scott
Blair’s paper [239].

Approximately at the same time, A. N. Gerasimov [77] suggested
a similar generalization of the basic law of deformation, which can be
written in the form using the Caputo fractional derivative

o(t) =k _LDe(),

or, since for the lower terminal at —oc the Caputo derivative coincides
with the Riemann-Liouville fractional derivative,

o(t) =k _DPe(t),  (0<a<1), (10.39)

where & is a material constant (generalized viscosity). A. N. Gerasimov
also considered two problems describing the movement of a viscous fluid
between two moving surfaces. These problems led to the equations (in
our notation):

&y »y
0%y O/ 30 ,
pﬂf?"g)p = ﬁgg(ﬂcda—x (D'y)), (10.41)

y=ylz,t); D= _Df"

It must be mentioned that A. N. Gerasimov was the first to deduce
and solve fractional-order partial differential equations for particular ap-
plied problems.

Yet another formulation of a generalization of the basic laws of de-
formation was suggested by G. L. Slonimsky [241]:

1
e(t) = — oD;“, (k = const; 0<a<1). (10.42)
K

Under the condition ¢(0) = 0 Scott Blair’s and Slonimsky’s laws,
(10.38) and (10.42), arc equivalent. Also, the solutions given by Gerasi-
mov for the equations (10.41) and (10.41) are based on the assumption
that the unknown function and all given functions are equal to zero
for t < 0; under this assumption, Gerasimov’s formula (10.39) becomes
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Figure 10.2: Schiessel and Blumen’s fractance-type model.

equivalent to Scott Blair's and Slonimsky’s. Therefore, instead of con-
sidering these approaches separately, we may refer to the Scott Blair law
(10.38).

Since, as mentioned above, complex multi-element models, consisting
of Hooke and Newton elements, were used for modelling the viscoelastic
behaviour of real materials, it is natural to try to obtain multi-element
models of this type also for the Scott-Blair viscoelastic element.

Such multi-element models, which consist of an infinite number of
classical springs (Hooke) and dashpots (Newton) ordered hierachically
in a self-similar structures (sce Figs 10.2 and 10.3), were suggested by
H. Schiessel and A. Blumen (see [233]) and by N. Heymans and J.-
C. Bauwens [106]. In both cases the suggested models are structures of
the type called a fractance (see Section 10.5). Adjusting the parameters
of the structural parts of these models, it is possible to achieve for the
whole model an equation of the form (10.38).

Now, having three basic elements (Hooke, Newton, Scott Blair) for
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Figure 10.3: Heymans and Bauwens froctance-type model.

constructing rheological models, there are two options: to combine more
than one of them, or to use only the Scott Blair clement, since it contains
two other elements as particular cases.

N. Heymans and J.-C. Bauwens suggested a gencralization of the
clagsical Maxwell model (sec Fig. 10.1) by replacing both the elastic
clement and the viscous element by the Scott Blair element. On the
other hand, they generalized the Zener model (see Fig. 10.1) by replacing
only the viscous element by the Scott Blair element.

In the paper by H. Schiessel, R. Metzler, A. Blumen and T. F. Non-
nenmacher [233] all four basic classical models, (the Maxwell, Voigt,
Zener, and Kelvin models) were generalized by replacing all Hooke’s
and Newion’s classical elements by the Scott Blair element, and then
studied in detail. It must be mentioned that various tvpes of classi-
cal models of viscoelasticity were generalized and studied by M. Caputo
and F. Mainardi [29] much earlier, using the Caputo fractional deriva-
tives and starting with the deformation law equation, which is now called
the four-parameter model.

The Hooke law (10.29), which is a one-parameter model, and the
Scott Blair law (10.38), which is a two-parameter model (the parameters
are E and o) can also be further generalized by adding further terms
on both sides, containing arbitrary-order derivatives of stress and strain.
This leads to the three-parameter generalized Voigt model:

o(t) = bye(t) + by De(t), (10.43)
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to the three-parameter generalized Maxwell model:
a(t) + a1 D% (t) = by e(t), (10.44)
to the five-parameter generalized Zener model:
o(t) + a1 DY () = by e(t) + by D(t), (10.45)

and so on. Further, more general models have been suggested by H.
Schiesscl, R. Metzler, A. Blumen and T. F. Nonnenmacher [233].

However, the generalized Zener model (10.45) can be simplified, since
it was observed experimentally that the modelling of most materials
results in o = 3 [223, 18]. In addition to the experimental observations,
R. L. Bagley and P. J. Torvik proved theorctically that the five-para-
meter model (10.45) satisfies the thermodynamic constraints if o = 3.
This conclusion gives the four-parameter model,

a(t) + a1 D"a(t) = by e(t) + by D¥e(t), (10.46)

which provides a satisfactory description of most real materials. 1t is
interesting to note that among the integer-order models of viscoelasticity
(see Fig. 10.1) only the Zener and the Kelvin models are those in which
the highest order of derivative of stress is equal to the highest order of
derivative of strain.

We see that the four-parameter model (10.46) could also be formally
obtained from the integer-order Zener and Kelvin models by replacing
the first-order derivatives by the fractional derivatives of the same or-
der. Similarly, the most general linear model of viscoelasticity can also
be formally obtained from (10.37) by replacing integer-order derivatives
with fractional derivatives:

n T

ST apDo(t) = > b D%e(t), (10.47)

k=0 k=0

and it is possible that the best results may be achieved if n = m and
ar = Bk, (k=0,1,2,...).

10.2.3 Approaches Related to the Fractional Calculus

Besides the pure fractional calculus approach to linear viscoelasticity,
two closely related approaches must be mentioned.

The above considerations were devoted to the “transition” of lincar
viscoelasticity from integer-order models to fractional from the viewpoint
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of a mathematical description of the laws of deformation in terms of
derivatives. However, fractional-order models of viscoclasticity may also
be derived by starting from the so-called power-law stress relaxation in
real materials, first clearly formulated by P. G. Nutting [172] in the formm

€= at®c?, (10.48)

where a, «, and 3 are the model parameters.

Taking 7 = 1 and denoting ¢y = 1/a, we see that for a constant
strain (e = const) the stress relaxation is described by the power-law
relationship

o(t) = coet ™. (10.49)

On the other hand, for a constant stress (o = const) the strain is
given by
€(t) = —t*. (10.50)

As shown by T. F. Nonnenmacher [169], it follows from equation
(10.49), or respectively equation (10.50), that the functions o (¢) and e(t)
satisfy the fractional differential equations:

Deo(t) = 515,—1(-1—‘_—”‘—2%20(1,). (10.51)
D%(t) = I'(1 4+ a)t™%(t). (10.52)

This indicates that there is a close relation between the power law rep-
resentation of viscoelastic behaviour and fractional derivatives. The sim-
ilarities and the differences between the power law approach and the frac-
tional calculus approach in viscoelasticity are discussed by R. L. Bagley
[12].

Besides the fractional calculus model and the power law approach,
there is also another approach, involving integrals of convolution type.
This approach, which in fact is a particular implementation of V. Vol-
terra’s idea [252], was developed and extensively presented mainly by
Yu. N. Rabotnov ([217], see also the textbooks (218, 219]). 1t is essen-
tually based on the use of the Rabotnov function 3,(3,1), which is a
particular case of the Mittag-Lefler function (sce equation (1.68)). This
means that, in fact, Rabotnov’s theory is also related to the fractional
calculus approach and implicitly involves fractional integrals and deriva-
tives.
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All the above approaches to generalizations of the laws of deformation
have been found useful for solving practical problems of viscoelasticity,
if the results are properly interpreted. Many authors made significant
contributions to the development of fractional-order models of viscoelas-
ticity and their applications (in alphabetical order; this is not a complete
list): H. Beyer and S. Kempfle [19] M. Caputo [22, 23, 24, 25, 26]. M. Ca-
puto and F. Mainardi [29, 30], M. Enelund, A. Fenander, and P. Olsson
(58], M. Enclund and B. L. Josefson [59], A. Fenander [66], Ch. Friedrich
(70, 71, 72, 73], Ch. Friedrich and H. Braun [74], L. Gaul, S. Kempfle,
and P.Klein [75], A. N. Gerasimov [77], W. G. Glockle and T. F. Non-
nenmacher [80, 81, 170] B. Gross [97], N.Heymans and J.-C. Bauwcns
[106], R. C. Kocller [118], H. H. Lee and C.-S. Tsai [122], N. Makris and
M. C. Constantinou [129, 130}, F. Mainardi [136, 138. 139, 132] R. Met-
zler, W.Schick, H.-G. Kilian, and T. F. Nonnenmacher [151], T. F. Non-
nenmacher [169], P. G. Nutting [172], T. Pritz [214], Yu. N. Rabot-
nov [217, 218, 219], L. Rogers [223], Yu. A. Rossikhin and M. V. Shi-
tikova [228, 229], H. Schiessel, R. Metzler, A. Blumen and T. F. Nonnen-
macher [233], G. W. Scott Blair [236, 237, 239], G. L. Slonimsky [241],
A. 1. Tscytlin [250], and others.

However, today’s intensive development of this field and its advanced
state comparing to other ficlds is undoubtedly due to a series of works
by R. L. Bagley and co-authors [12, 13, 14, 15, 16, 17, 18], in which
the advantages of the fractional calculus approach were presented with
ultimate clarity using both theoretical and experimental arguments, and
also due to the need for a better deseription of the properties of materials
used in industry.

10.3 Bode’s Analysis of Feedback Amplifiers

In his study on feedback amplifier design [20], first published in 1945,
H. W. Bode considered a system characterized by the frequency response
of the form [20, §18.2, eq. (18-5)]

A

Z(w) = E(iw)_"‘ (10.53)
which corresponds to the transfer function
. A
9:(s) = s " (10.54)

where A and B are known constant, and n is the number of stages in a
feedback amplifier. In his analysis Bode allowed n to be an arbitrary real
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number and arrived at the conclusion that the optimal number of stages
in a feedback amplifier is non-integer {20, §18.9]. Therefore, he in fact
performed a frequency-domain analysis of the performance of a system
of non-integer order —n with fractional-order transfer function (10.54).

However, after that he described how to choose a suitable iuteger
number of stages, which is not necessarily closest to the optimal non-
integer value of n.

10.4 Fractional Capacitor Theory

Fractional-order capacitor models were most probably first formally sug-
gested and investigated by G. E. Carlson and C. A. Halijak [32, 33, 34,
31].

The fractional capacitor theory, presented recently by S. Westerlund
and L. Ekstam [255], who obviously did not know about Carlson and
Halijak's work, is based on the revision of a physical law. It leads to a
family of fractional-order systems.

S. Westerlund starts with M. J. Curie’s well-forgotten empirical law
dating from 1889

- hitv’

i(t) O<v<l, t>0), (10.55)
where h is a constant related to the capacitance of the capacitor and
the kind of dielectric, and v is a constant related to the losses of the

capacitor. The transfer function of the model capacitor is found to be
H(s) = Cps", (0<v <y, (10.56)

where C, is a model constant close to what is usually called the capaci-
tance.
The capacitor’s impedance is described by the transfer function

, 1
Z(s) = T (0<v<l). (10.57)

S. Westerlund has achieved a successful fitting of experimental data
by the two-term model described by the transfer function of the form

1
s Cl - ¥z 72 ’

Z(s) = (10.58)
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where 17 = 0.82, 1p, = 0.9946, Cy and C» are certain constants of the
same nature as the previously mentioned Cy.

Westerlund’s approach to the “fractional” revision of the traditional
capacitor theory can be very useful in view of the huge number of empir-
ical laws of the type (10.55) in different fields of science and engineering,
the most popular of which is represented now by the theory of fractals.

Interesting conclusions may probably be deduced from the observa-
tion that M. J. Curie’s law (10.55), describing the relaxation of current
in a capacitor, has the same form as a particular case of P. G. Nutting's
power law in viscoelasticity, given by equation (10.49).

10.5 Electrical Circuits

There are two types of electrical circuits which are related to the frac-
tional calculus.

Circuits of the first types are supposed to consist of capacitors and
resistors, which are described by conventional (integer-order) models;
however, the circuit itself may have non-integer order properties, be-
coming a so-called fractance.

Circuits of the second type may consist of resistors, capacitors (both
modelled in the classical scnse), and fractances.

10.5.1 Tree Fractance

The first example of an electrical circuit related to fractional calculus
is the fractance -— an clectrical circuit having propertics which lie be-
tween resistance and capacitance. The term fractance was suggested by
A. Le Méhauté [121] for denoting clectrical elements with non-integer
order impedance.

An example of a {ree fractance element is given in Fig. 10.4, where
an infinite self-similar circuit consisting of resistors of resistance R and
capacitors of capacitance C is depicted.

As has been shown by M. Nakagawa and K. Sorimachi [161], the
impedance of the fractance shown in Fig. 10.4 is

Z(iw) = (R/C)?w™ /% exp(—mi/4), (10.59)
which corresponds to the fractional-order transfer function

Z(s) = (R/C)V/2s71/2, (10.60)
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Figure 10.4: Tree fractance.
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Figure 10.5: Chain fractance.

In practice, of course, the infinite circuit must be truncated, so the
real fractance always consists of a finite number of stages (levels). How-
ever, as in the case of the domino ladder, the number of stages may be
determined to achieve the required approximation.

Fractances can be used for analogue fractional differentiation and
integration. They can also be used in electroengineering as a circuit
clement of a new type.

10.5.2 Chain Fractance

The sccond example of a fractance is a chain fractance (Fig. 10.5), sug-
gested by G. E. Carlson aud C. A. Halijak [34] and by K. B. Oldham
and C. G. Zoski [179, 180].
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The chain fractance consists of N resistor-capacitor pairs connected
in a chain.

R, =R, C,=C(k=1,N-1)and Ry = R/2, Cy = 0, then,
as has been demonstrated in [179], the transfer function of the chain
fractance of Fig. 10.5 is approximately equal to

R
Cs

and - over a certain time range, namely for 6RC <t < ]ENQRC -~ this
chain fractance serves as a fractional integrator of order % The required
accuracy and the time interval length can be achieved by an appropriate
choice of R, C, and N.

This idea has been further developed in [180], where the following
recipe for the design of a fractional integrator of order 1 —v (0 < v < 1)
is given.

First, one has to choose the order of fractional integration « and to
compute ¥ = 1 — . Then the lower and the upper limits ¢, and tpr
must be selected for the time interval in which the fractional integration
is performed.

After choosing v, the values of the capacitive and resistive geometric
values G and g are calculated from the equations

G(s) ~ (10.61)

" log G. (10.62)

3 o
logG=v*?  logg=
08 SR 0g g o

The number N of stages in the chain fractance, which are necessary
for providing 2% accuracy, must satisfy the inequality

5.5 + log(tar /tm) — 3v%/3

N+1>
T log Gy

(10.63)
The values of the largest resistor-capacitor pair must satisfy the con-
dition
111 ¢ exp(——31/2/3)
Gy ’
and the actual values for I{y and Cy may be determined mainly by com-
ponent availability. The remaining components are calculated as

. Rl - C/‘l
B =5 O = Grom

mcy =

(10.64)

(k=2 N). (10.65)

As for the tree fractance, the chain fractance can also be used for ana-
logue fractional differentiation and integration, and as a circuit element
of a new type.
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10.5.3 Electrical Analogue Model of a Porous Dyke

A. Oustaloup [184] has deduced an clectrical analogue of water flow
through a porous fractal [142] dyke, and that analogue has exactly the
structure of the chain fractance shown in Fig. 10.5.

Resistances Ky and capacitances C were computed by using the
formulas

Ri=R: Rip=R/o*' (k=2'N) (10.66)
C,=C; Co=C/n"", (k=2.N) (10.67)

where « and 7 (a,n > 1) are the parameters of the recursive dynamical
model of the dyke.
The impedance of the circuit in the Laplace domain has been shown
to be \
Z(s) = <ﬂ> L A= —11— (10.68)
8 1+ 280

log

where wy is the so-called transition frequency. The transfer function
(10.68) is of non-integer order —\.

Finally, with the use of this electrical analogue, the transfer function
of the water-dyke system has been obtained in the form

|
, 1 M\ T
F(s) = ———, = 10.69

(%) 1+ (rs)1= 7 (wo) ( )

where M is the mass of water. We see that the transfer function (10.69)
describes a dypamical system of order v =14+ A\ 1 < v < 2.

10.5.4 Westerlund’s Generalized Voltage Divider

Both the tree fractance and the chain fractance, which are discussed
above, consist of clements (resistors and capacitors) described by classical
integer-order models, but demonstrate properties, which lies between
resistors and capacitors They themselves can be used as elements of
circuits and such circuits will then also contain elements described by
fractional-order mathematical models (differential equations or transfer
functions).

Moreover, such circuits can be obtained if generalized modcls of re-
sistors, capacitors, and induction coils are taken.

For example, S. Westerlund suggested the following generalization of
a classical voltage divider shown in Fig. 10.6.
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Figure 10.6: Generalized voltage divider.

The fractional-order impedances 7 and Fy may represent imped-
ances not only of Westerlund’s capacitors, classical resistors and induc-
tion coils, but also impedances of tree fractances and chain fractances.

The transfer function of a voltage divider circuit has the following
general form:

k
s+ k7
where o can have the range —2 < a < 2 and & is a constant depending
on the values of the comuponents of the voltage divider. S. Westerlund
mentions that negative « corresponds to a high-pass filter and positive
a corresponds to a low-pass filter. He also lists some particular cases of
the transfer function (10.70) for voltage dividers consisting of different
combinations of resistors (R), capacitors (C), and induction coils (I.).
The impedances Fy, Fy, and the constant &, « in the Laplace domain,
considered by S. Westerlund, are:

Hs) = (10.70)

[y

Fi=Ls, F,=Cs"v, k=L"'C"1" a=1+v;
Fi=R, F=Cs" k=R1T'C"" a=v;
Fi=Cis™,  Fy=Chs™2 k=C/Cy, a=vp—uw;
Fi=Cs", F=R, k=RC, «=-v;

Fi=Cs" Fo=1Ls, k=LC, o=-1-v.

FaNER U )
=z D =

o
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If the input u;,(t) is the unit-step signal with the Laplace transforin
Uin(s), then the Laplace transform Upy(s) of the output signal weg,(t)
is

ks™!
s* 4+ k'
and the inversion using the Laplace transform formula (1.80) for the
Mittag-LefHler function E, 3(t) or the formula (9.15) for the function
Ex(t, y; a, 3), defined by (9.8), gives

Uout(t) = bkt Eq a1 (—kt™), (10.72)

Uput(8) = (10.71)

or
Ugut (1) = k Ey(t, —k; o, 0 + 1). (10.73)

On the other hand, some interesting properties of the solution for
different values of & can be investigated by performing the evaluation of
the inverse Lapace transform in the complex domain.

Let us consider o > 0. Cutting the complex plane along the negative
real half-axis and using the Cauchy theorem, we have

c+io
ke’
touell) = 575 / m
C—100
ket 1 ket
_ Re b —ds, (10.74
E:[ ) o2 . r(‘*+AJ(b( )
§=&m ABCDEF

where the sum is taken for those m for which s, = k'/2e™@m+D/a yre
the poles of the integrated function lying inside the domain bounded by
the contour ABCDEFA (Fig. 10.7).

Then we can write

B C D E F
| =l [
ABCDEF A B ¢ D E

The integrals from A to B and from E to F tend to 0 as R — .
Uing the substitution s = ee™ it can be shown that the integral from C
to D tends to —2mé as ¢ — 0. For the two remaining integrals along
the negative half-axis we have:

C E 0 o

/—{-/—»— k/ e et dr k/. e e
B ‘ - ,‘ 'p‘(im('l‘“(’,ma + ]‘) ' e 177(7(1() ..... Ty + }m)
D 0 0
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Figure 10.7: Contour ABCDEFA.

2C

= 2tk sin (wax) /
0

P léf_Hdt
r2e 4 2kre cos (ra) + k2

\ N oy 7,
_u sin ( 7ra) / 2(xp (kx)V/ ot de (10.75)
22 4 2xcos (o) + 17
where the substitution r = (kz)'/® was used.

Now let us turn to residues. If 0 < « < 1, then there are no poles
of the integrated function in the selected sheet of the Riemann surface,
and the contribution of the sum of the residues in (10.74) is zero.

If1 < o <2, then we have two poles s,,, which correspond to m =10
and m = 1. Then

. ¢ st 8 ) k f)"t 2 +
Res = lim _m—- = — 2 cos (wilt),
; !: 5( R k) s Z S8 }br) +k-) a ( ) )
(10.76)
-
o = —kYcos T wi = kY sin —
o4 x

Since 1 < ¢ < 2, then o > 0.
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Substituting all the intermediate results in (10.74), we obtain

sin (7e) 7 exp — (k) du
U‘()’llf.(t) =1~ / G
T ) 2?4 2rcos(ma)+1
0, if 0<a<l
+ ‘ (10.77)
- %c"a eos (wot), if 1<a<2

In the case —2 < o < 0 the following expression for the unit-step
response of Westerlund's generalized voltage divider can be obtained in
a similar way:

0
sin (e / exp —(a/k)V 1 da

Uoutt) = ;
tout (1) T 22 4 2z cos (ma) + 1
0, if —1<a<0
+ (10.78)
%fi_(f Leos (wit), if —2<a< -1
wherc . -
o = -k~ cos —, wy = —kYsin -
o e

We sec that for 1 < Ja| < 2 the unit-step response of Westerlund's
generalized voltage divider contains oscillation terms, in which ¢® play
the role of attenuation constants, and w{,L the role of the resonance fre-
quencis.

10.5.5 Fractional-order Chua—Hartley System

The classical Chua circuit depicted in Fig. 10.8 is described by the fol-
lowing non-linear system of three differential equations:

Lot

dalt) - _ —ayr + apy — big(r),
dt

dy(t

”/1([—2 = a9r —agy + bz, (10.79)
dt

)
dt e

where

| —

b=, by=

@
[®)

9
2
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y(t) = Cy §L - x(t)

Figure 10.8: Classicel Chua circuit.

Figure 10.9: Piecewise-lincar i — v characteristics of Chua’s resistor.
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y(t) —( ) Ge Gy (t)

Chua’'s
diode

Figure 10.10: Feedback control of Chua’s circuit.

and g(x) is a piecewise-linear resistor characteristic which has the shape
shown in general in Fig. 10.9.

Chua’s circuit is extensively studied from the viewpoint of chaos,
bifurcations, and multistable behaviour, and there are numerous papers
on this, one of the most widely studied circuits today {see, for example,
[189]).

Chua’s circuit can also be described by the closed-loop control dia-
gram with Chua’s resistor in the feedback, as shown in Fig. 10.10, with

1 82 4 os - a
Gels) = <0 Gy(s) = ay(s” + azs + asbs)

‘ 10.80
$2 + ags + azby — ajas | )

In the paper by T. Hartley et al. [102] the piecewise-linear non-
linearity g(x) was replaced by an appropriate cubic polynomial which
yields similar behaviour, and the following particular values of the coef-
ficients were taken:

100 2cx

a] = «, ao = 1, ag = —, bl = —, b’l — 11

7 7

which gives the transfer function of the system

a(s? + s+ 100/7)

Gy(s) = : 10.81
) = S s T 10077 — o) (10.81)
the transfer function of the controller was, in fact, taken to be
1
Ge(s) = . (10.82)
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where the exponent ¢ is allowed to be non-integer. For g > 1 the con-
troller becomes a fractional-order differentiator, and for ¢ < 1 we have a
fractional-order integrator.

For this particular system T. Hartley et al. [102] give computational
results which demonstrate that, contrary to the widely accepted opin-
ion that chaos cannot occur in continuous-time systems of order less
than three, fractional-order systems of order less than three can display
chaotic behaviour. In particular, the lowest value of ¢ which yields chaos
was g = 0.9.

In the time domain, this system is described by the following sys-
tem of three differential cquations, one of which contains two fractional
derivatives: !

§

oDIz(t) = ang‘l(y(t)—a;(t))—2?“(4:1;@)-1:“@)),

W= a0 - 0+ 200, (1083)

We will end this section with two remarks.

First, for the physical realization of the generalized Chua circuit any
type of fractance can be used (tree fractance, chain fractance, Wester-
lund’s capacitor, or a combination of these elementary fractances).

Second, the conclusion made by T. Hartley et al. [102] that there is a
need for “a clarification of the definition of order [of a system] which can
no longer be considered ouly by the total number of differentiations or
by the highest power of the Laplace variable”, is in agreement with our
observation that for fractional-order differential equations the number
of terms is more important than orders of derivatives appearing in such
cquations (see Chapter 5, in which equations are classified using the
number of terms, not by orders of derivatives).

"The system

Y 93
JDiz(t) = a(y({,)Jrfﬁ)“Tz‘E__(_Q)r
oDfy(t) = x(t) - y(t) + 2(2).

oD{e(t) = '—.{.—'!/(f)~
given in [102], is not equivalent to the closed loop shown in Fig. 10.10 with the transfer
functions given by (10.81) and (10.82). Instead, it gives different expressions for the
transfer functions in which only non-integer powers of s appear: G.(s) == 1/s% and
Ga(s) = a2 + 57+ 100/7) /(s + 87 + 100/7 -~ «).
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10.6 Electroanalytical Chemistry

Due mainly to the works of K. B. Oldham and his co-authors {178, 175,
96, 93, 94, 176, 95, 177, 114], clectrochemistry is one of those fields in
which fractional-order integrals and derivatives have a strong position
and bring practical results.

Although the idea of using a half-order fractional integral of cur-
rent, QDt*l’/Qi(t), can be found also in the works of other authors (see,
e.g., [6], [109])), it was the paper by K. B. Oldham [175] which defi-
nitely opened a new direction in the methods of electrochemistry called
semi-integral electroanalysis, accomplished later by semidifferential elec-
troanalysis suggested by M. Goto and D. Ishii [92].

One of the important subjects for study in clectrochemistry is the
determnination of the concentration of analysed clectroactive species near

the clectrode surface. The method suggested by K. B. Oldham and
J. Spanier [178] allows, under certain conditions, replacement of a prob-
lem for the diffusion equation by a relationship on the boundary (elec-
trode surface). Based on this idea, K. B. Oldham [175] suggested the
utilization in experiments the characteristic described by the function

m(t) = [)D'hz (1),

which is the fractional integral of the current i(t), as the observed func-
tion, whose values can be obtained by measurements. Then the sub-
ject of main interest, the surface concentration Cy(t) of the electroactive
species, can be evaluated as

Cy(t) = Co — k oDy %i(1), (10.84)

where £ is a certain constant described below, and Cj is the uniform
concentration of the electroactive species throughout the electrolytic
medium at the initial equilibrinm situation characterized by a constant
potential, at which no electrochemical reaction of the considered species
is possible.

The relationship (10.84) was obtained by cousidering the following
problem for a classical diffusion equation [96):

C (2, t 92C(a
o ((); 1) =D, — -z - --»-2, (0<a<oo; t>0), (10.85)

(/‘(O(}. f) = C.'(” C/‘(.’L‘,()) e C"‘Ux
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D OC (x,t) (1)

[ T Ox L:O T nAF’

where D, is the diffusion coefficient. A is the electrode arca, F' is Fara-
day’s constant, and n is the munber of clectrons involved in the reaction
(oxidation of clectroactive species); the constant k in equation (10.84)
is expressed as k = 1/(nAFv/D,). The solution procedure uses the
Laplace tranform method and was given in [178]: it is very similar to the
procedure used in Scction 7.7.3.

There are several interesting features in this approach.
First, m(t) is a characteristic intermediate between the current i(t)
and the passed charge ¢(t), which is just the integral of the current:

q(t) = oD Na(t).

Second, this approach involves no assumptions about the kinetics of
the clectrode process, the properties of the clectrode surface, ete. In a
certain sense, this is a sort of modelling “in the large™: contributions
of particular features of the process are “embedded” in the non-integer
order of integration.

Third, instead of the classical diffusion equation (10.85). it is possible
to consider the fractional-order diffusion equation

(]D;Y(J(flj. 1) = D* ()—1?»

with 0 < o < 1, where D, is the fractional diffusion coefficient. Then
the surface concentration Cy(¢) will be related to m,, (t).

/2.
ma(t) = oD, "i(t).
The well-established and widely experimentally verified fractional-
derivative based methods of electroanalytical chemistry can be success-

fully used in other fields, such as diffusion, heat conduction, mass trans-
fer, etc., where siimilar basic equation appear.

10.7 Electrode—Electrolyte Interface

Another direction in the application of fractional-order models was mo-
tivated by the limitations of electric batterics, which always exhibit a
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limited current output due to the fact that microscopic clectrocherni-
cal processes at the electrode-electrolyte interface have a finite rate and
limit the current output. To circumvent this limitation, porous elec-
trodes have been used becausc they have a large surface. However, has
heen known since the work by I. Wolfe dated 1926 (cf. [113]) that at
metal electrolyte interfaces the impedance Z(w) does not exhibit the ex-
pected capacitive behaviour for small angular frequencies w. Instead, for
w— 0

Z{w) x (iw)™", (0<n<]) (10.86)

or in the Laplace domain
Z(s) s~ (10.87)

This means that the electrode electrolyte interface is an example of
a fractional-order process.

The value 7 is closely related to the roughness of the interface, with
1 approaching unity as the surface is made infinitely smooth.

There were different models suggested for the relationship between 7
and the fractal dimension of the interface dy (2 < dy < 3). It secms that
no experiment has been able to confirm or to contradict the following
models by different authors because it is difficult to measure the fractal
dimension of real objects embedded in three-dimensional space.

A. Le Mehaute [121] proposed the relationship

n=d;" (10.88)
L. Nyikos and T.Pajkossy suggested the relationship
n=(d, —1)"". (10.89)
T. Kaplan et al. [113] have found
n=3-d,. (10.90)

The physical model proposed by the authors of [113] is presented by
the self-affine Cantor block with N stages (levels), which is modelled by
an N-stage electrical circuit of fractance type, i.c. similar to the one
shown in Fig. 10.4.

Under certain assumptions, the impedance of the fractance circuit
has been obtained in the form

Z(w) = K (iw)™", (10.91)
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where = 2 —log(N?)/loga, K and a are constant, and e < N? implies
0<n<l.

We sce that T. Kaplan et al. arrived at the model of a system of
non-integer order —i).

10.8 Fractional Multipoles

Recently N. Engheta [60] suggested a definition for fractional-order mul-
tipoles of clectric charge densitics. The notion of fractional-order multi-
poles serves as an interpolation between the cases of integer-order point
multipoles, such as point monopoles, point dipoles, point quadrupoles,
etc. The approach, suggested by N. Engheta, is based on the fractional-
order differentiation of the Dirac delta function (see formula (2.160)),
and allows formulation of electric source distributions whose potentials
are obtained by fractional differentiation or integration of potentials of
integer-order point multipoles.

Since the terms monopole, dipole, quadrupole, etc., are related to
powers of 2 (namely, 2°, 2, 22, ctc.), the fractional-order multipoles are
called 2“-poles.

In the three-dimensional case, N. Engheta found that the potential
function of a point multipole with a 2% pole along the z axis, 0 < « < 1,
can be expressed in terms of the Riemann Liouville fractional derivative
with the lower terminal £ = —oc:

gl® 1
(I)Qu.z(.’lT,’y, Z) == 47(5 XD;} (W) B (]()92)

where ¢ is the so-called electric monopole moment, and € is a known
physical constant (permittivity of homogeneous isotropic space).

The constant, which is taken in the form of {*, where [ has dimen-
sion of length, is introduced for getting the traditional dimension of the
resulting volume charge density as Coulomb/m?®.

Evaluation of the fractional derivative (10.92) gives [60]

gl*T(1 + «) p (_ z )
dme(a2 + 42 + 22)(re)/27 7 Vet +y2 422
(10.93)
where P, (z) is the Legendre function of the first kind and of non-integer
degree o [63].

Byo (.9, 2) =
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It is obvious that the electrostatic potential functions for a monopole,

and for the dipole,

. g cosf
1)2(41’7!/12) - ‘1‘7; .’]_"51"'1/2 +z:2'

are particular cases of the function ®oe (2, y. 2) for @« = 0 and « = 1.

In this example of application of the fractional calculus it is inter-
esting that a static object is considered. and the fractional derivative
with the lower terminal ¢ = —oc¢ is applied with respect to the spatial
variable.

In another paper [61] N. Engheta gives examples of structures con-
taining wedges and cones, whose potentials can be described as elec-
trostatic potentials of sets of charge distributions, which behave like
fractional-order multipoles. The orders of the corresponding fractional-
order multipoles depend on the wedge angle (in the two-dimensional
case) and on the cone angle (in the three-dimensional case). The con-
tour plots of the corresponding potentials are similar to the plots of stress
concentration in problems of fracture mechanics in the presense of singu-
laritics of the boundary. In both cases, the known local behaviour of the
solution near singular points of the boundary can be cfficiently utilized
during the numerical solution procedure.

10.9 Biology

10.9.1 Electric Conductance of Biological Systems
In his work on the electrical conductance of membranes of cells of bio-
logical organisms [37], published in 1933, K. S. Cole gave the following
cxpression for the so-called membrane reactance:

X(w)=Xgw™?, {10.94)
which obviously corresponds to the transfer function

g.(s) = Xos °. (10.95)

Xp and « are constants and w is the current frequency.
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K. S. Cole also listed several values of « obtained experimentally by
other authors for various types of cells: o = (.45 for guinea pig liver and
muscle, o = 0.25 for potato, a = 0.5 for Arbacia egg, a = (.37 for frog
muscle, and o = 0.88 for blood.

10.9.2 Fractional-order Model of Neurons

The characteristic jerky movement of the eve which is observed at the
beginning and at the end of a period of rotation of the head is called
nystagmus. It is actually a reflex that provides visual fixation on sta-
tionary points while the head rotates. When rotation starts, the eyes
first move slowly in the direction opposite to the direction of rotation,
providing visual fixation: this is called the vestibulo-ocular reflex [234].
After reaching the limit of this movement, the eyes quickly go back to a
new fixation point, and then again move slowly in the direction opposite
to the direction of rotation.

These movements of the eyes are controlled by the premotor neurons
and the motoneurons. Both types of ncurons process the eye position
signals.

In the paper [5] T. J. Anastasio pointed out the disadvantages of
classical integer-order approaches to modelling the behaviour of premotor
neurons in the vestibulo-ocular reflex, and suggested a fractional-order
model in the form of the relationship in the Laplace domain:

R(s)  mi(sma+ 1)s®
Vis) ST+ 1

: (10.96)

where R(s) is the Laplace trausform of the premotor nenron discharge
rate r(t), V(s) is the Laplace transform of the head angular velocity v(t),
71 and 79 arc time constants of the model, « is the order of fractional
differentiation at the premotor level, and ¢, is the order of the fractional
integrator term in Anastasio’s model.

The relationship between v(t) and r(t) can be obtained by applying
the inverse Laplace transform to equation (10.96). Let us denote

g(s) = R(s)/V(s),

where g(s) is the Laplace transform of G(¢), and assume «; > gy, Writ-
ing
7_28:1’,;_(,1,+l Paate

g(s) = +

§+ 71 1 § + 'rl""1
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and using the Laplace transform of the Mittag-Leffler function (1.80) we
obtain:

t i
0= i By () 4By (1) 0
1 1
Then
t
r(t) = /G(t — 1Ye(T)dT. (10.98)
0

T. J. Anastasio also suggested a more general hypothesis: since the
muscle and joint tissues throughout the musculoskeletal system seem
to behave as viscoelastic materials having fractional-order integration
dynamics, then this could be compensated by the fractional-order dif-
ferentiation dynamics of associated premotor neurons and motoneurons,
and therefore the “fractional-order dynamics may be a property of the
motor control system in general” [5].

10.10 Fractional Diffusion Equations

The modelling of diffusion in a specific type of porous medium (in frac-
tal media) is one of the most significant applications of fractional-order
derivatives. The order of the resulting equation is related to the so-called
fractal dimension of the porous material.

For the description of transfer processes in fractals (in the sense of
B. Mandelbrot [142]), A. Le Mchaute, A. de Guibert, M. Delaye, and
Ch. Filippi [120] suggested the equation of the form

oD () = LX (1), (10.99)

where J(t) is the macroscopic flow across the fractal interface, X (t) is the
local driving force, L is a constant, and d is the fractal dimension. The
equation (10.99) has been then rigorously deduced by A. Le Mchaute and
G. Crepy [121]. Tt is important that the fractional diffusion equation has
been related to a dynamical process in fractal media: the order of the
resulted cquation depends on the fractal dimension of the fractal, which
serves as a model of a porous material.

Further development led to two types of partial differential equations
of fractional order.

The first type is a generalization of the fractional partial differential
equation suggested by K. B. Oldham and J. Spanier as a replacement of
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Fick’s law [178, 179]. In this way, M. Giona and H. E. Roman constructed
an equation, which in the simplest version takes on the form [78, 79, 224]:
OP(r,t)

OD:/dP(r,t) = —*A(T + ?P(T.t)) (10100)

where P(r,t) is the average probability density of random walks on frac-
tals, A and x are constant, and d is the anomalous diffusion exponent,
which depends on the fractal dimension of the considered media [225].

The fractional-order diffusion equation, suggested by R. Metzler,
W. G. Gléckle, and T. F. Nonnenmacher [150], is an cxample of the
second type of fractional diffusion equation:

oD P(r,t) = rdsl_l %(rdl‘)—lg—t—)) (10.101)
where d,, and d, depend on the fractal dimension of the media.

Another example of the second type is the fractional diffusion equa-
tion in the form deduced by R. R. Nigmatullin [162, 164]. In the simplest
case of spatially one-dimensional diffusion Nigmatullin's equation takes
on the form

d*u(x,t)
dz?

Since the order a of the derivative with respect to time in equation
(10.102) can be of arbitrary real order, including o =1 and a = 2, it is
called the fractional diffusion-wave equation. This name has been sug-
gested by F. Mainardi [131, 135]. For a = 1 equation (10.102) becomes
the classical diffusion equation, and for v = 2 it becomes the classical
wave equation. For 0 < « < 1 we have so-called ultraslow diffusion, and
values 1 < a < 2 correspond to so-called intermediate processes [89].

The solution of equation (10.102) for the spatially one-dimensional
case is given in Chapter 4 (Example 4.4).

Equation (10.102), with the fractional derivative defined in the sense
of the generalized functions approach (sec Section 2.4.2), has been con-
sidered by W. Wyss [259]. Later W. R. Schneider and W. Wyss [235],
and also T. F. Nonnenmacher and D. J. F. Nonnenmacher [171], sug-
gested another approach to “fractionalization” and unification of the

oD u(z.t) = (10.102)

form of the classical diffusion and wave equations, which leads to partial
integro-differential equations containing fractional integrals with respect
to time [235]. The simplest form of such an equation in the case of the
spatially one-dimentional problem is

D*ulx,t)

w(z, t) = ulr,0) + ,\ZOD;”W, (10.103)
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and the solution of this equation is given in Chapter 4 (Example 4.5).

Equation (10.103) allows the use of the classical initial conditions in
terms of integer-order derivatives. This is not so in the case of equation
(10.102) with the Riemann-Liouville fractional derivative. However, the
Schneider- Wyss fractional integrodifferential equation (10.103) is equiv-
alent to the fractional differential equation (10.102), in which the frac-
tional derivative is interpreted as the Caputo fractional derivative (see
Section 2.4.1).

The fractional diffusion-wave equation (10.102) was intensively stud-
ied by F. Mainardi [131, 135, 133, 134, 137], and also by A. N. Kochubei
[117], and A. M. A. El-Sayed [57].

A different type of equation has been proposed by J. D. Polack
[210] for modelling wave propagation in certain media using fractional
derivatives. The impact of fractional-derivative terms in Polack’s equa-
tion on the spectrum and impulse response of a boundary-controlled-
and-observed infinite-dimensional linear system has been studied by D.
Matignon and B. d’Andréa-Novel [144].

10.11 Control Theory

Chapter 9 provides an cxample of the use of fractional derivatives in
control theory.

The idea of using fractional-order controllers for the control of dy-
namical systems belongs to A. Qustaloup, who developed the so-called
CRONE controller (CRONE is an abbreviation of Commande Robuste
d'Ordre Non FEntier), which is described in a series of his books on ap-
plications of fractional derivatives in control theory [183, 185, 186. 187].
A. Oustaloup demonstrated the advantage of the CRONE controller in
comparison with the PID-controller. The PI*DH-controller, described
in Chapter 9, also shows better performance when used for the control
of fractional-order systems than the classical PID-controller.

The work by R. L. Bagley and R. A. Calico [13], A. Makroglou,
R. K. Miller and 8. Skaar [140], M. Axtell and M. E. Bise [9], G. Kaloy-
anov and J. M. Dimitrova [110], D. Matignon [143]. D. Matignon and
B. d’Andréa-Novel [145, 146], also provide very intercsting ideas for us-
ing fractional derivatives in control theory, as well as some methods of
studying fractional-order control systems.

The use of fractional-order derivatives and integrals as boundary
controls for integer-order infinite-dimensional systems has been recently
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studied by B. Mbodje and G. Montseny 147, and G. Montseny, J. Au-
dounet, and D. Matignon [159].

The usce of fractional-order derivatives and integrals in control the-
ory leads to better results than integer-order approaches; in addition, it
provides strong motivation for further development of control theory in
generalizing classical methods of study and the interpretation of results.

10.12 Fitting of Experimental Data

In this section we demonstrate on the example of modelling the impact of
hereditary effects in steel wires on the change of their mechanical proper-
ties that fractional derivatives can be successfully used as an instrument
for fitting experimental measurement data. We do not consider noisy
data, but concentrate on the presentation of the idea.

In a certain sense, the subject of this section is close to the system
identification discussed in Section 9.3. However, in control theory the
system identification is just a step to the efficient control of a real dy-
namical object. On the contrary, the fitting of experimental data in a
general sense may also be used for modelling static objects, and it is
often the final step in system modelling.

10.12.1 Disadvantages of Classical Regression Models

Let us start with polynomial regression. To determine the basic disad-
vantages of polynomial regression models which are frequently applied
for estimation of reliability of steel wires. used in mining transport ma-
chines, it is necessary to recall the main features of the process of the
change of properties of such a wire:

e during a certain period after installation of a wire an enhancement
of its properties is observed;

e then the properties of a wire become worse and worse, until it
breaks down;

o the period of enhancement is shorter than the period of decrease,
and the general shape of the process curve is not symmetric.

Linecar regression can give a rough estimate of the second phase (de-
crease of the performance of a wire), but it cannot describe the period
of enhancement of the wire properties.



300 10. SURVEY OF APPLICATIONS

Parabolic regression gives a symmetric shape for the fitting curve,
which does not correspond to the physical background of the considered
process.

Higher-order polynomial regression models can give better interpola-
tion within the time interval for which measurements are available, but
they give a wrong picture if one tries to use them for the prediction of
the change of wire properties.

In real industrial practice, parabolic regression is preferred in most
cases in spite its physical inadequacy. As a consequence, this leads to an
underestimation of the strength of a wire and to its premature replace-
ment.

One may try to use another regression model, for example, exponen-
tial, logarithinic, combined, ete. However, all thesc types of regression
curves, in fact, dictate a certain shape of the fitting curve, and the whole
responsibility for the selected shape lies upon the researcher/engincer.
All such approaches miss much of the necessary flexibility. Some con-
siderations regarding the use of mathematical models for estimation and
prediction of the state of stecl wires are given in [21].

10.12.2 Fractional Derivative Approach

Perhaps it is possible to try to obtain a more or less rigorous mathemat-
ical model of the process of exploitation of a wire; however, the main
problem is that each particular wire changes its properties due to cer-
tain very particular causes, which are too unique to be incorporated in
a general model.

An alternative approach, which we introduce here, is based on the
use of a fractional integral for the description of hereditary changes of
mechanical properties of steel wires.

A set of experimental measurcments

Y42, v Yn

is fitted with the help of the function y(¢) satisfying the following integral
equation:

11
y(t) = Z apth = am, oD “y(t), (0 < <), (10.104)

k=0
and the constant «, ag, (kK = 0,...,m) must be determined. For the

determination of these parameters we used the least squares method, al-
though any other criterion can be used as well. Regarding the parameter
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m it is worth mentioning that m is the smallest integer number which is
not less than «, so once one knows «, m is also known.

The parameters in equation (10.104) allow obvious physical interpre-
tation. Namely, ap (kK = 0,...,m — 1) arc initial values of the fitting
function y(t) and its first (m — 1) derivatives. The fractional-order in-
tegral in the right-hand side represents the cumulative impact of the
previous history of loading on the present state of the wire, and the or-
der of integration, «, determines the shape of the memory function of
the wire material. By omitting the fractional-order integral we obtain
the classical general polynomial regression model.

The problem is then reduced to the initial-value problem

m~—1

()D(t}vz(t) + (lmZU) = —lp Z aktk, (10105)
k=0

z(k)([)) =0, (k=0,...,m—1),
for the auxiliary unknown function z(t), where

m—1

2(t) = y(t) = D axth, (10.106)
k=0

The fact that initial conditions are zero allows application of the
fractional difference method, which is described in Chapter 8, for the
numerical solution of the problem (10.105) for any fixed combination
of parameters a; (k = 0.....m). After the solution z(t) is computed,
we can use the relationship (10.106) for performing the backward sub-
stitution, and evaluate the value of the least-squares criterion for the
function y(t). The optimal set of parameters a (k = 0,... ,m) can be
determined by using known optimization methods. In particular, in this
case the simplex method for unconditional optimization was used, which
is implemented as a one of the standard MATLAB functions.

10.12.3 Example: Wires at Nizna Slana Mines

This approach was applied to modelling the change of properties of wires
of the transport equipment at the Nizna Slana mining enterprize. A set
of 14 measurements made each 6 months during 7 yvears served as input.

We do now show the linear regression model, which cannot reflect
the improvement of properties of wires during the initial period of ex-
ploitation.



302 10. SURVEY OF APPLICATIONS
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Figure 10.11: Parabolic regresston

The parabolic regression model is shown in Fig. 10.11. The fitting
curve is symmetric, and therefore it will not give a suitable prediction:
the wire will be replaced ealier than necessary.

In Fig. 10.12 the third-order polynomial regression model is depicted.
In contradiction with the physics of the considered process, the proper-
ties of one of the wires become better after a previous decrease of per-
formance! The situation is much worse in the case of the fourth order
polynomial regression model: according to this model, all three wires be-
comne better after a period of decrease of their performance (Fig. 10.13).

From this experience with polynomial regression models it {follows
that the most appropriate model is parabolic regression, in spite of its
inaccuracy.

Finally, in Fig. 10.14 a comparison of the parabolic regression model
y(t) = —0.03306> + 0.5619( + 10.7236

and the described fractional differential equation approach is given. The
following parameters of equation (10.104) were computed:

a=132, m=2, a;=10.1955, a9 =1.2760, ao = 0.0457.
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Figure 10.12: Polynomaal regression of third order.
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Figure 10.13: Polynomial regression of fourth order.

303



304 10. SURVEY OF APPLICATIONS

diam. 2.8 mm

o parabolic regression \
101 . 1
AN
— fractionai-order approach AN
ar l“\
8 : s : —
0 2 4 6 8 10 12 14 16 18 20

Figure 10.14: Fractional order model versus parabolic regression.

There is no surprise in the fact that the fractional-order model gives a
lower value of the least squares criterion. More important is the fact that
all significant characteristics of the shape of the process curve, which we
mentioned in the beginning of this section, are preserved.

It is obvious that the order « of a fractional-order model will be
different for different wires, because they work in different conditions.
Therefore, it is necessary to apply the described approach in each case
separately. However, it is not even a technical problem now, with modern
computer facilities.

The outlined method is flexible. It allows continuous enhancerment
of the prediction of properties of wires after obtaining results of further
meagurements of mechanical properties of wires. It can be further gen-
eralized by introducing more fractional-order terms in equation (10.104)
and/or replacing the set of functions t* (k = 0, 1, ..., n) with another
suitable set of linearly independent functions.

Fitting of experimental data with the help of solutions of fractional
differential equations is a promising approach which can be used in many
experimental fields of science and engineering.
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10.13 “Fractional-order” Physics?

In the previous sections we discussed some examples of the application
of fractional derivatives in various fields of science and engineering.

The growing number of such applications indicates that there is a
significant demand for better mathematical models of real objects, and
that the fractional calculus provides one possible approach on the way
to more adequate mathematical modelling of real objects and processes.

Among other results, some works must be mentioned, in which pos-
sible generalizations of important physical laws are suggested.

In 1991, S. Westerlund suggested using fractional derivatives for the
description of propagation of plane electromagnetic waves in an isotropic
and homogeneous, lossy diclectric. The equation suggested by S. West-
erlund takes in the spatially one-dimensional case the following form:

2 1

Ho€Q %fl; + Ho€oXo EW + B)LE 0, (10.107)
where £ is the electric field, uo, €p, and xo are constant, and v (1 < v <
2) is the order of differentiation of E with respect to time.

Later, in 1994, S. Westerlund [254] suggested replacing in the Max-
well equations the relationships D = ¢E (F is the clectric field, D is the
electric field density) and B = pH (B is the magnetic field, H is the
magnetic field density) with their fractional-order generalizations

D=eEY Y, B=pH" Y = (0<v<l), (10.108)
in which we see fractional-order integrals (since v — 1 < 0).

Tn the paper on electrochemically polarizable media [27], published
in 1993, M. Caputo suggested the fractional-order version of the rela-
tionship between E (electric field) and D (electric flux density). In the
spatially one-dimensional case this relationship has the form

ADW) 4 oD = gE + ¢EW, (10.109)

where v, a, o, and € are constant, and v denotes the (real) order of
differentiation of I and F with respect to time. It is interesting to note
that the relationship (10.109) is more general than (10.108) and has the
same form as the four-parameter model of viscoelasticity (10.46), and is
more general than (10.108).
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Using some simplifying assumptions, M. Caputo reduced the Maxwell
equations in the spatially one-dimensional case to the following system
of two equations:

0’E _ 9*D

or? —H ot2 :'

where fu is also constant. Using separation of variables and the Laplace
transform of the Caputo fractional derivative (2.253) Caputo obtained a
solution of the system (10.110) in terms of inverse Laplace transforms.

So, we see that the Maxwell equations have already been attacked.
and we may expect further development in this direction.

Recently, in 1996-97, F. Riewe suggested a formulation of Lagrangian
and Hamiltonian mechanics involving fractional derivatives [221, 222].
Lagrangians with fractional derivatives lead to equations of motion with
non-conservative forces (such as friction, cte.). F. Riewe suggested a
modified Hamilton principle, introduced two types of canonical trans-
formations, and derived the Hamilton Jacobi equation using fractional-
order mechanics. In addition, he also proposed a fractional-order quan-
tum-mechanical wave equation. He also suggested a generalized Euler-
Lagrange equation, which involves fractional derivatives.

The formulas obtained by F. Riewe are two long to be included here
even for illustration. However, it is worth mentioning that the appear-
ance of Riewe’s fractional mechanics was motivated hy the well-known
fact that the methods of classical mechanics deal only with conserva-
tive system, while almost all classical processes observed in the physical
world are non-conservative, and exhibit irreversible dissipative effects.

A similar motivation, namely the wish to include dissipation. led
S. Westerlund to a generalization of Newton's second law [254]. In this
way, it is interesting to note that if F'is an acting force and x is the dis-
placement, then Hooke's model of elasticity (F = kx). Newton’s model
of a viscous fluid (F = ka'), and Newton's second law (F = kx”) can be
considered as particular cases of a general relationship of the form

F o= ko), (10.111)

in which a may be allowed o be any real number. In particular, S. West-
erlund suggested that for 1 < o < 2 equation (10.111) can be considered
as a generalization of Newton’s sccond law, which better describes reality

[251].
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The mentioned recent work by M. Caputo, R. Riewe, and S. West-
erlund, all trying to develop models describing dissipation, turn our at-
tention to earlicr work by G. W. Scott Blair [236, 237, 239], in which the
use of fractional-order models of viscoelastic behaviour was interpreted
as the introduction of “separate time scales for different materials” [236],
hased on the observation that “subjective judgements of time do not fol-
low the Newtonian time scale”™ [239].

It is possible that in the future there will appear more “fractional-
order” physical theorics. We would like to end this section with the
following two expressive quotations:

“We may express our concepts in Newtonian terms if we find
this convenient but, if we do so, we must realize that we have
made a translation into a language which is foreign to the
organism which we are studying.” (G. W. Scott Blair, [238.
p. 85])

. all systems need a fractional time derivative in the equa-
tions that describe them ... systems have memory of all ear-
lier events. 1t is necessary to include this record of earlier
events to predict the future ...

The conclusion is obvious and unavoidable: Dead matter
has memory.  Expressed differently, we may say that Na-
ture works with fractional time derivatives.” (S, Westerlund,

253)).
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Appendix: Tables of
Fractional Derivatives

The short tables below contains Riemann Liouville fractional deriva-
tives of some functions which are frequently used in applications. In
most cases, the order of differentiation, «, may be any real number, so
replacing it with —c gives the Riemann Liouville fractional integrals.

The tables can also be used for evaluating the Griinwald Letnikov
fractional derivatives, the Caputo fractional derivatives, and the Miller
Ross sequential fractional derivatives as well. In such cases, « should be
taken between 0 and 1, and the Ricmann- Liouville fractional derivative
should be properly combined with integer- or fractional-order derivatives,
in accordance with the considered definition.

1. Riemann—Liouville fractional derivatives
with the lower terminal at 0

f(t) oDFf(). (>0, a€R)
Hie) I'(l —a)
(t—a)™@
H(t —a) m (f > (l)
0, (0<t<a)
H(t —a)f(t) { Ez)f?i*.f'(t), o s(; ; Z;
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f(t) oD f(1). (t>0, a€R)
5 t——n‘——l
() [(—a)
S(n) [,“‘Y“"”‘l ;
oL (f) m (77/ S 4’7\')
- () (t > a) |
8 (t — a) (—n—a) ° ' (neN)
0, (0<t<a)
I 1 vy
tv W%-l}———)—ﬂjf ’ (I/ > —1)
M VB 1 —a(AL)
cosh(v/At) tTOEy 1 o (M?)
sinh(v/At) 1- 2
e L T Ey o (A
\/)_\_f 2,2 ( )
In(1) I(—{’_—(T) (n(t) +w(1) ~ 9(1 - )

7= n(t)

(3 /},dv a1 o .
%—(’T (ln(t) +w(3) — w3 - (1))

(Re(;3) > 0)

t7VE, s(MF)

39 NE, 5 (A (B3>0, p=>0)

3=V By (e, vs 35 L)

9Py (j1, v 3 — o At)
(Re(3) > 0)

r(ﬁ)tﬁ- 1
U3 - «)

P02t — 1)

m

mit™ po—argp
Iim — o+ 1)[)7,,, (2t — 1),

D<a<l, 0<t<])

m=1.2, ...




TABLES OF FRACTIONAL DERIVATIVES 311

2. Riemann—Liouville fractional derivatives
with the lower terminal at —oc

f()

_DRf(), (t>0, a€R)

H(t —a)

(t —a) @
{ Ty >0
0, (t <a)

H(t - a)f (1)

{ DRf(E). (t > a)

0. (t <a)
(f)\t A”(?M
(A>0)
({)\lv—hu /\a{{/\t«“;
(A>0)
sin Af A% sin (/\t + EQQ)
(A>0. a>-1)
cos At A% cos (/\f, + %(—})
A>0. a>-1)
eM sin pul reer sin (ut + agp)
(r=VA+ 2 tanp = Z){ A>0, p>0)
e cos it reM cos (ut + )

(r= VA% + 2 t‘ango:%f, A>0, p>0)




This Page Intentionally Left Blank



Bibliography

[

(2]

8l

4]

N. H. Abel, Resolution d’un probléeme de mécanique, Oeuvres
complétes de Niels Henrik Abel, vol. 1, pp. 97--101.

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Func-
tions, Nauka, Moscow, 1979 (references in the text are given to this
Russian translation; original publication: Nat. Bureau of Stan-
dards, Appl. Math. Series, vol. 55, 1964)

R. P. Agarwal. A propos d’une note de M. Pierre Humbert, C. R.
Séances Acad. Sci., vol. 236, no. 21, 1953, pp. 2031-2032.

M. A. Al-Bassam, Some existence theorems on differential equa-
tions of generalized order, Journal fiir Reine und Angewandte

T. J. Anastasio, The fractional-order dynamics of brainstem
vestibulo-oculomotor neurons, Biological Cybernetics, vol. 72, 1994,
pp. 69-79.

C. P. Andrieux, L. Nadjo, and J. M. Savéant, Electrodimerization
1. One-electron irreversible dimerization. Diagnostic criteria and
rate determination procedures for voltammetric studies, J. Elec-
troanal. Chem. and Interfacial Electrochem., vol. 26, 1970, pp. 147
186.

N. Kh. Arutyunyan, Plane contact problem of the creep theory,
Prikl. Mat. Mekh., vol. 23, 1959, pp. 901-924 (in Russian).

R. Askey, Inequalities via fractional integration, Lect. Notes in
Math., vol. 457, 1975, pp. 106 -115.

M. Axtell and M. E. Bise, Fractional calculus applications in con-
trol systems, Proc. of the IEEE 1990 Nat. Aerospace and Electron-
ics Conf., New York, 1990, pp. 563 -566.

313



314

0]

[11]

[12]

113)

[14]

[18]

[19]

(20]

21)

BIBLIOGRAPHY

T. Ya. Azizov and 1. S. lokhvidov, The Foundations of the The-
ory of Linear Operators in the Indefinite Metric Spaces, Nauka,
Moscow, 1986 (in Russian).

Yu. I. Babenko, Heat and Mass Transfer, Khimiya, Leningrad,
1986 (in Russian).

R. L. Bagley, Power law and fractional calculus model of viscoelas-
ticity, ATAA Journal, vol. 27, no. 10, 1989, pp. 1412-1417.

R. L. Bagley and R. A. Calico, Fractional order state equations
for the control of viscoelastically damped structures, J. Guidance,
vol, 14, no. 2, 1991, pp. 304 311.

R. L. Bagley and P. J. Torvik, Fractional calculus - a different ap-
proach to the analysis of viscoelastically damped structures, AIAA
Journal , vol. 21, no. 5, 1983, pp. 741-748

R. L. Bagley and I>. J. Torvik, A theoretical basis for the applica-
tion of fractional calculus to viscoelasticity, Journal of Rheology,
vol. 27, no. 3, 1983, pp. 201-210.

R. L. Bagley and P. J. Torvik, On the appearence of the fractional
derivative in the behavior of real materials, J. Appl. Mech., vol. 51,
1984, pp. 294-298.

R. L. Bagley and P. J. Torvik, Fractional calculus in the tran-
sient analysis of viscoelastically damped structures, ATAA Journal,
vol. 23, no. 6, 1985, pp. 918 -925.

R. L. Bagley and P. J. Torvik, On the fractional calculus model of
viscoelastic behavior, Journal of Rheology, vol. 30, 1986, pp. 133~
155.

H. Beyer and S. Kempfle, Definition of physically consistent damp-
ing laws with fractional derivatives, Z. angew. Math. Mech., vol. 75,
no. 8, 1995, pp. 623-635.

H. W. Bode, Network Analysis and Feedback Amplifier Design,
Tung Hwa Book Company, Shanghai, China, 1949.

J. Boroska. Possibilities for using mathematical methods for evalu-
ation and prediction of the state of transport steel wires. Uhli, no.
1, 1978, pp. 21 24 (in Slovak).



BIBLIOGRAPHY 315

[22]

[27]

(28]

(29]

(30]

F. Bella, P. F. Biagi, M. Caputo, G. Della Monica, A. Er-
mini, P. Manjgaladze, V. Sgrigna and D. Zilpimiani, Very slow-
moving crustal strain disturbances, Tectonophysics, vol. 179, 1990,
pp. 131-139.

M. Caputo, Linear model of dissipation whose @ is almost fre-
quency independent — 11, Geophys. J. R. Astr. Soc., vol. 13, 1967,
pp. 529 539.

M. Caputo, Flasticita e Dissipazione, Zanichelli, Bologna, 1969.

M. Caputo, The rheology of an anelastic medium studied by
means of the observation of the splitting of its eigenfrequencies,
J. Acoust. Soc. Am., vol. 86, no. 5, 1989, pp. 1984-1987.

M. Caputo,. The splitting of the free oscillations of the Earth
caused by the rheology, Rend. Fis. Ace. Linced, scr. 9, vol. 1, 1990,
pp. 119 125.

M. Caputo, Free modes splitting and alterations of electrochemi-
cally polarizable media, Rend. Fis. Ace. Lincei, ser. 9, vol. 4, 1993,
pp. 89 98.

M. Caputo, Lectures on Seismology and Rheological Tectonics,
Univ. degli studi di Roma “La Sapienza”, 1992 -1993.

M. Caputo and F. Mainardi, Linear models of dissipation in anclas-
tic solids, Rivista del Nucvo Cimento (Serie 1), vol. 1, no. 2, 1971,
pp- 161-198.

M. Caputo and F. Mainardi, A new dissipation model basced on
mernory mechanism, Pure and Applied Geophysics, vol. 91, no. 8,
1971, pp. 134-147.

G. E. Carlson, Investigation of fractional capacitor approximations
by means of regular Newton processes, Kansas State University
Bulletin, vol. 48, no. 1, special report no. 42, 1964.

G. E. Carlson and C. A. Halijak, Simulation of the fractional
derivative operator /s and the fractional integral operator 1/4/s,
Kansas State University Bulletin, vol. 45, no. 7, 1961, pp. 1-22.

G. E. Carlson and C. A. Halijak, Approximation of fixed imped-
ances, IRE Transactions on Circuit Theory, vol. CT-9, no. 3, 1962,
pp. 302 303.



316

[34]

[36]

[37]

[41]

[42]

[43]

[44]

BIBLIOGRAPHY

G. E. Carlson and C. A. Halijak, Approximation of fractional ca-
pacitors (1/s)Y/™ by a regular Newton process, IRE Transactions
on Circuit Theory, vol. CT-11, no. 2, 1964, pp. 210-213.

A. Carpinteri and F. Mainardi (eds.), Fractals and Fractional Cal-
culus in Continuum Mechanics, Springer Verlag, Vienna - New
York, 1997.

A. M. Chak, A generalization of the Mittag-Leffler function, Mat.
Vesnik, vol. 19, no. 4, 1967, pp. 257 262.

K. S. Cole, Electric conductance of biological systems, Proc. Cold
Spring Harbor Symp. Quant. Biol., Cold Spring Harbor, New York,
1933, pp. 107-116.

G. Dahlquist, On accuracy and unconditional stability of linear
multistep methods for second order differential equations, BIT,
vol. 18, 1978, pp. 133-136.

H. D. Davis, The Theory of Linear Operators, Principia Press,
Bloomington, Indiana, 1936.

K. Diethelm, An algorithm for the numerical solution of differential
equations of fractional order, Flectronic Transactions on Numeri-
cal Analysis, ISSN 1068-9613, vol. 5, March 1997, pp. 1 6.

K. Diethelm, Numerical approximation of finite-part integrals with
generalized compound quadrature formulae, Hildesheimer Infor-
matikberichte, ISSN 0941-3014, no. 17/95, June 1995.

G. Doetsch, Anleitung 2um Praktischen Gebrauch der Laplace
transformation, Oldenbourg, Munich, 1956 (Russian translation:
Fizmatgiz, Moscow, 1958).

L. Dorcak, J. Prokop and 1. Kostial, Investigation of the properties
of fractional-order dynamical systems, Proceedings of the 11th Int.
Conf. on Process Control and Simulation ASRTP’94, Kosice-Zlata
Idka, September 19-20, 1994, pp. 58-66.

S. Dugowson, Les Différentielles Métaphysiques: Histoire et Phil-
osophie de lo Généralisation de U'Ordre de Dérivation, thése de
Doctorat, University of Paris, 1994.



BIBLIOGRAPHY 317

[45]

M. M. Dzhrbashyan, Integral Transforms and Representations of
Functions in the Complez Domain, Nauka, Moscow, 1966 (in Rus-
sian).

M. M. Dzhrbashyan and A. B. Nersesyan, Criteria of expansibility
of functions in Dirichlet series, Izv. Akad. Nauk Arm. SSR, ser.
fiz.-mat., vol. 11, no. 5, 1958, pp. 85-106.

M. M. Dzhrbashyan and A. B. Nersesyan, On the use of some
integro-differential operators, Dokl. Akad. Nauk SSSR, vol. 121,
no. 2, 1958, pp. 210-213.

M. M. Dzhrbashyan and A. B. Nersesyan, Expansions in spesial
biorthogonal systems and boundary-value problems for differential
equations of fractional order, Dokl. Akad. Nauk SSSR, vol. 132,
no. 4, 1960, pp. 747-750.

M. M. Dzhrbashyan and A. B. Nersesyan, Expansions in some
biorthogonal systems and boundary-value problems for differential
equations of fractional order, Trudy Mosk. Mat. Ob., vol. 10, 1961,
pp. 89-179.

M. M. Dzhrbashyan and A. B. Nersesyan, Fractional derivatives
and the Cauchy problem for differential equations of fractional or-
der, fzv. Akademii Nauk Arm. SSR, vol. 3, no. 1, 1968, pp. 3-29.

A. M. A. El-Sayed, Fractional differential equations, Kyungpook
Math. J., vol. 28, no. 2, 1988, pp. 119-122.

A. M. A. El-Sayed, Fractional derivative and fractional differential
equations, Bull Fac. Sci., Alexandria Univ., vol. 28. 1988, pp. 18
22.

A. M. A. El-Sayed, On the fractional differential equations, Apll.
Math. and Comput., vol. 49, 1992, pp. 2-3.

A. M. A. El-Sayed, Linear differential equations of fractional order,
Apll. Math. and Comput., vol. 55, 1993, pp. 1-12.

A. M. A. El-Sayed, Multivalued fractional differential equations,
Apll. Math. and Comput., vol. 80, 1994, pp. 1-11.

A. M. A. El-Sayed, Fractional order evolution equations, J. of Frac.
Calculus, vol. 7, May 1995, pp. 89-100.



318

57]

[60]

[61]

62

(63]

(64]

[67]

68

[69]

BIBLIOGRAPHY

A. M. A. El-Sayed, Fractional order diffusion-wave equation, Int.
J. of Theor. Phys., vol. 35, 1996, pp. 311-322.

M. Enclund, A. Fenander and P. Olsson, Fractional integral formu-
lation of constitutive equations of viscoelasticity, ATAA Journal,
vol. 35, no. 8, 1997, pp. 1356--1362.

M. Enelund and B. L. Josefson, Time-domain finite element analy-
sis of viscoelastic structures with fractional derivatives constitutive
equations, ATAA Journal, vol. 35, no. 10, 1997, pp. 1630 -1637.

N. Engheta, On fractional calculus and fractional multipoles in
electromagnetism. IEEE Trans. on Antennas and Propagations,
vol. 44, no. 4, 1996, pp. 554 566.

N. Engheta, Electrostatic “fractional” image methods for perfectly
conducting wedges and cones, IEEFE Trans. on Antennas and Prop-
agations, vol. 44, no. 2, 1996, pp. 15665--1574.

A. Erdélyi (ed.), Tables of Integral Transforms, vol. 1, McGraw-
Hill, New York, 1954.

A. Erdélyi (ed.), Higher Transcendental Functions, vol. 1, McGraw-
Hill, New York, 1955.

A. Erdélyi (ed.), Higher Transcendental Functions, vol. 2, McGraw-
Hill, New York, 1955.

A. Erdélyi (ed.), Higher Transcendental Functions, vol. 3, McGraw-
Hill, New York, 1955.

A. Fenander, Modal synthesis when modeling damping by use of
fractional derivatives, AIAA Journal, vol. 34, no. 5, 1998, pp. 1051
1058.

H. E. Fettis. Onu the numerical solution of equations of the Abel
type, Math. Comp., vol. 18, no. 84, 1964, pp. 491-496.

G. M. Fikhtengoltz, Course of Differential and Integral Calculus,
vol. 2, Nauka, Moscow, 1969.

C. Fox, The ¢ and H functions as symmetrical Fourier kernels,
Trans. Am. Math. Soc., vol. 98, 1961, pp. 395 429.



BIBLIOGRAPHY 319

[70]

[71]

[72]

73]

[74]

[76]

[77]

(78]

(79]

(80)

Ch. Friedrich, Relaxation and retardation functions of the Maxwell
model with fractional derivatives, Rheologica Acta, vol. 30, 1991,
pp. 151-158.

Ch. Friedrich, Rheological material functions for associating comb-
shaped or H-shaped polymers: a fractional calculus approach,
Philosophical Magazine Letters, vol. 66, no. 6, 1992, pp. 287-292.

Ch. Friedrich, Mechanical stress relaxation in polymers: frac-
tional integral model versus fractional differential model, .J. Non-
Newtonian Fluid Mech., vol. 46, 1993, pp. 307-314.

Ch. Friedrich, Linear viscoelastic hehavior of branched plybutadi-
ene: a fractional calculus approach, Acta Polymer., vol. 46, 1995,
pp. 385-390.

Ch. Friedrich and H. Braun, Linear viscoelastic behavior of com-
plex polymeric materials: a fractional mode representation, Colloid
and Polymer Science, vol. 272, 1994, pp. 1536-1546.

L. Gaul, S. Kempfle and P. Klein, Transientes Schwingungsver-
halten bei der Dampfungsbeschreibung mit nicht ganzzahligen
Zeitableitungen, Z. angew. Math. Mech., vol. 70, no. 4, 1990,
pp. T139-T141.

I. M. Gelfand and G. E. Shilov, Generalized Functions, vol. 1,
Nauka, Moscow, 1959 (in Russian).

A. N. Gerasimov, A generalization of linear laws of deformation
and its application to inner friction problems, Prikl. Mat. Mekh.,
vol. 12, 1948, pp. 251-259 (in Russian).

M. Giona and H. E. Roman, A theory of transport phenomena in
disordered systems, Chemical Engineering Journal, vol. 49, 1992,
pp. 1-10.

M. Giona, S. Gerbelli and H. E. Roman, Fractional diffusion equa-
tion and relaxation in complex viscoelastic materials, Physica A,
vol. 191, 1992, pp. 449-453.

W. G. Glockle and T. F. Nonnenmacher, Fractional integral op-
erators and Fox functions in the theory of viscoelasticity, Macro-
molecules, vol. 24, 1991, pp. 6426-6436.



320

[81]

[89]

90]

BIBLIOGRAPHY

W. G. Glockle and T. F. Nonnenmacher, Fractional relaxation
and the time-temperature superposition principle, Rheologica Acta,
vol. 33, 1994, pp. 337-343.

R. Gorenflo, Abel integral equations: application-motivated so-
lution concepts, Methoden Verfahren Math. Phys., vol. 34, 1987,
pp. 151-174.

R. Gorenflo, Fractional calculus: some numerical methods, in
Carpinteri and Mainardi [35].

R. Gorenflo, Abel integral equations with special emphasis on ap-
plications, Lectures in Mathematical Sciences, vol. 13, University
of Tokyo, 1996.

R. Gorenflo and Y. Kovetz, Solution of an Abel type integral equa-
tion in the presence of noise by quadratic programming, Numer.
Math.; vol. 8, 1966, pp. 392-406.

R. Gorenflo and Yu. Luchko, An Operational Method for Solv-
ing Generalized Abel Integral Equations of Second Kind, preprint
no. A-6/95, Department of Mathematics and Informatics, Free
University of Berlin, 1995.

R. Gorenflo, Yu. Luchko, and S. Rogosin, Mittag-Leffler Type
Functions: Notes on Growth Properties and Distribution of Zeros,
preprint no. A-97-04, Department of Mathematics and Informatics,
Free University of Berlin, 1997.

R. Gorenflo and F. Mainardi, Fractional calculus: integral and dif-
ferential equations of fractional order, in Carpinteri and Mainardi
(35].

R. Gorenflo and R. Rutman, On ultraslow and on intermediate
processes, in P. Rusev, I. Dimovski and V. Kiryakova (eds.), Trans-
form Methods and Special Functions, SCT Publishers, Singapore,
1995.

R. Gorenflo and S. Vessella, Abel Integral Equations: Analysis and
Applications, Lecture Notes in Mathematics, vol. 1461, Springer-
Verlag, Berlin, 1991,



BIBLIOGRAPHY 321

[91]

[92]

(93]

(94]

99]

[100]

101]

[102]

R. Gorenflo and Vu Kim Tuan, Singular value decomposition of
fractional integration operators in Le-spaces with weights, J. In-
verse and lll-Posed Problems, vol. 3, 1995, pp. 1-9.

M. Goto and D. Ishii, Semidifferential electroanalysis, J. FElec-
troanal. Chem. and Interfacial Electrochem., vol. 61, 1975, pp. 361
365.

M. Goto and K. B. Oldham, Semiintegral electroanalysis: shapes
of neopolarograms, Anal. Chem., vol. 45, no. 12, 1973, pp. 2043~
2050.

M. Goto and K. B. Oldham, Semiintegral electroanalysis: studies
on the neopolarographic plateau, Anal. Chem., vol. 46, no. 11,

M. Goto and K. B. Oldham, Semiintegral electroanalysis: the
shape of irreversible neopolarograms, Anal. Chem., vol. 48, no. 12,
1976, pp. 1671--1676.

M. Grenness and K. B. Oldham, Semiintegral electroanalysis: the-
ory and verification, Anal. Chem., vol. 44, 1972, pp. 1121--1129.

B. Gross, On creep and relaxation, J. Appl. Phys., vol. 18, 1947,
pp- 212-221.

A. K. Grinwald, Ueber “begrenzte” derivationen und deren anwen-
dung, Zeitschrift f. Mathematik u. Physik, vol. 12, no. 6, pp. 441-
480.

J. Hadamard. Lectures on Cauchy’s Problem in Linear Partial Dif-
ferential Equations. Yale Univ. Press, New Haven, 1923.

5. B. Hadid and Yu. Luchko, An operational method for solving
fractional differential equations of an arbitrary real order, Panam.
Math. J., vol. 6, no. 1, 1996, pp. 57-73.

T. T. Hartley and F. Mossaycbi, Control of Chua’s circuit, .J. Cir-
cuits, Syst., Comput., vol. 3, no. 1, 1993, pp. 173-194.

T. T. Hartley, C. F. Lorenzo and H. K. Qammer, Chaos in frac-
tional order Chua’s system, IEEE Trans. on Circuits nad Systems

I: Fundamentael Theory and Applications, vol. 42, no. 8, 1995,
pp. 485-490.



322
[103]

[104]

[105]

[106]

107]

[108)

[109]

[110]

[111]

[112)

[113]

[114]

BIBLIOGRAPHY

P. Haick, Tables for Thermal Devices, VSB Ostrava, 1984 (in
Czech).

X.-F. He, Dimensionality in optical spectra of solids: analysis by
fractional calculus, Solid State Comm., vol. 61, no. 1, 1987, pp. 53~
55.

P. Henrici, Fast Fourier methods in computational complex anal-
ysis, STAM Review, vol. 21, no. 4, 1979, pp. 481-527.

N. Heymans and J.-C. Bauwens, Fractal rheological models and
fractional differential equations for viscoclastic behavior, Rheolog-
ica Acta, vol. 33, 1994, pp. 210-219.

P. Humbert and R. P. Agarwal, Sur la fonction de Mittag-LefHer
et quelques-unes de ses généralisations, DBulletin des Sciences
Mathématiques, vol. 77, no. 10, 1953. pp. 180-185.

P. Humbert and P. Delerue, Sur une extension a deux variables
de la fonction de Mittag-Leffler, C. R. Acad. Sci. Paris, vol. 237,
1953, pp. 1059-1060.

J. C. Imbeaux and J. M. Savéant, Convolutive potential sweep
voltammetry I. Introduction, J. Flectroanal. Chem. and Interfacial
Electrochem., vol. 44, 1973, pp. 169-187.

G. Kaloyanov and J. M. Dimitrova, Theoretical-experimental de-
termination of the arca of applicability of a system “PI(1)-controller
- object with non-integer astaticity™, Izv. Vysshykh Utchebnykh
Zav. - Elektromekhanika, 1992, no. 2, pp. 65-72 (in Russian).

L. V. Kantorovich and G. P. Akilov, Functional Analysis. Nauka,
Moscow, 1986 (in Russian).

L. V. Kantorovich and V. I. Krylov, Approximate Methods of the
Higher Analysis, Fizmatgiz, Moscow-Leningrad, 1962 (in Rus-
sian).

T. Kaplan, L. J. Gray and S. H. Liu, Self-affine fractal model for a
metal-electrolyte interface, Phys. Review B, vol. 35, no. 10, April
1987, pp. 5379-5381

A. M. Keightley, J. C. Myland, K. B. Oldham and P. G. Symons,
Reversible cyclic volammetry in the presense of product, J. Elec-
troanal. Chem., vol. 322, 1992, pp. 25-54.



BIBLIOGRAPHY 323

[115]

(116]

[117)

(118]

[119]

[120]

[121]

[122]

[123)

[124]

[125]

[126]

S. Kempfle and L. Gaul, Global solutions of fractional lincar dif-
ferential equations, Proc. of ICIAM’95, Zeitschrift Angew. Math.
Mech., vol. 76, suppl. 2, 1996, pp. 571-572.

V. Kiryakova, Generalized Fractional Calculus and Applications,
Pitman Research Notes in Math., no. 301, Longman, Harlow, 1994.

A. N. Kochubei, Fractional order diffusion, J. Diff. Equations,
vol. 26, 1990, pp. 485 492 (English translation from Russian).

R. C. Koeller, Applications of fractional calculus to the theory
of viscoelasticity, Trans. ASME - J. Appl. Mech.. vol. 51, 1984,
pp. 299-307.

G. A. Korn and T. M. Korn, Mathematical Handbook, 2nd ed.,
MeGraw-Hill, New York, 1968.

A. Le Mehaute, A. de Guibert, M. Delaye and Ch. Filippi,
Note d'introduction de la cinétique des échanges d'énergies et
de matiéres sur les interfaces fractales, C. R. Acad. Sci. Paris,
vol. 294, ser. 11, 1982, pp. 835- 838.

A. Le Mehaute and G. Crepy, Introduction to transfer and motion
in fractal media: the geometry of kinetics, Solid State Tonics, 1983,
no. 9 and 10, pp. 17-30.

H. H. Lee and C.-S. Tsai, Analytical model of viscoelastic dampers
for seismic mitigation of structurcs, Computers and Structures,
vol. 50, no. 1, 1994, pp. 111-121.

G. W. Leibniz, Mathematische Schiften, Georg Olms Verlagsbuch-
handlung, Hildesheim, 1962.

A. V. Letnikov, Theory of differentiation of an arbitrary order,
Mat. Sb., vol. 3, 1868, pp. 168 (in Russian).

A. V. Letnikov, Ou the historical development of the theory of
differentiation of an arbitrary order, Mat. Sb., vol. 3, 1868, pp. 85
112 (in Russian).

A. V. Letnikov, Treatment related to the theory of the integrals of
the form [ (x —u)P~! f(u)du, Mat. Sb., vol. 7, 1872, pp. 5 205 (in
Russian).



324
[127]

[128]

[129]

130]

[131]

132)

[133]

[134)

(135]

[136)

[137]

[138)

BIBLIOGRAPHY

Ch. Lubich, Discretized fractional calculus, SIAM J. Math. Anal.,
vol. 17, no. 3, May 1986, pp. 704-719.

Yu. F. Luchko and H. M. Srivastava, The exact solution of cer-
tain differential equations of fractional order by using operational
caleulus, Computers Math. Applic., vol. 29, no. 8, 1995, pp. 73-85.

N. Makris and M. C. Constantinou, Fractional-derivative Maxwell
model for viscous dampers, ASCE J. Structural Engineering, vol.
117, no. 9, 1991, pp. 2708-2724.

N. Makris, G. F. Dargush and M. C. Constantinou, Dynamic anal-
ysis of generalized viscoelastic fluids, ASCE J. Eng. Mech., vol.
119, no. 8, 1993, pp. 1663-1679.

F. Mainardi, On the initial value problem for the fractional dif-
fusion—-wave equation, in: S. Rionero and T. Ruggeri (eds.), Waves
and Stability in Continuous Media, World Scientific, Singapore,
1994, pp. 246-251.

F. Mainardi, Fractional relaxation in anelastic solids, J. Alloys and
Compounds, vol. 211/212, 1994, pp. 534-538.

F. Mainardi, Fractional diffusive waves in viscoelastic solids, in:
J. L. Wegner and F. R. Norwood (eds.), Nonlinear Waves in Solids,
ASME/AMR, Fairfield NJ, 1995, pp. 93-97.

F. Mainardi, The time fractional diffusion-wave equation, Ra-
diofizika, vol. 38, 1995, pp. 20- 36.

F. Mainardi, Fractional relaxation-oscillation and fractional dif-
fusion-wave phenomena, Chaos, Solitons and Fractals, vol. 7, 1996,
pp. 1461-1477.

F. Mainardi, Applications of fractional calculus in mechanics, in:
P. Rusev, I. Dimovski and V. Kiryakova (eds.), Transform Meth-
ods and Special Functions, Varna’96, SCT Publishers, Singapore,
1997.

F. Mainardi, The fundamental solutions for the fractional diffusion-
wave equation, Appl. Math. Lett., vol. 9, no. 6, 1996, pp. 23 28.

F. Mainardi, Frectional calculus: some basic problems in contin-
wum and statistical mechanics, in Carpinteri and Mainardi [35].



BIBLIOGRAPHY 325

[139)

[140]

[141)

[142]

[143]

1144)

(145)

[146]

[147]

[148]

F. Mainardi and E. Bonetti, The application of real-order deriva-
tives in linear viscoelasticity, Rheologica Acta, vol. 26 (suppl.),
1988, pp. 64-67.

A. Makroglou, R. K. Miller and S. Skaar, Computational results for
a feedback control for a rotating viscoelastic beam, J. of Guidance,
Control and Dynarnics, vol. 17, no. 1, 1994, pp. 84- 90.

N. N. Malinin, Applied Theory of Plasticity and Creep, Mashino-
stroenie, Moscow, 1975.

B. Mandelbrot. The Fractal Geometry of Nature. Freeman, San
Francisco, 1982.

D. Matignon, Stability results on fractional differential equations
with applications to control processing, Computational Engineer-
ing in Systems Applications, Lille, France, July 1996, IMACS,
IEEE-SMC, vol. 2, pp. 963-968.

D. Matignon and B. d’Andréa-Novel, Spectral and time-domain
consequences of an integro-differential perturbation of the wave
PDE, 3rd Int. Conf. on Math. and Numer. Aspects of Wave Propo-
gation Phenomena, Mandelieu, France, April 1995, INRIA, SIAM,
pp. 769-771.

D. Matignon and B. d’Andréa-Novel, Some results on controlla-
bility and observability of finite-dimensional fractional differen-
tial systems, Computational Engineering in Systems Applications,
Lille, France, July 1996, IMACS, IEEE-SMC, vol. 2, pp. 952 -956.

D. Matignon and B. d’Andréa-Novel, Observer-based controllers
for fractional differential systems, 36th IEEE Conference on De-
cision and Control, San Diego, California, December 1997, IEEE-
CSS, SIAM, pp. 4967-4972.

B. Mbodje and G. Montseny, Boundary fractional derivative con-
trol of the wave equation, IEEE Trans. Aut. Control, vol. 40, 1995,
pp. 378-382.

A. C. McBride, Fractional Calculus and Integral Transforms of
Generalized Functions, Res. Notes in Math., vol. 31, Pitinan Press,
San Francisco, 1979.



326

[149]

[159]

BIBLIOGRAPHY

S. 1. Meshkov, Viscoelastic Properties of Metals, Metallurgia,
Moscow, 1974,

R. Metzler, W. G. Glockle, and T. F. Nonnenmacher. Fractional
model equation for anomalous diffusion, Physica A, vol. 211, 1994,
pp. 13 24

R. Metzler, W. Schick, H.-G. Kilian, and T. F. Nonnenmacher,
Relaxation in filled polymers: a fractional calculus approach, J.
Chem. Phys., vol. 103, 1995, pp. 7180- 7186.

M. W. Michalski, Derivatives of noninteger order and their appli-
cations, Dissertaliones Mathematicae, CCCXXVIIL, Inst. Math.,
Polish Acad. Sci., Warsaw, 1993.

3] K. S. Miller and B. Ross, An Introduction to the Fractional Calcu-

lus and Fractional Differential Fquations, John Wiley & Sons Inc.,
New York, 1993.

G. N. Minerbo and M. E. Levy, Inversion of Abel’s integral equa-
tion by means of orthogonal polynomials, STAM J. Numer. Anal.,
vol. 6, no. 4, 1969, pp. 598-616.

G. M. Mittag-Leffler, Sur la nouvelle fonetion E.(x), C. R. Acad.
Sci. Paris, vol. 137, 1903, pp. 554 -538.

G. M. Mittag-Leffler, Sopra la funzione E,(x), Rend. Acc. Lincei,
ser. 5, vol. 13, 1904, pp. 3 5.

G. M. Mittag-Leffler, Sur la représentation analytique d’une
branche uniforme d’une fonction monogene, Acta Mathemnatica,
vol. 29, 1905, pp. 101-182.

D. Mo, Y. Y. Lin, J. H. Tan, Z. X. Yu, G. Z. Zhou, K. C. Gong,
G. P. Zhang and X.-F. He, Ellipsometric spectra and fractional
derivative spectrum analysis of polyaniline films, Thin Solid Films,
vol. 234, 1993, pp. 468-470.

G. Montseny, J. Audounet and D. Matignon, Fractional integro-
differential boundary control of the Euler-Bernoulli beamn, 36th
[EEE Conference on Decision and Control, San Diego, California,
December 1997, IEEE-CSS, SIAM, pp. 4973-4978.



BIBLIOGRAPHY 327

[160]

[161]

[162]

[163]

[167]

168)

[169)

[170]

171}

M. A. Naimark, Linear Differential Operators, Nauka, Moscow,
1969 (in Russian).

M. Nakagawa and K. Sorimachi, Basic characteristics of a fractance
device, IFICE Trans. Fundamentals, vol. ET5-A, no. 12, Dec 1992,
pp. 1814-1819.

R. R. Nigmatullin, To the theoretical explanation of the “universal
response”, Phys. Sta. Sol. (b), vol. 123, 1984, pp. 739-745.

R. R. Nigmatullin, On the theory of relaxation for systems with
“remnant memory”, Phys. Sta. Sol. (b), vol. 124, 1984, pp. 389
393.

R. R. Nigmatullin, The rcalization of the generalized transfer
equation in a medium with fractal geometry, Phys. Sta. Sol. (b),
vol. 133, 1986, pp. 425-430.

R. R. Nigmatullin, Fractional integral and its physical interpre-
tation, Soviet J. Theor. and Math. Phys., vol. 90, no. 3, 1992,
pp. 354 -367.

R. R. Nigmatullin and Ya. E. Ryabov, Cole -Davidson dielectric
relaxation as a self-similar relaxation process, Phys. Solid State,
vol. 39, no. 1, 1997, pp. 87-90 (translated from the Russian original
published in: Fyz. Tverd. Tela, vol. 39, 1997, pp. 101--105).

K. Nishimoto, An Essence of Nishimoto’s Fractional Calculus, Des-
cartes Press, Koriyama, 1991,

T. F. Nonnenmacher, Fractional integral and differential equations
for a class of Lévy-type probability densities, J. of Physics A:
Math. and Gen., vol. 23, 1990, pp. L697-L700.

T. F. Nonnenmacher, Fractional relaxation equations for viscoelas-
ticity and related phenomena, Lect. Notes in Physics, vol. 381,
Springer-Verlag, Berlin, 1991, pp. 309-320.

T. F. Nonnenmacher and W. G. Glockle, A fractional model for
mechanical stress relaxation, Philosophical Magazine Letters, vol.
64, no. 2, 1991, pp. 89-93.

T. F. Nonnenmacher and D. J. F. Nonnenmacher, Towards the
formulation of a non-linear fractional extended irreversible ther-
modynamics, Acta Physica Hungarica, vol. 66, 1989, pp. 145-154.



328

(172]

[173)

[174]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

BIBLIOGRAPHY

P. G. Nutting, A new general law of deformation, Journal of the
Franklin Institute, vol. 191, 1921, pp. 679-685.

L. Nyikos and T.Pajkossy, Electrochem. Acta, vol. 30, 1985, pp.
1533.

M. Ochmann and S. Makarov, Representation of the absorption of
nonlinear waves by fractional derivatives, J. Amer. Acoust. Soc.,
vol. 94, no. 6, 1993, pp. 3392-3399.

K. B. Oldham, A signal-independent electroanalytical method,
Anal. Chem., vol. 44, no. 1, 1972, pp. 196-198.

K. B. Oldham, Semiintegration of cyclic voltammograms, J. Flec-
troanal. Chem., vol. 72, 1976, pp. 371-378.

K. B. Oldham, Interrelation of current and concentration at elec-
trodes, J. Appl. Electrochem., vol. 21, 1991, pp. 1068-1072.

K. B. Oldham and J. Spanier, The replacement of Fick’s law by
a formulation involving semidifferentiation, J. Electroanal. Chem.
and Interfacial Electrochem., vol. 26, 1970, pp. 331-341.

K. B. Oldham and J. Spanier, The Fractional Calculus, Academic
Press, New York -~ London, 1974.

K. B. Oldham and C. G. Zoski, Analogue insrumentation for pro-
cessing polarographic data, J. Electroanal. Chem., vol. 157, 1983,
pp. 27-51.

O. V. Onishchuk and G. Ya. Popov, On some problems of bending
of plates with cracks and thin inclusions, lzv. Akad. Nauk SSSR,
Mekhanika Tverdogo Tela, vol. 4, 1980 pp. 141--150 (in Russian).

T. J. Osler, Open questions for research, Lecture Notes in Mathe-
matics, vol. 457, 1975, pp. 376--381.

A. Oustaloup, Systémes asservis linéaires d’ordre fractionnaire.
Masson, Paris, 1983,

A. Oustaloup, From fractality to non integer derivation through re-
cursivity, a property common to these two concepts: a fundamen-
tal idea for a new process control strategy, Proceedings of the 12th
IMACS World Congress, Paris, July 18-22, 1988, vol. 3, pp. 203~
208.



BIBLIOGRAPHY 329

[185] A. Oustaloup, La Commande CRONE, Hermes, Paris, 1991.
[186] A. Oustaloup, La Robustesse, Hermes, Paris, 1994.

[187] A. Oustaloup, La Dérivation Non Entiére: Théorie, Synthése et
Applications, Hermes, Paris, 1995.

[188] E. Pitcher and W. E. Sewell, Existence theorems for solutions of
differential equations of non-integral order, Bull. Amer. Math. Soc.,
vol. 44, no. 2, 1938, pp. 100-107; and a correction in: vol. 44, no. 9,
1938, p. 888.

[189] L. Pivka and V. Spany, Boundary surfaces and basin bifurcations
in Chua’s circuit, J. Circuits, Syst., Comput., vol. 3, no. 2, 1993,
pp. 441-470.

[190] Yu. L. Plotnikov, Steady-state vibrations of plane and azesymmet-
ric stamps on a viscoelastic foundation, Ph.D. thesis, Moscow, 1979
(in Russian).

(191] I. Podlubny, Discontinuous Harmonic and Biharmomwc Problems
for a Sector and a Strip, Ph.D. thesis, Odessa State University,
Odessa, 1989, (in Russian).

[192] 1. Podlubny, Orthogonal with non-integrable weight function Ja-
cobi polynomials and their application to singular integral equa-
tions in elasticity and heat conduction problems, in: Computa-
tional and Applied Mathematics II (eds.: W. F. Ames and P. J.
van der Houwen), North-Holland, Amsterdam, 1992, pp. 207- 216.

[193] 1. Podlubny, A united form of solution of singular integral equations
of the first kind with Cauchy’s kernal, Transactions of the Technical
University of Kosice, vol. 3, no. 4, 1993, pp. 379-383.

(194] 1. Podlubny, Riesz potential and Riemann-Liouville fractional in-
tegrals and derivatives of Jacobi polynomials, Appl. Math. Lett.,
vol. 10, no. 1, 1997, pp. 103- 108.

[195] 1. Podlubny and J. Misanek, The use of fractional derivatives
for modelling the motion of a large thin plate in a viscous fluid,
Proceedings of the 9th Conference on Process Control, Tatranske
Matliare, May 1993, STU Bratislava, pp. 274-278.



330

[196]

197]

198]

[199]

200]

201]

[202]

BIBLIOGRAPHY

1. Podlubny and J. Misanek, The use of fractional derivatives for
modelling adiabatic process of solution of gas in fluid. Proceedings
of the 9th Conference on Process Control, Tatranske Matliare, May
1993, STU Bratislava, pp. 279 -282.

I. Podlubny and J. Misanek, The use of fractional derivatives for
solution of heat conduction problems, Proceedings of the 9th Con-
ference on Process Control, Tatranske Matliare, May 1993, STU
Bratislava, pp. 270- 273.

I. Podlubny, Fractional derivatives: a new stage in process mod-
elling and control, fth International DAAAM Symposium, Brno,
Czech Republic, September 16-18, 1993, pp. 263-264.

I. Podlubny and 1. Kostial, Fractional derivative based process
models and their applications, 4th International DAAAM Sympo-
sium, Brno, Czech Republic, September 16--18, 1993, pp. 265--266.

I. Podlubny, The use of derivatives of the fractional order for pro-
cess modelling and simulation: the present state and perspectives,
Proceedings of Int. Sci. Conf. MICROCAD SYSTEM'93, Nov 9-
10, Kosice, p. 29 and p. 64.

1. Podlubny, The Laplace Transform Method for Linear Differential
FEquations of the Fractional Order, Inst. Exp. Phys., Slovak Acad.
Sci., no. UEF-02-94, 1994, Kosice.

1. Podlubny, Fractional-Order Systems and Fractional-Order Con-
trollers, Inst. Exp. Phys.. Slovak Acad. Sci., no. UEF-03-94, 1994,
Kosice.

I. Podlubny, Numerical methods of the fractional calculus, Trans-
actions of the Technical University of Kosice, vol. 4, no. 3-4, 1994,
pp. 200-208.

1. Podlubny, L.. Dorcak and J. Misanek, Application of fractional-
order derivatives to calculation of heat load intensity change in
blast furnace walls, Transactions of the Techniwal Unwversity of
Kosice, vol. 5, no. 2, 1995, pp. 137 144.

[. Podlubny, Analytical solution of linear differential cquations of
the fractional order, Proceedings of the 14th World Congress on
Computation and Applied Mathematics, July 11-15, 1994, Atlanta,



BIBLIOGRAPHY 331

[206]

207)

[208]

[209)

[210]

211]

[212]

[213]

[214)

Georgia, USA. Late Papers volume (ed.: W. F. Ames), pp. 102-
106.

I. Podlubny, Numerical solution of initial value problems for or-
dinary fractional-order differential equations, Proceedings of the
Lith World Congress on Computation and Applied Mathematics,
July 11-15, 1994, Atlanta, Georgia, USA, Late Papers volume (ed.:
W.F.Ames), pp. 107 111.

1. Podlubny, Basic mathematical tools for the analysis of dynamic
systems of non-integer order, Proceedings of the 11th Int. Conf. on
Process Control and Simulation, September 19-20, 1994, Kosice -

I. Podlubny, Solution of linear fractional differential equations with
constant cocflicients, in: . Rusev, 1. Dimovski, V. Kiryvakova
(eds.), Transform Methods and Special Functions, SCT Publish-
crs, Singapore, 1995, pp. 217-228.

L. Podlubny, Numerical solution of ordinary fractional differential
cquations by the fractional difference method, in: S. Elaydi, 1. Gy-
ori and G. Ladas, (cds.), Advances in Difference Equations, Gordon
and Breach, Amsterdamn, 1997, pp. 507 516.

J. D. Polack, Time domain solution of Kirchhoff’s equation for
sound propagation in viscothermal gases: a diffusion process, SFA
J. Acoustigue, vol. 4, 1991, pp. 47-67.

G. Ya. Popov, Some properties of classical polynomials and their
application to contact problems, Prikl. Math. Mckh., vol. 27, 1963,
pp. 821-832 (in Russian).

G. Ya. Popov, On the method of orthogonal polynomials in contact
problems of the theory of clasticity, Prikl. Mat. Mekh., vol. 33,
no. 3, 1969, pp. 518-531.

G. Ya. Popov. Stress Concentration near Punches, Cuts, Thin In-
clusions and Supporters. Nauka, Moscow, 1982 (in Russian).

T. Pritz, Analysis of four-parameter fractional derivative model
of real solid materials, Journal of Sound and Vibration, vol. 195,
no. 1, 1996, pp. 103-115.



332
[215)
[216]

[217]

218]

219)

[220]

221]

222]

[223]

1224]

[225]

[226]

[227]

BIBLIOGRAPHY

A. P. Prudnikov, Yu. A. Brychkov and O. 1. Marichev, Integrals
and Series, vol. 1, Nauka, Moscow, 1981.

A. P. Prudnikov, Yu. A. Brychkov and O. L. Marichev, Integrals
and Series, vol. 2, Nauka, Moscow, 1983.

Yu. N. Rabotnov, Equilibrium of an elastic medium with after-
effect, Prikl. Mat. Mekh., vol. 12, no. 1, 1948, pp. 53-62 (in Rus-
sian).

Yu. N. Rabotnov, Elements of Hereditary Solids Mechanics, Nauka,
Moscow, 1977 (in Russian).

Yu. N. Rabotnov, Creep of Structural Elements, Nauka, Moscow,
1966 (in Russian).

K. Rektorys, Handbook of Applied Mathematics, vols. 1, 11. SNTL,
Prague, 1988 (in Czech).

F. Riewe, Nonconservative Lagrangian and Hamiltonian mechan-
ics, Phys. Rew. E, vol. 53, no. 2, 1996, pp. 1890-1899.

F. Riewe, Mecchanics with fractional derivatives, Phys. Rev. E,
vol. 55, no. 3, 1997, pp. 3581-3592.

L. Rogers, Operators and fractional derivatives for viscoelastic con-
stituitive equations, J. of Rheology, vol. 27, 1983, pp. 351-372.

H. E. Roman, Structure of random fractals and the probability
distribution of random walks, Phys. Rev. E, vol. 51, no. 6, 1995,
pp. 5422 5425.

H. E. Roman and P. A. Alemany, Continuous-time random walks
and the fractional diffusion equation, J. Phys. A: Math. Gen.,
vol. 27, 1994, pp. 3407-3410.

B. Ross, A brief history and exposition of the fundamental theory
of the fractional calculus, Lecture Notes in Mathematics, vol. 457,
Springer-Verlag, New York, 1975, pp. 1-36.

B. Ross, Fractional calculus: an historical apologia for the devel-
opment of a calculus using differentiation and antidifferentiation
of non integral orders, Mathematics Magazine, vol. 50, no. 3, May
1977, pp. 115-122.



BIBLIOGRAPHY 333

298]

[229]

[230]

[231]

236

[237]

[238]

[239]

Yu. A. Rossikhin and M. V. Shitikova, Applications of fractional
calculus to dynamic problems of linear and nonlinear hereditary
mechanics of solids, Appl. Mech. Rev., vol. 50, no. 1, January 1997,
pp. 156-67.

Yu. A. Rossikhin and M. V. Shitikova, Application of fractional
derivatives to the analysis of damped vibrations of viscoelastic sin-
gle mass system, Acta Mech., vol. 120, 1997, pp. 109-125.

B. Rubin, Fractional Integrals and Potentials, Pitman Monographs
and Surveys in Pure and Applied Mathematics, vol. 82, Longman,
Harlow, 1996.

R. S. Rutman, On the paper by R. R. Nigmatullin “Fractional inte-
gral and its physical interpretation”, Theor. Math. Phys., vol. 100,
no. 3, 1994, pp. 1154- 1156. (Translated from the Russian original
published in: Teoret. i Matem. Fyz., vol. 100, no. 3, 1994, pp. 476
478.)

S. G. Samko, A. A. Kilbas and O. 1. Maritchev, Integrals and
Derivatives of the Fractional Order and Some of Their Applica-
tions, Nauka i Tekhnika, Minsk, 1987 (in Russian).

H. Schiessel, R. Metzler, A. Blumen and T. F. Nonnenmacher,
Generalized viscoelastic models: their fractional equations with
solutions, J. Phys. A: Math. Gen., vol. 28, 1995, pp. 6567- 6584.

R. F. Schmidt and G. Thews, Human Physiology, Springer-Verlag,
Berlin - Heidelberg - New York, 1983.

W. R. Schneider and W. Wyss, Fractional diffusion and wave equa-
tions, J. Math. Phys., vol. 30, 1989, pp. 134-144.

G. W. Scott Blair, The role of psychophysics in rheology, J. of
Colloid Sciences, vol. 2, 1947, pp. 21-32.

G. W. Scott Blair, Some aspects of the scarch for invariants, British
Journal for Philosophy in Science, vol. 1, 1950, pp. 230-244.

G. W. Scott Blair, Measuremnents of Mind and Matter, Dennis Dob-
son, London, 1950.

G. W. Scott Blair, Psychoreology: links between the past and the
present, Journal of Texture Studies, vol. b, 1974, pp. 3-12.



334 BIBLIOGRAPHY

[240] A. M. Sedletskii, Asymptotic formulas for zeros of a function of
Mittag-Lefller type, Analysis Mathematica, vol. 20, 1994, pp. 117
132 (in Russian).

[241] G. L. Slonimsky, On the law of deformation of highly elastic
polymeric bodies, Dokl. Akad. Nauk SSSR, vol. 140, no. 2, 1961,
pp. 343-346 (in Russian).

[242] W. Smit and H. de Vries, Rheological models containing fractional
derivatives, Rheologica Acta, vol. 9, 1970, pp. 525 534.

[243] H. M. Srivastava, On an extension of the Mittag-Lefller function,
Yokohama Math. J., vol. 16, no. 2, 1968, pp. 77-88.

[244] H. M. Srivastava, A certain family of sub-exponential series, Int.
J. Math. Educ. Sci. Technol., vol. 25. no. 2, 1994, pp. 211 216.

[245] H. M. Srivastava and R. G. Buschman, Theory and Applications
of Convolution Integral Equations, Kluwer Academic Publishers,
Dordrecht - Boston - London, 1992.

[246] Z. Sobotka, Reology of Materials and Constructions, Acadcmia,
Prague, 1981 (in Czech).

[247] G. Szcgd, Orthogonal Polynomials, Amer. Math. Soc., New York,
1959 (Russian translation with additions: Moscow, Fizmatfiz,
1962).

[248] A. N. Tikhonov and V. Ya. Arsenin, Methods of Solution of Ili-
Posed Problems, Nauka, Moscow, 1986 (in Russian).

[249] E. C. Titchmarsh, Introduction to the Theory of Fourier Inte-
grals, Clarendon Press, Oxford, 1937 (Russian translation: GTTI,
Moscow, 1948).

[250] A. I. Tscytlin, Applied Methods of Solution of Boundary Value
Problems in Civil Engineering, Stroyizdat, Moscow, 1984 (in Rus-
sian),

[251] E. Vitasek, Numerical Methods, SNTL, Prague, 1987 (in Czech).

[252] V. Volterra. Legons sur la Théorie Mathématique de la Lutte pour
la Vie. Paris, Gauthier-Villars, 1931 (Russian translation: Moscow,
Nauka, 1976).



BIBLIOGRAPHY 335

[253] S. Westerlund. Dead matter has memory! Physica Scripta, vol. 43,
1991, pp. 174-179.

[254] S. Westerlund, Causality, report no. 940426, University of Kalmar,
1994.

[255] S. Westerlund and L. Ekstam, Capacitor theory, IEEE Trans.
on Dielectrics and FElectrical Insulation, vol. 1, no. 5, Oct 1994,
pp. 826-839.

(256] A. Wiman, Uber den fundamentalsatz in der teoric der funktionen
Eo(x), Acta Math., vol. 29, 1905, pp. 191-201.

[257] A. Wiman. Uber die nulstellen der funktionen E,(x). Acta Math.,
vol. 29, 1905, pp. 217 234.

[258] E. M. Wright, On the coeflicients of power scries having exponen-
tial singularities, J. London Math. Soc., 1933, vol. 8, pp. 71-79.

[259] W. Wyss, The fractional diffusion equation, J. Math. Phys., vol. 27,
no. 11, 1986, pp. 2782-2785.



This Page Intentionally Left Blank



Index

Abel’s equation, 192, 262
equations reducible to,
263-268
Arutyunyan’s equation, 191
asymptotic solutions, 236

Babenko’s method, 168
link to Laplace transform
method, 172
backward finite differences
for integer-order
derivatives, 204
Bagley- Torvik equation, 229
beta function, 6
and the gamma function, 7
definition, 6
Bromwich contour, 113, 142, 143

capacitor theory, 278
Chebyshev polynomials, 188, 189
Chua’s circuit
classical, 286
differential equations, 286
control diagram, 288
fractional, 289
differential equations, 289
composition of fractional derivatives
with fractional derivatives,
59-62, 74-75
with integer-order derivatives,
57--08, 73-74
controlled system
fractional, 244
example, 252
impulse response, 248
integer-order approximation,
252

ramp response, 249
step response, 248
controller
fractional-order, 249
integer-order, 249
convolution, 103, 110
Mellin, 113
cooling by radiation, 236
Curie’s law, 278

delta function, 82
fractional derivative, 84
Dirac delta function,
see delta function

clectrical conductance of cell
membranes, 294
electrode-electrolyte interface, 292
existence and uniqueness theorems,
121
as a method of solution, 131
equation of a general form, 127
linear fractional differential
equations, 122

finite-part integrals, 107, 193, 220
and fractional derivatives, 220
and inequalities, 194
examples, 194
manipulation with, 194
regularization, 193
fitting experimental data, 299
Fourier transform, 109
of n-th derivative, 110
of convolution, 110
of fractional derivative, 112
of fractional integral, 111
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fractance, 279
chain, 280
in viscoelasticity, 273
tree, 279
fractional calculus, 41
fractional cosine, 19
fractional derivative, 42
of the power function, 55-57
asymptotics
far from the lower terminal,
102
near the lower terminal, 100
Caputo’s, 78-81, 245
Fourier transform, 112
Laplace transform, 106
Caputo’s vs Riemann -Liouville,
246
generalized functions
approach, 81 86
Griinwald - Letnikov, 43-62, 200
Fourier transform, 112
Laplace transform, 107

Laplace transform, 108, 138, 212,

245
left, 88
link between Riemnann-Liouville
and Caputo approaches, 85
link between Riemann-Liouville
and Grinwald-Letnikov
approaches, 75
Mellin transform, 115-117
Miller- Ross, 86
of the power function, 72
physical interpretation, 89, 307
properties, 90
differentiation of an integral
depending on a paramecter,
98
Leibniz rule, 95, 96
linearity, 90
Riemann-Liouville, 68-72
Fourier transform, 112
Laplace transform, 105
right, 88
sequential, 86

INDEX

Laplace transform, 108
fractional difference
order of approximation, 208
fractional difference method
first-order approximations, 204
higher-order approximations,
209
implementation, 208
use of fast Fourier transform,
209
fractional differential equation, 42,
138
initial conditions for, 223
non-linear, 236
ordinary, 138-140, 144- 146
partial, 140 143, 146
with constant coefficients,
138-147, 152-158, 224, 229,
245, 250- 252, 254, 256
with non-constant coecfficients,
232
fractional diffusion, 296298
fractional diffusion equation, 297
fractional diffusion problem
Mainardi’s, 146
Nigmatullin's, 140
Schneider-Wyss, 142
fractional diffusion- wave equation,
208
fractional Green's function
definition, 150
for four-term equation, 156
for one-term equation, 153
for three-term equation, 155
for two-term cquation, 154
general formula, 157
properties, 150
fractional integral. 42, 48, 65, 212,
245
Fourier transform, 111
Grinwald- Letnikov, 4852
Laplace transform, 104, 212
Riemann-Liouville, 65-68
fractional Maxwell equations, 305,
306
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fractional sine, 19

fractional-order multipoles, 293

fractional-order system, 42
paramcter identification, 257

gamna function, 1
contour integral, 12
definition, 1
Legendre’s formula, 9, 27
limit representation, 4
particular values, 9-10
poles, 2
properties, 2-3, 7-10
reciprocal, 12
Gegenbauer polynomials, 189, 190
Green's function,
see fractional Green's func-
tion

Hamiltonian mechanics,
fractional, 306
Hankel contour, 142, 143
heat conduction problem, 212
Heaviside function, 84
fractional derivative, 84
Hoaoke’s elastic clement, 269

impulse respouse, 248

initial conditions
dependence on, 133
zero, 125

Jacobi polynomials
classical, 184, 185
genceralized, 184, 193, 195
scries in, 198
indefinite norm, 195

Kelvin's viscoelastic element, 269

Lagrangian mechanics,
fractional, 306
Laguerre polynomials, 189
Laplace transform, 103
of n-th derivative, 104
of Caputo’s derivative, 106
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of convolution, 104

of Griinwald-Letnikov
derivative, 107

of Grinwald -Letnikov
integral, 104

of Ricmann-Liouville
derivative, 105

of Riemann- Liouville
integral, 104

of sequential fractional
derivative, 108

Legendre polynomials, 188, 189

Maxwell's viscoclastic element, 269
Mellin transform, 112
for solving fractional differen-
tial equations, 159
of n-th derivative, 114
of Caputo’s derivative, 116
of Riemann- Liouville
derivative, 115
of Riemann-Liouville
integral, 115
of sequential fractional
derivative, 117
Miller -Ross function, 19
Mittag-Leffler function
and other functions, 17, 25, 27
asymptotic expansions, 29- 37
asymptotic formulas, 30, 32, 34,
35
definition, 17, 246
derivatives, 21-22
differential equations, 23
Fourier cosine-transform, 142,
147
fractional derivative, 21
fractional integral, 25
generalized, 247
fractional derivative, 247
Laplace transform, 247
integration, 25
Laplace transform, 21
particular cases, 17-18
summation formulas, 24
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Newton's second law,

fractional, 306
Newton's viscous element, 269
non-integrable weight, 193, 195
nystagmus, 295

orthogonal polynomials
Chebyshev, 188, 189
Gegenbauer, 189, 190
Jacobi, 189
Laguerre, 189
Legendre, 188, 189
orthogonal polynomials
method, 173
basic scheme, 179
for singular integral equations,
174

PI*D#-controller, 249
transfer function, 249
power series method, 233

Rabotnov’s function, 19
ramp response, 249
reciprocal gamma function, 12
contour integral, 13
relaxation -oscillation equation, 224
Riesz potential, 181
generalized, 184

sernidifferential electroanalysis, 290
semniintegral electroanalysis, 200
short-memory, 203
short-memory principle
for initial-value problems, 242
formulation, 203
mentory length determination,
203, 215
use of, 214
solution of a gas in a fluid, 232
speetral relationship, 179
step respouse, 248

terminals, 42
transfer function
fractional, 245

INDEX

example, 252
of a fractional controller, 249

unification of integration and
differentiation, 43, 63
Griinwald- Letnikov
approach, 4348
Riemann -Liouville
approach, 63- 65
unit-step function, 84

vestibulo-ocular reflex, 295
viscoelasticity, 268
convolution approach, 276
fractional-order models,
271 277
five-parameter, 275
four-parameter, 275
three-parameter, 274, 275
two-parameter, 274
integer-order models, 269
power-law relaxation, 276
Voigt's viscoelastic element, 269
voltage divider, 282

Wright function, 37
and other functions, 38
definition, 37
integral representation, 37

Zener's viscoelastic element, 271
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